1
|
Locatelli NS, Kitchen SA, Stankiewicz KH, Osborne CC, Dellaert Z, Elder H, Kamel B, Koch HR, Fogarty ND, Baums IB. Chromosome-level genome assemblies and genetic maps reveal heterochiasmy and macrosynteny in endangered Atlantic Acropora. BMC Genomics 2024; 25:1119. [PMID: 39567907 PMCID: PMC11577847 DOI: 10.1186/s12864-024-11025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Over their evolutionary history, corals have adapted to sea level rise and increasing ocean temperatures, however, it is unclear how quickly they may respond to rapid change. Genome structure and genetic diversity contained within may highlight their adaptive potential. RESULTS We present chromosome-scale genome assemblies and linkage maps of the critically endangered Atlantic acroporids, Acropora palmata and A. cervicornis. Both assemblies and linkage maps were resolved into 14 chromosomes with their gene content and colinearity. Repeats and chromosome arrangements were largely preserved between the species. The family Acroporidae and the genus Acropora exhibited many phylogenetically significant gene family expansions. Macrosynteny decreased with phylogenetic distance. Nevertheless, scleractinians shared six of the 21 cnidarian ancestral linkage groups as well as numerous fission and fusion events compared to other distantly related cnidarians. Genetic linkage maps were constructed from one A. palmata family and 16 A. cervicornis families using a genotyping array. The consensus maps span 1,013.42 cM and 927.36 cM for A. palmata and A. cervicornis, respectively. Both species exhibited high genome-wide recombination rates (3.04 to 3.53 cM/Mb) and pronounced sex-based differences, known as heterochiasmy, with 2 to 2.5X higher recombination rates estimated in the female maps. CONCLUSIONS Together, the chromosome-scale assemblies and genetic maps we present here are the first detailed look at the genomic landscapes of the critically endangered Atlantic acroporids. These data sets revealed that adaptive capacity of Atlantic acroporids is not limited by their recombination rates. The sister species maintain macrosynteny with few genes with high sequence divergence that may act as reproductive barriers between them. In the Atlantic Acropora, hybridization between the two sister species yields an F1 hybrid with limited fertility despite the high levels of macrosynteny and gene colinearity of their genomes. Together, these resources now enable genome-wide association studies and discovery of quantitative trait loci, two tools that can aid in the conservation of these species.
Collapse
Affiliation(s)
- Nicolas S Locatelli
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sheila A Kitchen
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Kathryn H Stankiewicz
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - C Cornelia Osborne
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Zoe Dellaert
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Holland Elder
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bishoy Kamel
- Lawrence Berkeley National Laboratory, Joint Genome Institute, Berkeley, CA, USA
| | - Hanna R Koch
- Mote Marine Laboratory, Coral Reef Restoration Program, Summerland Key, FL, USA
| | - Nicole D Fogarty
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Heerstraße 231, Oldenburg, Ammerländer, 26129, Germany.
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Am Handelshafen, Bremerhaven, Germany.
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl Von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg, 26129, Germany.
| |
Collapse
|
2
|
Atajanova T, Kang EM, Postnikova A, Price AL, Doerr S, Du M, Ugenti A, Ragkousi K. Lateral cell polarization drives organization of epithelia in sea anemone embryos and embryonic cell aggregates. Proc Natl Acad Sci U S A 2024; 121:e2408763121. [PMID: 39471210 PMCID: PMC11573592 DOI: 10.1073/pnas.2408763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
One of the first organizing processes during animal development is the assembly of embryonic cells into epithelia. Common features unite epithelialization across select bilaterians, however, we know less about the molecular and cellular mechanisms that drive epithelial emergence in early branching nonbilaterians. In sea anemones, epithelia emerge both during embryonic development and after cell aggregation of dissociated tissues. Although adhesion is required to keep cells together, it is not clear whether cell polarization plays a role as epithelia emerge from disordered aggregates. Here, we use the embryos of the sea anemone Nematostella vectensis to investigate the evolutionary origins of epithelial development. We demonstrate that lateral cell polarization is essential for epithelial organization in both embryos and aggregates. With disrupted lateral polarization, cell contact in the aggregate is not sufficient to trigger epithelialization and further tissue development. Specifically, knockdown of the conserved lateral polarity and tumor suppressor protein Lethal giant larvae (Lgl) disrupts epithelia in developing embryos and impairs the capacity of dissociated cells to epithelialize from aggregates. In contrast to other systems, cells in Nematostella lgl knockdown embryos do not undergo excessive proliferation. Cells with reduced Lgl levels lose their columnar shape and proper positioning of their mitotic spindles and basal bodies. Due to misoriented divisions and aberrant shapes, cells arrange nonuniformly without forming a monolayer. Together our data show that, in Nematostella, Lgl drives epithelialization in embryos and cell aggregates through its effect on cell shape and organelle localization.
Collapse
Affiliation(s)
| | | | | | | | - Sophia Doerr
- Department of Biology, Amherst College, Amherst, MA 01002
| | - Michael Du
- Department of Biology, Amherst College, Amherst, MA 01002
| | - Alicia Ugenti
- Department of Biology, Amherst College, Amherst, MA 01002
| | | |
Collapse
|
3
|
Ivanković M, Brand JN, Pandolfini L, Brown T, Pippel M, Rozanski A, Schubert T, Grohme MA, Winkler S, Robledillo L, Zhang M, Codino A, Gustincich S, Vila-Farré M, Zhang S, Papantonis A, Marques A, Rink JC. A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence. Nat Commun 2024; 15:8215. [PMID: 39294119 PMCID: PMC11410931 DOI: 10.1038/s41467-024-52380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
The planarian Schmidtea mediterranea is being studied as a model species for regeneration, but the assembly of planarian genomes remains challenging. Here, we report a high-quality haplotype-phased, chromosome-scale genome assembly of the sexual S2 strain of S. mediterranea and high-quality chromosome-scale assemblies of its three close relatives, S. polychroa, S. nova, and S. lugubris. Using hybrid gene annotations and optimized ATAC-seq and ChIP-seq protocols for regulatory element annotation, we provide valuable genome resources for the planarian research community and a first comparative perspective on planarian genome evolution. Our analyses reveal substantial divergence in protein-coding sequences and regulatory regions but considerable conservation within promoter and enhancer annotations. We also find frequent retrotransposon-associated chromosomal inversions and interchromosomal translocations within the genus Schmidtea and, remarkably, independent and nearly complete losses of ancestral metazoan synteny in Schmidtea and two other flatworm groups. Overall, our results suggest that platyhelminth genomes can evolve without syntenic constraints.
Collapse
Affiliation(s)
- Mario Ivanković
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jeremias N Brand
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luca Pandolfini
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrei Rozanski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Til Schubert
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus A Grohme
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Laura Robledillo
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Meng Zhang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Azzurra Codino
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Gustincich
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Miquel Vila-Farré
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shu Zhang
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Faculty of Biology und Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Chai C, Gibson J, Li P, Pampari A, Patel A, Kundaje A, Wang B. Flexible use of conserved motif vocabularies constrains genome access in cell type evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611027. [PMID: 39282369 PMCID: PMC11398382 DOI: 10.1101/2024.09.03.611027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cell types evolve into a hierarchy with related types grouped into families. How cell type diversification is constrained by the stable separation between families over vast evolutionary times remains unknown. Here, integrating single-nucleus multiomic sequencing and deep learning, we show that hundreds of sequence features (motifs) divide into distinct sets associated with accessible genomes of specific cell type families. This division is conserved across highly divergent, early-branching animals including flatworms and cnidarians. While specific interactions between motifs delineate cell type relationships within families, surprisingly, these interactions are not conserved between species. Consistently, while deep learning models trained on one species can predict accessibility of other species' sequences, their predictions frequently rely on distinct, but synonymous, motif combinations. We propose that long-term stability of cell type families is maintained through genome access specified by conserved motif sets, or 'vocabularies', whereas cell types diversify through flexible use of motifs within each set.
Collapse
Affiliation(s)
- Chew Chai
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Jesse Gibson
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Pengyang Li
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, USA
| | - Aman Patel
- Department of Computer Science, Stanford University, Stanford, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
5
|
Lewin TD, Liao IJY, Luo YJ. Annelid Comparative Genomics and the Evolution of Massive Lineage-Specific Genome Rearrangement in Bilaterians. Mol Biol Evol 2024; 41:msae172. [PMID: 39141777 PMCID: PMC11371463 DOI: 10.1093/molbev/msae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The organization of genomes into chromosomes is critical for processes such as genetic recombination, environmental adaptation, and speciation. All animals with bilateral symmetry inherited a genome structure from their last common ancestor that has been highly conserved in some taxa but seemingly unconstrained in others. However, the evolutionary forces driving these differences and the processes by which they emerge have remained largely uncharacterized. Here, we analyze genome organization across the phylum Annelida using 23 chromosome-level annelid genomes. We find that while many annelid lineages have maintained the conserved bilaterian genome structure, the Clitellata, a group containing leeches and earthworms, possesses completely scrambled genomes. We develop a rearrangement index to quantify the extent of genome structure evolution and show that, compared to the last common ancestor of bilaterians, leeches and earthworms have among the most highly rearranged genomes of any currently sampled species. We further show that bilaterian genomes can be classified into two distinct categories-high and low rearrangement-largely influenced by the presence or absence, respectively, of chromosome fission events. Our findings demonstrate that animal genome structure can be highly variable within a phylum and reveal that genome rearrangement can occur both in a gradual, stepwise fashion, or rapid, all-encompassing changes over short evolutionary timescales.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Denner A, Steger J, Ries A, Morozova-Link E, Ritter J, Haas F, Cole AG, Technau U. Nanos2 marks precursors of somatic lineages and is required for germline formation in the sea anemone Nematostella vectensis. SCIENCE ADVANCES 2024; 10:eado0424. [PMID: 39151009 PMCID: PMC11328910 DOI: 10.1126/sciadv.ado0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
In animals, stem cell populations of varying potency facilitate regeneration and tissue homeostasis. Notably, germline stem cells in both vertebrates and invertebrates express highly conserved RNA binding proteins, such as nanos, vasa, and piwi. In highly regenerative animals, these genes are also expressed in somatic stem cells, which led to the proposal that they had an ancestral role in all stem cells. In cnidarians, multi- and pluripotent interstitial stem cells have only been identified in hydrozoans. Therefore, it is currently unclear if cnidarian stem cell systems share a common evolutionary origin. We, therefore, aimed to characterize conserved stem cell marker genes in the sea anemone Nematostella vectensis. Through transgenic reporter genes and single-cell transcriptomics, we identify cell populations expressing the germline-associated markers piwi1 and nanos2 in the soma and germline, and gene knockout shows that Nanos2 is indispensable for germline formation. This suggests that nanos and piwi genes have a conserved role in somatic and germline stem cells in cnidarians.
Collapse
Affiliation(s)
- Andreas Denner
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Julia Steger
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Alexander Ries
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Elizaveta Morozova-Link
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Josefine Ritter
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Franziska Haas
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Alison G Cole
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Research platform SINCEREST, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Max Perutz labs, University of Vienna, Dr. Bohrgasse 7, 1030 Vienna, Austria
| |
Collapse
|
7
|
Sabin KZ, Chen S, Hill EM, Weaver KJ, Yonke J, Kirkman M, Redwine WB, Klompen AML, Zhao X, Guo F, McKinney MC, Dewey JL, Gibson MC. Graded FGF activity patterns distinct cell types within the apical sensory organ of the sea anemone Nematostella vectensis. Dev Biol 2024; 510:50-65. [PMID: 38521499 DOI: 10.1016/j.ydbio.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.
Collapse
Affiliation(s)
- Keith Z Sabin
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Eric M Hill
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kyle J Weaver
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jacob Yonke
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | | | - Xia Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
8
|
Mörsdorf D, Knabl P, Genikhovich G. Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria. Dev Genes Evol 2024; 234:1-19. [PMID: 38472535 PMCID: PMC11226491 DOI: 10.1007/s00427-024-00714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Bilateria encompass the vast majority of the animal phyla. As the name states, they are bilaterally symmetric, that is with a morphologically clear main body axis connecting their anterior and posterior ends, a second axis running between their dorsal and ventral surfaces, and with a left side being roughly a mirror image of their right side. Bone morphogenetic protein (BMP) signalling has widely conserved functions in the formation and patterning of the second, dorso-ventral (DV) body axis, albeit to different extents in different bilaterian species. Whilst initial findings in the fruit fly Drosophila and the frog Xenopus highlighted similarities amongst these evolutionarily very distant species, more recent analyses featuring other models revealed considerable diversity in the mechanisms underlying dorsoventral patterning. In fact, as phylogenetic sampling becomes broader, we find that this axis patterning system is so evolvable that even its core components can be deployed differently or lost in different model organisms. In this review, we will try to highlight the diversity of ways by which BMP signalling controls bilaterality in different animals, some of which do not belong to Bilateria. Future research combining functional analyses and modelling is bound to give us some understanding as to where the limits to the extent of the evolvability of BMP-dependent axial patterning may lie.
Collapse
Affiliation(s)
- David Mörsdorf
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
9
|
Surm JM, Landau M, Columbus-Shenkar YY, Moran Y. Sea Anemone Membrane Attack Complex/Perforin Superfamily Demonstrates an Evolutionary Transitional State between Venomous and Developmental Functions. Mol Biol Evol 2024; 41:msae082. [PMID: 38676945 PMCID: PMC11090067 DOI: 10.1093/molbev/msae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
Gene duplication is a major force driving evolutionary innovation. A classic example is generating new animal toxins via duplication of physiological protein-encoding genes and recruitment into venom. While this process drives the innovation of many animal venoms, reverse recruitment of toxins into nonvenomous cells remains unresolved. Using comparative genomics, we find members of the Membrane Attack Complex and Perforin Family (MAC) have been recruited into venom-injecting cells (cnidocytes), in soft and stony corals and sea anemones, suggesting that the ancestral MAC was a cnidocyte expressed toxin. Further investigation into the model sea anemone Nematostella vectensis reveals that three members have undergone Nematostella-specific duplications leading to their reverse recruitment into endomesodermal cells. Furthermore, simultaneous knockdown of all three endomesodermally expressed MACs leads to mis-development, supporting that these paralogs have nonvenomous function. By resolving the evolutionary history and function of MACs in Nematostella, we provide the first proof for reverse recruitment from venom to organismal development.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Morani Landau
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| |
Collapse
|
10
|
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan LB, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, Baxevanis AD. The genome of the colonial hydroid Hydractinia reveals that their stem cells use a toolkit of evolutionarily shared genes with all animals. Genome Res 2024; 34:498-513. [PMID: 38508693 PMCID: PMC11067881 DOI: 10.1101/gr.278382.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.
Collapse
Affiliation(s)
- Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - E Sally Chang
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - Wai Yee Wong
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Anh-Dao Nguyen
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sofia N Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liam B Doonan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Paul Gonzalez
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey Koren
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James M Gahan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Steven M Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Brian Bradshaw
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Febrimarsa
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Pharmaceutical Biology Laboratory, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jawa Tengah 57169, Indonesia
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandra Larson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
| | - Samantha Klasfeld
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sebastian G Gornik
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Center for Organismal Studies, University of Heidelberg, 69117 Heidelberg, Germany
| | - R Travis Moreland
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adam M Phillippy
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- NIH Intramural Sequencing Center, Rockville, Maryland 20852, USA
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas 66045, USA
| | - Matthew Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Uri Frank
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
11
|
Cole AG, Steger J, Hagauer J, Denner A, Ferrer Murguia P, Knabl P, Narayanaswamy S, Wick B, Montenegro JD, Technau U. Updated single cell reference atlas for the starlet anemone Nematostella vectensis. Front Zool 2024; 21:8. [PMID: 38500146 PMCID: PMC10946136 DOI: 10.1186/s12983-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The recent combination of genomics and single cell transcriptomics has allowed to assess a variety of non-conventional model organisms in much more depth. Single cell transcriptomes can uncover hidden cellular complexity and cell lineage relationships within organisms. The recent developmental cell atlases of the sea anemone Nematostella vectensis, a representative of the basally branching Cnidaria, has provided new insights into the development of all cell types (Steger et al Cell Rep 40(12):111370, 2022; Sebé-Pedrós et al. Cell 173(6):1520-1534.e20). However, the mapping of the single cell reads still suffers from relatively poor gene annotations and a draft genome consisting of many scaffolds. RESULTS Here we present a new wildtype resource of the developmental single cell atlas, by re-mapping of sequence data first published in Steger et al. (2022) and Cole et al. (Nat Commun 14(1):1747, 2023), to the new chromosome-level genome assembly and corresponding gene models in Zimmermann et al. (Nat Commun 14, 8270 (2023). https://doi.org/10.1038/s41467-023-44080-7 ). We expand the pre-existing dataset through the incorporation of additional sequence data derived from the capture and sequencing of cell suspensions from four additional samples: 24 h gastrula, 2d planula, an inter-parietal region of the bodywall from a young unsexed animal, and another adult mesentery from a mature male animal. CONCLUSION Our analyses of the full cell-state inventory provide transcriptomic signatures for 127 distinct cell states, of which 47 correspond to neuroglandular subtypes. We also identify two distinct putatively immune-related transcriptomic profiles that segregate between the inner and outer cell layers. Furthermore, the new gene annotation Nv2 has markedly improved the mapping on the single cell transcriptome data and will therefore be of great value for the community and anyone using the dataset.
Collapse
Affiliation(s)
- Alison G Cole
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research Platform Single Cell Regulation of Stem Cells, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Julia Steger
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julia Hagauer
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Andreas Denner
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Patricio Ferrer Murguia
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sanjay Narayanaswamy
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Brittney Wick
- UCSC Cellbrowser, University of California, Santa Cruz, USA
| | - Juan D Montenegro
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research Platform Single Cell Regulation of Stem Cells, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Max Perutz Labs, University of Vienna, Dr. Bohrgasse 9, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Zancolli G, von Reumont BM, Anderluh G, Caliskan F, Chiusano ML, Fröhlich J, Hapeshi E, Hempel BF, Ikonomopoulou MP, Jungo F, Marchot P, de Farias TM, Modica MV, Moran Y, Nalbantsoy A, Procházka J, Tarallo A, Tonello F, Vitorino R, Zammit ML, Antunes A. Web of venom: exploration of big data resources in animal toxin research. Gigascience 2024; 13:giae054. [PMID: 39250076 PMCID: PMC11382406 DOI: 10.1093/gigascience/giae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
Research on animal venoms and their components spans multiple disciplines, including biology, biochemistry, bioinformatics, pharmacology, medicine, and more. Manipulating and analyzing the diverse array of data required for venom research can be challenging, and relevant tools and resources are often dispersed across different online platforms, making them less accessible to nonexperts. In this article, we address the multifaceted needs of the scientific community involved in venom and toxin-related research by identifying and discussing web resources, databases, and tools commonly used in this field. We have compiled these resources into a comprehensive table available on the VenomZone website (https://venomzone.expasy.org/10897). Furthermore, we highlight the challenges currently faced by researchers in accessing and using these resources and emphasize the importance of community-driven interdisciplinary approaches. We conclude by underscoring the significance of enhancing standards, promoting interoperability, and encouraging data and method sharing within the venom research community.
Collapse
Affiliation(s)
- Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Björn Marcus von Reumont
- Goethe University Frankfurt, Faculty of Biological Sciences, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Figen Caliskan
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, 26040 Eskişehir, Turkey
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University Federico II of Naples, 80055 Portici, Naples, Italy
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Jacob Fröhlich
- Veterinary Center for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Evroula Hapeshi
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 1700 Nicosia, Cyprus
| | - Benjamin-Florian Hempel
- Veterinary Center for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Maria P Ikonomopoulou
- Madrid Institute of Advanced Studies in Food, Precision Nutrition & Aging Program, 28049 Madrid, Spain
| | - Florence Jungo
- SIB Swiss Institute of Bioinformatics, Swiss-Prot Group, 1211 Geneva, Switzerland
| | - Pascale Marchot
- Laboratory Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University, Centre National de la Recherche Scientifique, Faculté des Sciences, Campus Luminy, 13288 Marseille, France
| | - Tarcisio Mendes de Farias
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 00198 Rome, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Ayse Nalbantsoy
- Engineering Faculty, Bioengineering Department, Ege University, 35100 Bornova-Izmir, Turkey
| | - Jan Procházka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Andrea Tarallo
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), 73100 Lecce, Italy
| | - Fiorella Tonello
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mark Lawrence Zammit
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine & Surgery, University of Malta, 2090 Msida, Malta
- Malta National Poisons Centre, Malta Life Sciences Park, 3000 San Ġwann, Malta
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|