1
|
Mazur RA, Lampe KJ. Guiding Oligodendrocyte Progenitor Cell Maturation Using Electrospun Fiber Cues in a 3D Hyaluronic Acid Hydrogel Culture System. ACS Biomater Sci Eng 2025; 11:1025-1037. [PMID: 39705601 DOI: 10.1021/acsbiomaterials.4c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The current lack of therapeutic approaches to demyelinating disorders and injuries stems from a lack of knowledge surrounding the underlying mechanisms of myelination. This knowledge gap motivates the development of effective models to study the role of environmental cues in oligodendrocyte progenitor cell (OPC) maturation. Such models should focus on determining, which factors influence OPCs to proliferate and differentiate into mature myelinating oligodendrocytes (OLs). Here, we introduce a hyaluronic acid (HA) hydrogel system composed of cross-linked HA containing encapsulated HA fibers with swollen diameters similar to mature axons (2.7 ± 0.2 μm). We tuned hydrogel storage moduli to simulate native brain tissue (200-2000 Pa) and studied the effects of fiber presence on OPC proliferation, metabolic activity, protein deposition, and morphological changes in gels of intermediate storage modulus (800 ± 0.3 Pa). OPCs in fiber-containing gels at culture days 4 and 7 exhibited a significantly greater number of process extensions, a morphological change associated with differentiation. By contrast, OPCs in fiber-free control gels maintained more proliferative phenotypes with 2.2-fold higher proliferation at culture day 7 and 1.8-fold higher metabolic activity at culture days 4 and 7. Fibers were also found to influence extracellular matrix (ECM) deposition and distribution, with more, and more distributed, nascent ECM deposition occurring in the fiber-containing gels. Overall, these data indicate that inclusion of appropriately sized HA fibers provides topographical cues, which guide OPCs toward differentiation. This HA hydrogel/fiber system is a promising in vitro scheme, providing valuable insight into the underlying mechanisms of differentiation and myelination.
Collapse
Affiliation(s)
- Rachel A Mazur
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903-1738 United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903-1738 United States
| |
Collapse
|
2
|
Brunel LG, Long CM, Christakopoulos F, Cai B, Johansson PK, Singhal D, Enejder A, Myung D, Heilshorn SC. Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability. Acta Biomater 2025; 193:128-142. [PMID: 39798635 DOI: 10.1016/j.actbio.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks. STATEMENT OF SIGNIFICANCE: Collagen hydrogels are widely used as scaffolds for tissue engineering due to their support of cellular activity. However, collagen hydrogels often undergo undesired changes in size and shape due to cell-generated forces, and conventional strategies to mitigate this deformation typically compromise either the fibrillar microstructure or cytocompatibility of the collagen. In this study, we introduce an innovative interpenetrating network (IPN) that combines physically self-assembled, fibrillar collagen-ideal for promoting cell adhesion and spreading-with covalently crosslinked, amorphous collagen-ideal for enhancing bulk hydrogel stability. Our IPN design maintains the native fibrillar structure of collagen while significantly improving resistance against cell-induced contraction, providing a promising solution to enhance the performance and reliability of collagen hydrogels for tissue engineering applications.
Collapse
Affiliation(s)
- Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Chris M Long
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Fotis Christakopoulos
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Patrik K Johansson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Diya Singhal
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Luss AL, Bobrova MM, Kulikov PP, Keskinov AA. Collagen-Based Scaffolds for Volumetric Muscle Loss Regeneration. Polymers (Basel) 2024; 16:3429. [PMID: 39684174 DOI: 10.3390/polym16233429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Volumetric muscle loss (VML) is a serious problem in healthcare that requires innovative solutions. Collagen and its derivatives are promising biomaterials for muscle tissue replacement due to their high biocompatibility, biodegradability, and lack of toxicity. This review comprehensively discusses collagen from various sources, its structural characteristics, cross-linking methods to obtain hydrogels, and approaches to incorporating various therapeutic molecules to create a biocomposite system with controlled release. Collagen-based scaffolds are promising constructs in tissue engineering and regenerative medicine. They can both perform their function independently and act as a depot for various biologically active substances (drugs, growth factors, genetic material, etc.). Collagen-based scaffolds for muscle volume restoration are three-dimensional constructs that support cell adhesion and proliferation and provide controlled release of therapeutic molecules. Various mechanical and biological properties of scaffolds can be achieved by cross-linking agents and bioactive molecules incorporated into the structure. This review highlights recent studies on collagen-based hydrogels for restoration of volumetric muscle loss.
Collapse
Affiliation(s)
- Anna L Luss
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| | - Maria M Bobrova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| | - Pavel P Kulikov
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| | - Anton A Keskinov
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| |
Collapse
|
4
|
Uman S, Weingarten N, Helmers M, Iyengar A, Xu KL, Worthington K, Meldrum D, Dominic J, Guevara-Plunkett S, Schiazza A, Atluri P, Burdick JA. Engineering and Monitoring the Sustained Release of Extracellular Vesicles from Hydrogels for In Vivo Therapeutic Applications. ADVANCED NANOBIOMED RESEARCH 2024; 4:2400073. [PMID: 39957840 PMCID: PMC11824923 DOI: 10.1002/anbr.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
Extracellular vesicles (EVs) are gaining interest in regenerative medicine and biomaterials have been shown to extend EV bioavailability following delivery. Here, we report the labeling of both hydrogels and EVs to better understand hydrogel design for sustained EV release into tissues. Shear-thinning hydrogels were engineered using guest-host (i.e., adamantane-cyclodextrin) modifications to hyaluronic acid (GH), as well as GH hydrogels with the addition of gelatin crosslinked via transglutaminase (GH+Gel) to temporally control hydrogel properties. When labeled with a near-IR dye and injected into rat myocardial tissue, the GH+Gel hydrogel was retained (>14 days) longer than the GH hydrogel alone (~7 days), likely due to the added gelatin network. To overcome challenges associated with common EV labeling methods, we utilized a highly versatile metabolic labeling methodology via the incorporation of Ac4ManNAz during EV synthesis to introduce azide groups that could then be reacted with DBCO-dyes. When injected in saline, EVs were cleared within 24 hours in hearts; however, hydrogels enhanced EV retention, with levels based on hydrogel degradation behavior, namely >14 days for GH+Gel hydrogel and ~7 days for GH hydrogel alone. These findings support the use of hydrogels in EV therapies to help retain their presence at desired tissue sites.
Collapse
Affiliation(s)
- Selen Uman
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noah Weingarten
- Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Helmers
- Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amit Iyengar
- Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karen L Xu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kendra Worthington
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Danika Meldrum
- Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Dominic
- Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Guevara-Plunkett
- Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexis Schiazza
- Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pavan Atluri
- Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Yoo S, Lee HJ. Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology. Cells Tissues Organs 2024:1-20. [PMID: 39265553 DOI: 10.1159/000541416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Despite significant advances in three-dimensional (3D) cell culture technologies, creating accurate in vitro models that faithfully recapitulate complex in vivo environments remains a major challenge in biomedical research. Traditional culture methods often fail to simultaneously facilitate critical cell-cell and cell-extracellular matrix (ECM) interactions while providing control over mechanical and biochemical properties. SUMMARY This review introduces the spheroid-hydrogel-integrated biomimetic system (SHIBS), a groundbreaking approach that synergistically combines spheroid culture with tailored hydrogel technologies. SHIBS uniquely bridges the gap between traditional culture methods and physiological conditions by offering unprecedented control over both cellular interactions and environmental properties. We explore how SHIBS is revolutionizing fields ranging from drug discovery and disease modeling to regenerative medicine and basic biological research. The review discusses current challenges in SHIBS technology, including reproducibility, scalability, and high-resolution imaging, and outlines ongoing research addressing these issues. Furthermore, we envision the future evolution of SHIBS into more sophisticated organoid-hydrogel-integrated biomimetic systems and its integration with cutting-edge technologies such as microfluidics, 3D bioprinting, and artificial intelligence. KEY MESSAGES SHIBS represents a paradigm shift in 3D cell culture technology, offering a unique solution to recreate complex in vivo environments. Its potential to accelerate the development of personalized therapies across various biomedical fields is significant. While challenges persist, the ongoing advancements in SHIBS technology promise to overcome current limitations, paving the way for more accurate and reliable in vitro models. The future integration of SHIBS with emerging technologies may revolutionize biomimetic modeling, potentially reducing the need for animal testing and expediting drug discovery processes. This comprehensive review provides researchers and clinicians with a holistic understanding of SHIBS technology, its current capabilities, and its future prospects in advancing biomedical research and therapeutic innovations.
Collapse
Affiliation(s)
- Seungyeop Yoo
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
6
|
Xu KL, Di Caprio N, Fallahi H, Dehghany M, Davidson MD, Laforest L, Cheung BCH, Zhang Y, Wu M, Shenoy V, Han L, Mauck RL, Burdick JA. Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration. Nat Commun 2024; 15:2766. [PMID: 38553465 PMCID: PMC10980809 DOI: 10.1038/s41467-024-46774-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Cell migration is critical for tissue development and regeneration but requires extracellular environments that are conducive to motion. Cells may actively generate migratory routes in vivo by degrading or remodeling their environments or instead utilize existing extracellular matrix microstructures or microtracks as innate pathways for migration. While hydrogels in general are valuable tools for probing the extracellular regulators of 3-dimensional migration, few recapitulate these natural migration paths. Here, we develop a biopolymer-based bicontinuous hydrogel system that comprises a covalent hydrogel of enzymatically crosslinked gelatin and a physical hydrogel of guest and host moieties bonded to hyaluronic acid. Bicontinuous hydrogels form through controlled solution immiscibility, and their continuous subdomains and high micro-interfacial surface area enable rapid 3D migration, particularly when compared to homogeneous hydrogels. Migratory behavior is mesenchymal in nature and regulated by biochemical and biophysical signals from the hydrogel, which is shown across various cell types and physiologically relevant contexts (e.g., cell spheroids, ex vivo tissues, in vivo tissues). Our findings introduce a design that leverages important local interfaces to guide rapid cell migration.
Collapse
Affiliation(s)
- Karen L Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Nikolas Di Caprio
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hooman Fallahi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, 19104, PA, USA
| | - Mohammad Dehghany
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew D Davidson
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Lorielle Laforest
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Yuqi Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Vivek Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, 19104, PA, USA
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA.
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
| |
Collapse
|