1
|
Eysholdt-Derzsó E, Hause B, Sauter M, Schmidt-Schippers RR. Hypoxia reshapes Arabidopsis root architecture by integrating ERF-VII factor response and abscisic acid homoeostasis. PLANT, CELL & ENVIRONMENT 2024; 47:2879-2894. [PMID: 38616485 DOI: 10.1111/pce.14914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Oxygen limitation (hypoxia), arising as a key stress factor due to flooding, negatively affects plant development. Consequently, maintaining root growth under such stress is crucial for plant survival, yet we know little about the root system's adaptions to low-oxygen conditions and its regulation by phytohormones. In this study, we examine the impact of hypoxia and, herein, the regulatory role of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors on root growth in Arabidopsis. We found lateral root (LR) elongation to be actively maintained by hypoxia via ERFVII factors, as erfVII seedlings possess hypersensitivity towards hypoxia regarding their LR growth. Pharmacological inhibition of abscisic acid (ABA) biosynthesis revealed ERFVII-driven counteraction of hypoxia-induced inhibition of LR formation in an ABA-dependent manner. However, postemergence LR growth under hypoxia mediated by ERFVIIs was independent of ABA. In roots, ERFVIIs mediate, among others, the induction of ABA-degrading ABA 8'-hydroxylases CYP707A1 expression. RAP2.12 could activate the pCYC707A1:LUC reporter gene, indicating, combined with single mutant analyses, that this transcription factor regulates ABA levels through corresponding transcript upregulation. Collectively, hypoxia-induced adaptation of the Arabidopsis root system is shaped by developmental reprogramming, whereby ERFVII-dependent promotion of LR emergence, but not elongation, is partly executed through regulation of ABA degradation.
Collapse
Affiliation(s)
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, University of Kiel, Kiel, Germany
| | - Romy R Schmidt-Schippers
- Department of Plant Biotechnology, University of Bielefeld, Institute of Biology, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
2
|
Zubrycka A, Dambire C, Dalle Carbonare L, Sharma G, Boeckx T, Swarup K, Sturrock CJ, Atkinson BS, Swarup R, Corbineau F, Oldham NJ, Holdsworth MJ. ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana. Nat Commun 2023; 14:4665. [PMID: 37537157 PMCID: PMC10400637 DOI: 10.1038/s41467-023-40366-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVIIs show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVIIs in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability.
Collapse
Affiliation(s)
- Agata Zubrycka
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Charlene Dambire
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Laura Dalle Carbonare
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
- Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Gunjan Sharma
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Tinne Boeckx
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Kamal Swarup
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Craig J Sturrock
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Brian S Atkinson
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Ranjan Swarup
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Françoise Corbineau
- UMR 7622 CNRS-UPMC, Biologie du développement, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Neil J Oldham
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
3
|
Taylor-Kearney LJ, Flashman E. Targeting plant cysteine oxidase activity for improved submergence tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:779-788. [PMID: 34817108 DOI: 10.1111/tpj.15605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Plant cysteine oxidases (PCOs) are plant O2 -sensing enzymes. They catalyse the O2 -dependent step which initiates the proteasomal degradation of Group VII ethylene response transcription factors (ERF-VIIs) via the N-degron pathway. When submerged, plants experience a reduction in O2 availability; PCO activity therefore decreases and the consequent ERF-VII stabilisation leads to upregulation of hypoxia-responsive genes which enable adaptation to low O2 conditions. Resulting adaptations include entering an anaerobic quiescent state to maintain energy reserves and rapid growth to escape floodwater and allow O2 transport to submerged tissues. Stabilisation of ERF-VIIs has been linked to improved survival post-submergence in Arabidopsis, rice (Oryza sativa) and barley (Hordeum vulgare). Due to climate change and increasing flooding events, there is an interest in manipulating the PCO/ERF-VII interaction as a method of improving yields in flood-intolerant crops. An effective way of achieving this may be through PCO inhibition; however, complete ablation of PCO activity is detrimental to growth and phenotype, likely due to other PCO-mediated roles. Targeting PCOs will therefore require either temporary chemical inhibition or careful engineering of the enzyme structure to manipulate their O2 sensitivity and/or substrate specificity. Sufficient PCO structural and functional information should make this possible, given the potential to engineer site-directed mutagenesis in vivo using CRISPR-mediated base editing. Here, we discuss the knowledge still required for rational manipulation of PCOs to achieve ERF-VII stabilisation without a yield penalty. We also take inspiration from the biocatalysis field to consider how enzyme engineering could be accelerated as a wider strategy to improve plant stress tolerance and productivity.
Collapse
Affiliation(s)
| | - Emily Flashman
- Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Huang X, Shabala L, Zhang X, Zhou M, Voesenek LACJ, Hartman S, Yu M, Shabala S. Cation transporters in cell fate determination and plant adaptive responses to a low-oxygen environment. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:636-645. [PMID: 34718542 DOI: 10.1093/jxb/erab480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Soil flooding creates low-oxygen environments in root zones and thus severely affects plant growth and productivity. Plants adapt to low-oxygen environments by a suite of orchestrated metabolic and anatomical alterations. Of these, formation of aerenchyma and development of adventitious roots are considered very critical to enable plant performance in waterlogged soils. Both traits have been firmly associated with stress-induced increases in ethylene levels in root tissues that operate upstream of signalling pathways. Recently, we used a bioinformatic approach to demonstrate that several Ca2+ and K+ -permeable channels from KCO, AKT, and TPC families could also operate in low oxygen sensing in Arabidopsis. Here we argue that low-oxygen-induced changes to cellular ion homeostasis and operation of membrane transporters may be critical for cell fate determination and formation of the lysigenous aerenchyma in plant roots and shaping the root architecture and adventitious root development in grasses. We summarize the existing evidence for a causal link between tissue-specific changes in oxygen concentration, intracellular Ca2+ and K+ homeostasis, and reactive oxygen species levels, and their role in conferring those two major traits enabling plant adaptation to a low-oxygen environment. We conclude that, for efficient operation, plants may rely on several complementary signalling pathway mechanisms that operate in concert and 'fine-tune' each other. A better understanding of this interaction may create additional and previously unexplored opportunities to crop breeders to improve cereal crop yield losses to soil flooding.
Collapse
Affiliation(s)
- Xin Huang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | - Xuechen Zhang
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | | | - Sjon Hartman
- Plant Ecophysiology, Utrecht University, 3584 CH Utrecht, The Netherlands
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| |
Collapse
|
5
|
Abstract
Aerobic respiration is essential to almost all eukaryotes and sensing oxygen is a key determinant of survival. Analogous but mechanistically different oxygen-sensing pathways were adopted in plants and metazoan animals, and include ubiquitin-mediated degradation of transcription factors and direct sensing via non-heme iron(Fe2+)-dependent-dioxygenases. Key roles for oxygen sensing have been identified in both groups, with downstream signalling focussed on regulating gene transcription and chromatin modification to control development and stress responses. Components of sensing systems are promising targets for human therapeutic intervention and developing stress-resilient crops. Here, we review current knowledge about the origins, commonalities and differences between oxygen sensing in plants and animals.
Collapse
Affiliation(s)
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
6
|
Holdsworth MJ, Vicente J, Sharma G, Abbas M, Zubrycka A. The plant N-degron pathways of ubiquitin-mediated proteolysis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:70-89. [PMID: 31638740 DOI: 10.1111/jipb.12882] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/20/2019] [Indexed: 05/29/2023]
Abstract
The amino-terminal residue of a protein (or amino-terminus of a peptide following protease cleavage) can be an important determinant of its stability, through the Ubiquitin Proteasome System associated N-degron pathways. Plants contain a unique combination of N-degron pathways (previously called the N-end rule pathways) E3 ligases, PROTEOLYSIS (PRT)6 and PRT1, recognizing non-overlapping sets of amino-terminal residues, and others remain to be identified. Although only very few substrates of PRT1 or PRT6 have been identified, substrates of the oxygen and nitric oxide sensing branch of the PRT6 N-degron pathway include key nuclear-located transcription factors (ETHYLENE RESPONSE FACTOR VIIs and LITTLE ZIPPER 2) and the histone-modifying Polycomb Repressive Complex 2 component VERNALIZATION 2. In response to reduced oxygen or nitric oxide levels (and other mechanisms that reduce pathway activity) these stabilized substrates regulate diverse aspects of growth and development, including response to flooding, salinity, vernalization (cold-induced flowering) and shoot apical meristem function. The N-degron pathways show great promise for use in the improvement of crop performance and for biotechnological applications. Upstream proteases, components of the different pathways and associated substrates still remain to be identified and characterized to fully appreciate how regulation of protein stability through the amino-terminal residue impacts plant biology.
Collapse
Affiliation(s)
| | - Jorge Vicente
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Gunjan Sharma
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Mohamad Abbas
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Agata Zubrycka
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
7
|
Wagner S, Steinbeck J, Fuchs P, Lichtenauer S, Elsässer M, Schippers JHM, Nietzel T, Ruberti C, Van Aken O, Meyer AJ, Van Dongen JT, Schmidt RR, Schwarzländer M. Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. THE NEW PHYTOLOGIST 2019; 224:1668-1684. [PMID: 31386759 DOI: 10.1111/nph.16093] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/01/2019] [Indexed: 05/24/2023]
Abstract
Hypoxia regularly occurs during plant development and can be induced by the environment through, for example, flooding. To understand how plant tissue physiology responds to progressing oxygen restriction, we aimed to monitor subcellular physiology in real time and in vivo. We establish a fluorescent protein sensor-based system for multiparametric monitoring of dynamic changes in subcellular physiology of living Arabidopsis thaliana leaves and exemplify its applicability for hypoxia stress. By monitoring cytosolic dynamics of magnesium adenosine 5'-triphosphate, free calcium ion concentration, pH, NAD redox status, and glutathione redox status in parallel, linked to transcriptional and metabolic responses, we generate an integrated picture of the physiological response to progressing hypoxia. We show that the physiological changes are surprisingly robust, even when plant carbon status is modified, as achieved by sucrose feeding or extended night. Inhibition of the mitochondrial respiratory chain causes dynamics of cytosolic physiology that are remarkably similar to those under oxygen depletion, highlighting mitochondrial electron transport as a key determinant of the cellular consequences of hypoxia beyond the organelle. A broadly applicable system for parallel in vivo sensing of plant stress physiology is established to map out the physiological context under which both mitochondrial retrograde signalling and low oxygen signalling occur, indicating shared upstream stimuli.
Collapse
Affiliation(s)
- Stephan Wagner
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829, Cologne, Germany
| | - Janina Steinbeck
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Cristina Ruberti
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Joost T Van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Romy R Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| |
Collapse
|
8
|
Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun 2019; 10:4020. [PMID: 31488841 PMCID: PMC6728379 DOI: 10.1038/s41467-019-12045-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops.
Collapse
|
9
|
Dissmeyer N. Conditional Protein Function via N-Degron Pathway-Mediated Proteostasis in Stress Physiology. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:83-117. [PMID: 30892918 DOI: 10.1146/annurev-arplant-050718-095937] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The N-degron pathway, formerly the N-end rule pathway, regulates functions of regulatory proteins. It impacts protein half-life and therefore directs the actual presence of target proteins in the cell. The current concept holds that the N-degron pathway depends on the identity of the amino (N)-terminal amino acid and many other factors, such as the follow-up sequence at the N terminus, conformation, flexibility, and protein localization. It is evolutionarily conserved throughout the kingdoms. One possible entry point for substrates of the N-degron pathway is oxidation of N-terminal Cys residues. Oxidation of N-terminal Cys is decisive for further enzymatic modification of various neo-N termini by arginylation that generates potentially neofunctionalized or instable proteoforms. Here, I focus on the posttranslational modifications that are encompassed by protein degradation via the Cys/Arg branch of the N-degron pathway-part of the PROTEOLYSIS 6 (PRT6)/N-degron pathway-as well as the underlying physiological principles of this branch and its biological significance in stress response.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB) and ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany; ; Twitter: @NDissmeyer
| |
Collapse
|
10
|
Gibbs DJ, Tedds HM, Labandera AM, Bailey M, White MD, Hartman S, Sprigg C, Mogg SL, Osborne R, Dambire C, Boeckx T, Paling Z, Voesenek LACJ, Flashman E, Holdsworth MJ. Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION 2. Nat Commun 2018; 9:5438. [PMID: 30575749 PMCID: PMC6303374 DOI: 10.1038/s41467-018-07875-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
The polycomb repressive complex 2 (PRC2) regulates epigenetic gene repression in eukaryotes. Mechanisms controlling its developmental specificity and signal-responsiveness are poorly understood. Here, we identify an oxygen-sensitive N-terminal (N-) degron in the plant PRC2 subunit VERNALIZATION(VRN) 2, a homolog of animal Su(z)12, that promotes its degradation via the N-end rule pathway. We provide evidence that this N-degron arose early during angiosperm evolution via gene duplication and N-terminal truncation, facilitating expansion of PRC2 function in flowering plants. We show that proteolysis via the N-end rule pathway prevents ectopic VRN2 accumulation, and that hypoxia and long-term cold exposure lead to increased VRN2 abundance, which we propose may be due to inhibition of VRN2 turnover via its N-degron. Furthermore, we identify an overlap in the transcriptional responses to hypoxia and prolonged cold, and show that VRN2 promotes tolerance to hypoxia. Our work reveals a mechanism for post-translational regulation of VRN2 stability that could potentially link environmental inputs to the epigenetic control of plant development.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Hannah M Tedds
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | - Mark Bailey
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Mark D White
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Sjon Hartman
- Plant Ecophysiology, Institute of Environmental Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Colleen Sprigg
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sophie L Mogg
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Rory Osborne
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Charlene Dambire
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Tinne Boeckx
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Zachary Paling
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|