1
|
Shen LQ, Zhang ZC, Zhang LD, Huang D, Yu G, Chen M, Li R, Qiu BS. Widespread distribution of chlorophyll f-producing Leptodesmis cyanobacteria. JOURNAL OF PHYCOLOGY 2024. [PMID: 39673735 DOI: 10.1111/jpy.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
Chlorophyll (Chl) f was reported as the fifth Chl in oxygenic photoautotrophs. Chlorophyll f production expanded the utilization of photosynthetically active radiation into the far-red light (FR) region in some cyanobacterial genera. In this study, 11 filamentous cyanobacterial strains were isolated from FR-enriched habitats, including hydrophyte, moss, shady stone, shallow ditch, and microbial mat across Central and Southern China. Polyphasic analysis classified them into the same genus of Leptodesmis and further recognized them as four new species, including Leptodesmis atroviridis sp. nov., Leptodesmis fuscus sp. nov., Leptodesmis olivacea sp. nov., and Leptodesmis undulata sp. nov. These cyanobacteria had absorption peaks beyond 700 nm due to Chl f production and red-shifted phycobiliprotein complexes under FR conditions. All but L. undulata produced phycoerythrin and showed varying degrees of a reddish-brown to dark green color under white light conditions. However, the phycoerythrin contents were sharply decreased under FR conditions, and these three Leptodesmis species appeared green. In summary, the Leptodesmis genus contains diverse species with the capacity to synthesize Chl f and is likely a ubiquitous group of Chl f-producing cyanobacteria.
Collapse
Affiliation(s)
- Li-Qin Shen
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Lu-Dan Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Da Huang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Gongliang Yu
- Key Lab of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
2
|
di Stefano G, Battistuzzi M, La Rocca N, Selinger VM, Nürnberg DJ, Billi D. Far-red light photoacclimation in a desert Chroococcidiopsis strain with a reduced FaRLiP gene cluster and expression of its chlorophyll f synthase in space-resistant isolates. Front Microbiol 2024; 15:1450575. [PMID: 39328908 PMCID: PMC11424453 DOI: 10.3389/fmicb.2024.1450575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Some cyanobacteria can use far-red light (FRL) to drive oxygenic photosynthesis, a phenomenon known as Far-Red Light Photoacclimation (FaRLiP). It can expand photosynthetically active radiation beyond the visible light (VL) range. Therefore, it holds promise for biotechnological applications and may prove useful for the future human exploration of outer space. Typically, FaRLiP relies on a cluster of ~20 genes, encoding paralogs of the standard photosynthetic machinery. One of them, a highly divergent D1 gene known as chlF (or psbA4), is the synthase responsible for the formation of the FRL-absorbing chlorophyll f (Chl f) that is essential for FaRLiP. The minimum gene set required for this phenotype is unclear. The desert cyanobacterium Chroococcidiopsis sp. CCMEE 010 is unusual in being capable of FaRLiP with a reduced gene cluster (15 genes), and it lacks most of the genes encoding FR-Photosystem I. Methods Here we investigated whether the reduced gene cluster of Chroococcidiopsis sp. CCMEE 010 is transcriptionally regulated by FRL and characterized the spectral changes that occur during the FaRLiP response of Chroococcidiopsis sp. CCMEE 010. In addition, the heterologous expression of the Chl f synthase from CCMEE 010 was attempted in three closely related desert strains of Chroococcidiopsis. Results All 15 genes of the FaRLiP cluster were preferentially expressed under FRL, accompanied by a progressive red-shift of the photosynthetic absorption spectrum. The Chl f synthase from CCMEE 010 was successfully expressed in two desert strains of Chroococcidiopsis and transformants could be selected in both VL and FRL. Discussion In Chroococcidiopsis sp. CCME 010, all the far-red genes of the unusually reduced FaRLiP cluster, are transcriptionally regulated by FRL and two closely related desert strains heterologously expressing the chlF010 gene could grow in FRL. Since the transformation hosts had been reported to survive outer space conditions, such an achievement lays the foundation toward novel cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Giorgia di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
- Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Vera M. Selinger
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Elias E, Oliver TJ, Croce R. Oxygenic Photosynthesis in Far-Red Light: Strategies and Mechanisms. Annu Rev Phys Chem 2024; 75:231-256. [PMID: 38382567 DOI: 10.1146/annurev-physchem-090722-125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oxygenic photosynthesis, the process that converts light energy into chemical energy, is traditionally associated with the absorption of visible light by chlorophyll molecules. However, recent studies have revealed a growing number of organisms capable of using far-red light (700-800 nm) to drive oxygenic photosynthesis. This phenomenon challenges the conventional understanding of the limits of this process. In this review, we briefly introduce the organisms that exhibit far-red photosynthesis and explore the different strategies they employ to harvest far-red light. We discuss the modifications of photosynthetic complexes and their impact on the delivery of excitation energy to photochemical centers and on overall photochemical efficiency. Finally, we examine the solutions employed to drive electron transport and water oxidation using relatively low-energy photons. The findings discussed here not only expand our knowledge of the remarkable adaptation capacities of photosynthetic organisms but also offer insights into the potential for enhancing light capture in crops.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Thomas J Oliver
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
4
|
Xu P, Shao S, Qian J, Li J, Xu R, Liu J, Zhou W. Scale-up of microalgal systems for decarbonization and bioproducts: Challenges and opportunities. BIORESOURCE TECHNOLOGY 2024; 398:130528. [PMID: 38437968 DOI: 10.1016/j.biortech.2024.130528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The threat of global climate change presents a significant challenge for humanity. Microalgae-based carbon capture and utilization (CCU) technology has emerged as a promising solution to this global issue. This review aims to comprehensively evaluate the current advancements in scale-up of microalgae cultivation and its applications, specifically focusing on decarbonization from flue gases, organic wastewater remediation, and biogas upgrading. The study identifies critical challenges that need to be addressed during the scale-up process and evaluates the economic viability of microalgal CCU within the carbon market. Additionally, it analyzes the commercial status of microalgae-derived products and highlights those with high market demand. This review serves as a crucial resource for researchers, industry professionals, and policymakers to develop and implement innovative approaches to enhance the efficiency of microalgae-based CO2 utilization while addressing the challenges associated with the scale-up of microalgae technologies.
Collapse
Affiliation(s)
- Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Rui Xu
- Jiangxi Ganneng Co., Ltd, Nanchang 330096, China.
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
5
|
Gisriel CJ, Bryant DA, Brudvig GW, Cardona T. Molecular diversity and evolution of far-red light-acclimated photosystem I. FRONTIERS IN PLANT SCIENCE 2023; 14:1289199. [PMID: 38053766 PMCID: PMC10694217 DOI: 10.3389/fpls.2023.1289199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
The need to acclimate to different environmental conditions is central to the evolution of cyanobacteria. Far-red light (FRL) photoacclimation, or FaRLiP, is an acclimation mechanism that enables certain cyanobacteria to use FRL to drive photosynthesis. During this process, a well-defined gene cluster is upregulated, resulting in changes to the photosystems that allow them to absorb FRL to perform photochemistry. Because FaRLiP is widespread, and because it exemplifies cyanobacterial adaptation mechanisms in nature, it is of interest to understand its molecular evolution. Here, we performed a phylogenetic analysis of the photosystem I subunits encoded in the FaRLiP gene cluster and analyzed the available structural data to predict ancestral characteristics of FRL-absorbing photosystem I. The analysis suggests that FRL-specific photosystem I subunits arose relatively late during the evolution of cyanobacteria when compared with some of the FRL-specific subunits of photosystem II, and that the order Nodosilineales, which include strains like Halomicronema hongdechloris and Synechococcus sp. PCC 7335, could have obtained FaRLiP via horizontal gene transfer. We show that the ancestral form of FRL-absorbing photosystem I contained three chlorophyll f-binding sites in the PsaB2 subunit, and a rotated chlorophyll a molecule in the A0B site of the electron transfer chain. Along with our previous study of photosystem II expressed during FaRLiP, these studies describe the molecular evolution of the photosystem complexes encoded by the FaRLiP gene cluster.
Collapse
Affiliation(s)
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Agostini A, Shen G, Bryant DA, Golbeck JH, van der Est A, Carbonera D. Optically detected magnetic resonance and mutational analysis reveal significant differences in the photochemistry and structure of chlorophyll f synthase and photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149002. [PMID: 37562512 DOI: 10.1016/j.bbabio.2023.149002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
In cyanobacteria that undergo far red light photoacclimation (FaRLiP), chlorophyll (Chl) f is produced by the ChlF synthase enzyme, probably by photo-oxidation of Chl a. The enzyme forms homodimeric complexes and the primary amino acid sequence of ChlF shows a high degree of homology with the D1 subunit of photosystem II (PSII). However, few details of the photochemistry of ChlF are known. The results of a mutational analysis and optically detected magnetic resonance (ODMR) data from ChlF are presented. Both sets of data show that there are significant differences in the photochemistry of ChlF and PSII. Mutation of residues that would disrupt the donor side primary electron transfer pathway in PSII do not inhibit the production of Chl f, while alteration of the putative ChlZ, P680 and QA binding sites rendered ChlF non-functional. Together with previously published transient EPR and flash photolysis data, the ODMR data show that in untreated ChlF samples, the triplet state of P680 formed by intersystem crossing is the primary species generated by light excitation. This is in contrast to PSII, in which 3P680 is only formed by charge recombination when the quinone acceptors are removed or chemically reduced. The triplet states of a carotenoid (3Car) and a small amount of 3Chl f are also observed by ODMR. The polarization pattern of 3Car is consistent with its formation by triplet energy transfer from ChlZ if the carotenoid molecule is rotated by 15° about its long axis compared to the orientation in PSII. It is proposed that the singlet oxygen formed by the interaction between molecular oxygen and 3P680 might be involved in the oxidation of Chl a to Chl f.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy; Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 370 05 Ceske Budejovice, Czech Republic
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, 16802, USA
| | - Art van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock, Way, St. Catharines, ON L2S 3A1, Canada.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy.
| |
Collapse
|
7
|
Chen M, Sawicki A, Wang F. Modeling the Characteristic Residues of Chlorophyll f Synthase (ChlF) from Halomicronema hongdechloris to Determine Its Reaction Mechanism. Microorganisms 2023; 11:2305. [PMID: 37764149 PMCID: PMC10535343 DOI: 10.3390/microorganisms11092305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Photosystem II (PSII) is a quinone-utilizing photosynthetic system that converts light energy into chemical energy and catalyzes water splitting. PsbA (D1) and PsbD (D2) are the core subunits of the reaction center that provide most of the ligands to redox-active cofactors and exhibit photooxidoreductase activities that convert quinone and water into quinol and dioxygen. The performed analysis explored the putative uncoupled electron transfer pathways surrounding P680+ induced by far-red light (FRL) based on photosystem II (PSII) complexes containing substituted D1 subunits in Halomicronema hongdechloris. Chlorophyll f-synthase (ChlF) is a D1 protein paralog. Modeling PSII-ChlF complexes determined several key protein motifs of ChlF. The PSII complexes included a dysfunctional Mn4CaO5 cluster where ChlF replaced the D1 protein. We propose the mechanism of chlorophyll f synthesis from chlorophyll a via free radical chemistry in an oxygenated environment created by over-excited pheophytin a and an inactive water splitting reaction owing to an uncoupled Mn4CaO5 cluster in PSII-ChlF complexes. The role of ChlF in the formation of an inactive PSII reaction center is under debate, and putative mechanisms of chlorophyll f biosynthesis are discussed.
Collapse
Affiliation(s)
- Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
8
|
Sheridan KJ, Brown TJ, Eaton-Rye JJ, Summerfield TC. Expression of the far-red D1 protein or introduction of conserved far-red D1 residues into Synechocystis sp. PCC 6803 impairs Photosystem II. PHYSIOLOGIA PLANTARUM 2023; 175:e13997. [PMID: 37882270 DOI: 10.1111/ppl.13997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 10/27/2023]
Abstract
The wavelengths of light harvested in oxygenic photosynthesis are ~400-700 nm. Some cyanobacteria respond to far-red light exposure via a process called far-red light photoacclimation which enables absorption of light at wavelengths >700 nm and its use to support photosynthesis. Far-red-light-induced changes include up-regulation of alternative copies of multiple proteins of Photosystem II (PS II). This includes an alternative copy of the D1 protein, D1FR . Here, we show that D1FR introduced into Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803) can be incorporated into PS II centres that evolve oxygen at low rates but cannot support photoautotrophic growth. Using mutagenesis to modify the psbA2 gene of Synechocystis 6803, we modified residues in helices A, B, and C to be characteristic of D1FR residues. Modification of the Synechocystis 6803 helix A to resemble the D1FR helix A, with modifications in the region of the bound ß-carotene (CarD1 ) and the accessory chlorophyll, ChlZD1 , produced a strain with a similar phenotype to the D1FR strain. In contrast, the D1FR changes in helices B and C had minor impacts on photoautotrophy but impacted the function of PS II, possibly through a change in the equilibrium for electron sharing between the primary and secondary plastoquinone electron acceptors QA and QB in favour of QA - . The addition of combinations of residue changes in helix C indicates compensating effects may occur and highlight the need to experimentally determine the impact of multiple residue changes.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Botany, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Toby J Brown
- Department of Botany, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
9
|
Masuda T, Bečková M, Turóczy Z, Pilný J, Sobotka R, Trinugroho JP, Nixon PJ, Prášil O, Komenda J. Accumulation of Cyanobacterial Photosystem II Containing the 'Rogue' D1 Subunit Is Controlled by FtsH Protease and Synthesis of the Standard D1 Protein. PLANT & CELL PHYSIOLOGY 2023; 64:660-673. [PMID: 36976618 DOI: 10.1093/pcp/pcad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/16/2023]
Abstract
Unicellular diazotrophic cyanobacteria contribute significantly to the photosynthetic productivity of the ocean and the fixation of molecular nitrogen, with photosynthesis occurring during the day and nitrogen fixation during the night. In species like Crocosphaera watsonii WH8501, the decline in photosynthetic activity in the night is accompanied by the disassembly of oxygen-evolving photosystem II (PSII) complexes. Moreover, in the second half of the night phase, a small amount of rogue D1 (rD1), which is related to the standard form of the D1 subunit found in oxygen-evolving PSII, but of unknown function, accumulates but is quickly degraded at the start of the light phase. We show here that the removal of rD1 is independent of the rD1 transcript level, thylakoid redox state and trans-thylakoid pH but requires light and active protein synthesis. We also found that the maximal level of rD1 positively correlates with the maximal level of chlorophyll (Chl) biosynthesis precursors and enzymes, which suggests a possible role for rogue PSII (rPSII) in the activation of Chl biosynthesis just before or upon the onset of light, when new photosystems are synthesized. By studying strains of Synechocystis PCC 6803 expressing Crocosphaera rD1, we found that the accumulation of rD1 is controlled by the light-dependent synthesis of the standard D1 protein, which triggers the fast FtsH2-dependent degradation of rD1. Affinity purification of FLAG-tagged rD1 unequivocally demonstrated the incorporation of rD1 into a non-oxygen-evolving PSII complex, which we term rPSII. The complex lacks the extrinsic proteins stabilizing the oxygen-evolving Mn4CaO5 cluster but contains the Psb27 and Psb28-1 assembly factors.
Collapse
Affiliation(s)
- Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
| | - Martina Bečková
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
| | - Zoltán Turóczy
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
| | - Jan Pilný
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic
| | - Joko P Trinugroho
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic
| |
Collapse
|
10
|
Shen LQ, Zhang ZC, Huang L, Zhang LD, Yu G, Chen M, Li R, Qiu BS. Chlorophyll f production in two new subaerial cyanobacteria of the family Oculatellaceae. JOURNAL OF PHYCOLOGY 2023; 59:370-382. [PMID: 36680560 DOI: 10.1111/jpy.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 05/28/2023]
Abstract
Chlorophyll (Chl) f was recently identified in a few cyanobacteria as the fifth chlorophyll of oxygenic organisms. In this study, two Leptolyngbya-like strains of CCNU0012 and CCNU0013 were isolated from a dry ditch in Chongqing city and a brick wall in Mount Emei Scenic Area in China, respectively. These two strains were described as new species: Elainella chongqingensis sp. nov. (Oculatellaceae, Synechococcales) and Pegethrix sichuanica sp. nov. (Oculatellaceae, Synechococcales) by the polyphasic approach based on morphological features, phylogenetic analysis of 16S rRNA gene and secondary structure comparison of 16S-23S internal transcribed spacer domains. Both strains produced Chl a under white light (WL) but additionally induced Chl f synthesis under far-red light (FRL). Unexpectedly, the content of Chl f in P. sichuanica was nearly half that in most Chl f-producing cyanobacteria. Red-shifted phycobiliproteins were also induced in both strains under FRL conditions. Subsequently, additional absorption peak beyond 700 nm in the FRL spectral region appeared in these two strains. This is the first report of Chl f production induced by FRL in the family Oculatellaceae. This study not only extended the diversity of Chl f-producing cyanobacteria but also provided precious samples to elucidate the essential binding sites of Chl f within cyanobacterial photosystems.
Collapse
Affiliation(s)
- Li-Qin Shen
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Li Huang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Lu-Dan Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Gongliang Yu
- Key Lab of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, China
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Silva PJ, Osswald-Claro M, Castro Mendonça R. How to tune the absorption spectrum of chlorophylls to enable better use of the available solar spectrum. PEERJ PHYSICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-pchem.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Photon capture by chlorophylls and other chromophores in light-harvesting complexes and photosystems is the driving force behind the light reactions of photosynthesis. Excitation of photosystem II allows it to receive electrons from the water-oxidizing oxygen-evolution complex and to transfer them to an electron-transport chain that generates a transmembrane electrochemical gradient and ultimately reduces plastocyanin, which donates its electron to photosystem I. Subsequently, excitation of photosystem I leads to electron transfer to a ferredoxin which can either reduce plastocyanin again (in so-called “cyclical electron-flow”) and release energy for the maintenance of the electrochemical gradient, or reduce NADP+ to NADPH. Although photons in the far-red (700–750 nm) portion of the solar spectrum carry enough energy to enable the functioning of the photosynthetic electron-transfer chain, most extant photosystems cannot usually take advantage of them due to only absorbing light with shorter wavelengths. In this work, we used computational methods to characterize the spectral and redox properties of 49 chlorophyll derivatives, with the aim of finding suitable candidates for incorporation into synthetic organisms with increased ability to use far-red photons. The data offer a simple and elegant explanation for the evolutionary selection of chlorophylls a, b, c, and d among all easily-synthesized singly-substituted chlorophylls, and identified one novel candidate (2,12-diformyl chlorophyll a) with an absorption peak shifted 79 nm into the far-red (relative to chlorophyll a) with redox characteristics fully suitable to its possible incorporation into photosystem I (though not photosystem II). chlorophyll d is shown by our data to be the most suitable candidate for incorporation into far-red utilizing photosystem II, and several candidates were found with red-shifted Soret bands that allow the capture of larger amounts of blue and green light by light harvesting complexes.
Collapse
Affiliation(s)
- Pedro J. Silva
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- FP-I3ID,FP-BHS, Fac. de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | | | | |
Collapse
|
12
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Suarez JV, Mudd EA, Day A. A Chloroplast-Localised Fluorescent Protein Enhances the Photosynthetic Action Spectrum in Green Algae. Microorganisms 2022; 10:microorganisms10091770. [PMID: 36144372 PMCID: PMC9504678 DOI: 10.3390/microorganisms10091770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 10/29/2022] Open
Abstract
Green microalgae are important sources of natural products and are attractive cell factories for manufacturing high-value products such as recombinant proteins. Increasing scales of production must address the bottleneck of providing sufficient light energy for photosynthesis. Enhancing the photosynthetic action spectrum of green algae to improve the utilisation of yellow light would provide additional light energy for photosynthesis. Here, we evaluated the Katushka fluorescent protein, which converts yellow photons to red photons, to drive photosynthesis and growth when expressed in Chlamydomonas reinhardtii chloroplasts. Transplastomic algae expressing a codon-optimised Katushka gene accumulated the active Katushka protein, which was detected by excitation with yellow light. Removal of chlorophyll from cells, which captures red photons, led to increased Katushka fluorescence. In yellow light, emission of red photons by fluorescent Katushka increased oxygen evolution and photosynthetic growth. Utilisation of yellow photons increased photosynthetic growth of transplastomic cells expressing Katushka in light deficient in red photons. These results showed that Katushka was a simple and effective yellow light-capturing device that enhanced the photosynthetic action spectrum of C. reinhardtii.
Collapse
Affiliation(s)
- Julio V. Suarez
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carr. Transpeninsular 3917, Ensenada 22860, Mexico
- Correspondence: (J.V.S.); (A.D.); Tel.: +44-161-275-3913 (A.D.)
| | - Elisabeth A. Mudd
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Anil Day
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Correspondence: (J.V.S.); (A.D.); Tel.: +44-161-275-3913 (A.D.)
| |
Collapse
|
14
|
Billi D, Napoli A, Mosca C, Fagliarone C, de Carolis R, Balbi A, Scanu M, Selinger VM, Antonaru LA, Nürnberg DJ. Identification of far-red light acclimation in an endolithic Chroococcidiopsis strain and associated genomic features: Implications for oxygenic photosynthesis on exoplanets. Front Microbiol 2022; 13:933404. [PMID: 35992689 PMCID: PMC9386421 DOI: 10.3389/fmicb.2022.933404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Deserts represent extreme habitats where photosynthetic life is restricted to the lithic niche. The ability of rock-inhabiting cyanobacteria to modify their photosynthetic apparatus and harvest far-red light (near-infrared) was investigated in 10 strains of the genus Chroococcidiopsis, previously isolated from diverse endolithic and hypolithic desert communities. The analysis of their growth capacity, photosynthetic pigments, and apcE2-gene presence revealed that only Chroococcidiopsis sp. CCMEE 010 was capable of far-red light photoacclimation (FaRLiP). A total of 15 FaRLiP genes were identified, encoding paralogous subunits of photosystem I, photosystem II, and the phycobilisome, along with three regulatory elements. CCMEE 010 is unique among known FaRLiP strains by undergoing this acclimation process with a significantly reduced cluster, which lacks major photosystem I paralogs psaA and psaB. The identification of an endolithic, extremotolerant cyanobacterium capable of FaRLiP not only contributes to our appreciation of this phenotype’s distribution in nature but also has implications for the possibility of oxygenic photosynthesis on exoplanets.
Collapse
Affiliation(s)
- Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Daniela Billi,
| | - Alessandro Napoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Amedeo Balbi
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Scanu
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Vera M. Selinger
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| | - Laura A. Antonaru
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Gisriel CJ, Cardona T, Bryant DA, Brudvig GW. Molecular Evolution of Far-Red Light-Acclimated Photosystem II. Microorganisms 2022; 10:1270. [PMID: 35888987 PMCID: PMC9325196 DOI: 10.3390/microorganisms10071270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Cyanobacteria are major contributors to global carbon fixation and primarily use visible light (400-700 nm) to drive oxygenic photosynthesis. When shifted into environments where visible light is attenuated, a small, but highly diverse and widespread number of cyanobacteria can express modified pigments and paralogous versions of photosystem subunits and phycobiliproteins that confer far-red light (FRL) absorbance (700-800 nm), a process termed far-red light photoacclimation, or FaRLiP. During FaRLiP, alternate photosystem II (PSII) subunits enable the complex to bind chlorophylls d and f, which absorb at lower energy than chlorophyll a but still support water oxidation. How the FaRLiP response arose remains poorly studied. Here, we report ancestral sequence reconstruction and structure-based molecular evolutionary studies of the FRL-specific subunits of FRL-PSII. We show that the duplications leading to the origin of two PsbA (D1) paralogs required to make chlorophyll f and to bind chlorophyll d in water-splitting FRL-PSII are likely the first to have occurred prior to the diversification of extant cyanobacteria. These duplications were followed by those leading to alternative PsbC (CP43) and PsbD (D2) subunits, occurring early during the diversification of cyanobacteria, and culminating with those leading to PsbB (CP47) and PsbH paralogs coincident with the radiation of the major groups. We show that the origin of FRL-PSII required the accumulation of a relatively small number of amino acid changes and that the ancestral FRL-PSII likely contained a chlorophyll d molecule in the electron transfer chain, two chlorophyll f molecules in the antenna subunits at equivalent positions, and three chlorophyll a molecules whose site energies were altered. The results suggest a minimal model for engineering far-red light absorbance into plant PSII for biotechnological applications.
Collapse
Affiliation(s)
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Knoppová J, Sobotka R, Yu J, Bečková M, Pilný J, Trinugroho JP, Csefalvay L, Bína D, Nixon PJ, Komenda J. Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins. PLANT PHYSIOLOGY 2022; 189:790-804. [PMID: 35134246 PMCID: PMC9157124 DOI: 10.1093/plphys/kiac045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Martina Bečková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jan Pilný
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Joko P Trinugroho
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ladislav Csefalvay
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice 370 05, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| |
Collapse
|
17
|
Tsuzuki Y, Tsukatani Y, Yamakawa H, Itoh S, Fujita Y, Yamamoto H. Effects of Light and Oxygen on Chlorophyll d Biosynthesis in a Marine Cyanobacterium Acaryochloris marina. PLANTS (BASEL, SWITZERLAND) 2022; 11:915. [PMID: 35406896 PMCID: PMC9003380 DOI: 10.3390/plants11070915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
A marine cyanobacterium Acaryochloris marina synthesizes chlorophyll (Chl) d as a major Chl. Chl d has a formyl group at its C3 position instead of a vinyl group in Chl a. This modification allows Chl d to absorb far-red light addition to visible light, yet the enzyme catalyzing the formation of the C3-formyl group has not been identified. In this study, we focused on light and oxygen, the most important external factors in Chl biosynthesis, to investigate their effects on Chl d biosynthesis in A. marina. The amount of Chl d in heterotrophic dark-grown cells was comparable to that in light-grown cells, indicating that A. marina has a light-independent pathway for Chl d biosynthesis. Under anoxic conditions, the amount of Chl d increased with growth in light conditions; however, no growth was observed in dark conditions, indicating that A. marina synthesizes Chl d normally even under such “micro-oxic” conditions caused by endogenous oxygen production. Although the oxygen requirement for Chl d biosynthesis could not be confirmed, interestingly, accumulation of pheophorbide d was observed in anoxic and dark conditions, suggesting that Chl d degradation is induced by anaerobicity and darkness.
Collapse
Affiliation(s)
- Yuki Tsuzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Yusuke Tsukatani
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan;
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Shigeru Itoh
- Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan;
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| |
Collapse
|
18
|
MacGregor-Chatwin C, Nürnberg DJ, Jackson PJ, Vasilev C, Hitchcock A, Ho MY, Shen G, Gisriel CJ, Wood WH, Mahbub M, Selinger VM, Johnson MP, Dickman MJ, Rutherford AW, Bryant DA, Hunter CN. Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation. SCIENCE ADVANCES 2022; 8:eabj4437. [PMID: 35138895 PMCID: PMC8827656 DOI: 10.1126/sciadv.abj4437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are ubiquitous in nature and have developed numerous strategies that allow them to live in a diverse range of environments. Certain cyanobacteria synthesize chlorophylls d and f to acclimate to niches enriched in far-red light (FRL) and incorporate paralogous photosynthetic proteins into their photosynthetic apparatus in a process called FRL-induced photoacclimation (FaRLiP). We characterized the macromolecular changes involved in FRL-driven photosynthesis and used atomic force microscopy to examine the supramolecular organization of photosystem I associated with FaRLiP in three cyanobacterial species. Mass spectrometry showed the changes in the proteome of Chroococcidiopsis thermalis PCC 7203 that accompany FaRLiP. Fluorescence lifetime imaging microscopy and electron microscopy reveal an altered cellular distribution of photosystem complexes and illustrate the cell-to-cell variability of the FaRLiP response.
Collapse
Affiliation(s)
| | - Dennis J. Nürnberg
- Department of Life Sciences, Imperial College London, London, UK
- Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Philip J. Jackson
- School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | | | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Christopher J. Gisriel
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | | | - Moontaha Mahbub
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - C. Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Hitchcock A, Hunter CN, Sobotka R, Komenda J, Dann M, Leister D. Redesigning the photosynthetic light reactions to enhance photosynthesis - the PhotoRedesign consortium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:23-34. [PMID: 34709696 DOI: 10.1111/tpj.15552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
In this Perspective article, we describe the visions of the PhotoRedesign consortium funded by the European Research Council of how to enhance photosynthesis. The light reactions of photosynthesis in individual phototrophic species use only a fraction of the solar spectrum, and high light intensities can impair and even damage the process. In consequence, expanding the solar spectrum and enhancing the overall energy capacity of the process, while developing resilience to stresses imposed by high light intensities, could have a strong positive impact on food and energy production. So far, the complexity of the photosynthetic machinery has largely prevented improvements by conventional approaches. Therefore, there is an urgent need to develop concepts to redesign the light-harvesting and photochemical capacity of photosynthesis, as well as to establish new model systems and toolkits for the next generation of photosynthesis researchers. The overall objective of PhotoRedesign is to reconfigure the photosynthetic light reactions so they can harvest and safely convert energy from an expanded solar spectrum. To this end, a variety of synthetic biology approaches, including de novo design, will combine the attributes of photosystems from different photoautotrophic model organisms, namely the purple bacterium Rhodobacter sphaeroides, the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana. In parallel, adaptive laboratory evolution will be applied to improve the capacity of reimagined organisms to cope with enhanced input of solar energy, particularly in high and fluctuating light.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Christopher Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Roman Sobotka
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 37901, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 37901, Czech Republic
| | - Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
20
|
Saw JH, Cardona T, Montejano G. Complete Genome Sequencing of a Novel Gloeobacter Species from a Waterfall Cave in Mexico. Genome Biol Evol 2021; 13:6446517. [PMID: 34850891 PMCID: PMC8691054 DOI: 10.1093/gbe/evab264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Only two complete genomes of the cyanobacterial genus Gloeobacter from two very different regions of the world currently exist. Here, we present the complete genome sequence of a third member of the genus isolated from a waterfall cave in Mexico. Analysis of the average nucleotide identities (ANIs) between published Gloeobacter genomes revealed that the complete genome of this new member is only 92.7% similar to Gloeobacter violaceus and therefore we determined it to be a new species. We propose to name this new species Gloeobacter morelensis after the location in Mexico where it was isolated. The complete genome consists of one circular chromosome (4,921,229 bp), one linear plasmid (172,328 bp), and one circular plasmid (8,839 bp). Its genome is the largest of all completely sequenced genomes of Gloeobacter species. Pangenomic comparisons revealed that G. morelensis encodes 759 genes not shared with other Gloeobacter species. Despite being more closely related to G. violaceus, it features an extremely divergent psbA gene encoding an atypical D1 core subunit of Photosystem II previously only found within the genome of Gloeobacter kilaueensis. In addition, we detected evidence of concerted evolution of psbA genes encoding identical D1 in all three Gloeobacter genomes, a characteristic that seems widespread in cyanobacteria and may therefore be traced back to their last common ancestor.
Collapse
Affiliation(s)
- Jimmy H Saw
- Department of Biological Sciences, The George Washington University, District of Columbia, USA
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Gustavo Montejano
- Facultad de Ciencias, Laboratorio de Ficología, National Autonomous University of Mexico, Ciudad de México, Mexico
| |
Collapse
|
21
|
Oliver T, Sánchez-Baracaldo P, Larkum AW, Rutherford AW, Cardona T. Time-resolved comparative molecular evolution of oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148400. [PMID: 33617856 PMCID: PMC8047818 DOI: 10.1016/j.bbabio.2021.148400] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Oxygenic photosynthesis starts with the oxidation of water to O2, a light-driven reaction catalysed by photosystem II. Cyanobacteria are the only prokaryotes capable of water oxidation and therefore, it is assumed that the origin of oxygenic photosynthesis is a late innovation relative to the origin of life and bioenergetics. However, when exactly water oxidation originated remains an unanswered question. Here we use phylogenetic analysis to study a gene duplication event that is unique to photosystem II: the duplication that led to the evolution of the core antenna subunits CP43 and CP47. We compare the changes in the rates of evolution of this duplication with those of some of the oldest well-described events in the history of life: namely, the duplication leading to the Alpha and Beta subunits of the catalytic head of ATP synthase, and the divergence of archaeal and bacterial RNA polymerases and ribosomes. We also compare it with more recent events such as the duplication of Cyanobacteria-specific FtsH metalloprotease subunits and the radiation leading to Margulisbacteria, Sericytochromatia, Vampirovibrionia, and other clades containing anoxygenic phototrophs. We demonstrate that the ancestral core duplication of photosystem II exhibits patterns in the rates of protein evolution through geological time that are nearly identical to those of the ATP synthase, RNA polymerase, or the ribosome. Furthermore, we use ancestral sequence reconstruction in combination with comparative structural biology of photosystem subunits, to provide additional evidence supporting the premise that water oxidation had originated before the ancestral core duplications. Our work suggests that photosynthetic water oxidation originated closer to the origin of life and bioenergetics than can be documented based on phylogenetic or phylogenomic species trees alone.
Collapse
Affiliation(s)
- Thomas Oliver
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | | | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
22
|
Pascual-Aznar G, Konert G, Bečkov M, Kotabov E, Gardian Z, Knoppov J, Bučinsk L, Kaňa R, Sobotka R, Komenda J. Psb35 Protein Stabilizes the CP47 Assembly Module and Associated High-Light Inducible Proteins during the Biogenesis of Photosystem II in the Cyanobacterium Synechocystis sp. PCC6803. PLANT & CELL PHYSIOLOGY 2021; 62:178-190. [PMID: 33258963 DOI: 10.1093/pcp/pcaa148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/16/2020] [Indexed: 05/07/2023]
Abstract
Photosystem II (PSII) is a large membrane protein complex performing primary charge separation in oxygenic photosynthesis. The biogenesis of PSII is a complicated process that involves a coordinated linking of assembly modules in a precise order. Each such module consists of one large chlorophyll (Chl)-binding protein, number of small membrane polypeptides, pigments and other cofactors. We isolated the CP47 antenna module from the cyanobacterium Synechocystis sp. PCC 6803 and found that it contains a 11-kDa protein encoded by the ssl2148 gene. This protein was named Psb35 and its presence in the CP47 module was confirmed by the isolation of FLAG-tagged version of Psb35. Using this pulldown assay, we showed that the Psb35 remains attached to CP47 after the integration of CP47 into PSII complexes. However, the isolated Psb35-PSIIs were enriched with auxiliary PSII assembly factors like Psb27, Psb28-1, Psb28-2 and RubA while they lacked the lumenal proteins stabilizing the PSII oxygen-evolving complex. In addition, the Psb35 co-purified with a large unique complex of CP47 and photosystem I trimer. The absence of Psb35 led to a lower accumulation and decreased stability of the CP47 antenna module and associated high-light-inducible proteins but did not change the growth rate of the cyanobacterium under the variety of light regimes. Nevertheless, in comparison with WT, the Psb35-less mutant showed an accelerated pigment bleaching during prolonged dark incubation. The results suggest an involvement of Psb35 in the life cycle of cyanobacterial Chl-binding proteins, especially CP47.
Collapse
Affiliation(s)
- Guillem Pascual-Aznar
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovsk� 1760, Česk� Budějovice 37005, Czech Republic
| | - Grzegorz Konert
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Martina Bečkov
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Eva Kotabov
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Zdenko Gardian
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovsk� 1760, Česk� Budějovice 37005, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovsk� 31, Česk� Budějovice 37005, Czech Republic
| | - Jana Knoppov
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Lenka Bučinsk
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| |
Collapse
|
23
|
Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol 2021; 39:1019-1036. [PMID: 33541719 DOI: 10.1016/j.tibtech.2020.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
The major bottleneck in commercializing biofuels and other commodities produced by microalgae is the high cost associated with phototrophic cultivation. Improving microalgal productivities could be a solution to this problem. Synthetic biology methods have recently been used to engineer the downstream production pathways in several microalgal strains. However, engineering upstream photosynthetic and carbon fixation metabolism to enhance growth, productivity, and yield has barely been explored in microalgae. We describe strategies to improve the generation of reducing power from light, as well as to improve the assimilation of CO2 by either the native Calvin cycle or synthetic alternatives. Overall, we are optimistic that recent technological advances will prompt long-awaited breakthroughs in microalgal research.
Collapse
|
24
|
Jackson HO, Taunt HN, Mordaka PM, Smith AG, Purton S. The Algal Chloroplast as a Testbed for Synthetic Biology Designs Aimed at Radically Rewiring Plant Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:708370. [PMID: 34630459 PMCID: PMC8497815 DOI: 10.3389/fpls.2021.708370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 05/04/2023]
Abstract
Sustainable and economically viable support for an ever-increasing global population requires a paradigm shift in agricultural productivity, including the application of biotechnology to generate future crop plants. Current genetic engineering approaches aimed at enhancing the photosynthetic efficiency or composition of the harvested tissues involve relatively simple manipulations of endogenous metabolism. However, radical rewiring of central metabolism using new-to-nature pathways, so-called "synthetic metabolism", may be needed to really bring about significant step changes. In many cases, this will require re-programming the metabolism of the chloroplast, or other plastids in non-green tissues, through a combination of chloroplast and nuclear engineering. However, current technologies for sophisticated chloroplast engineering ("transplastomics") of plants are limited to just a handful of species. Moreover, the testing of metabolic rewiring in the chloroplast of plant models is often impractical given their obligate phototrophy, the extended time needed to create stable non-chimeric transplastomic lines, and the technical challenges associated with regeneration of whole plants. In contrast, the unicellular green alga, Chlamydomonas reinhardtii is a facultative heterotroph that allows for extensive modification of chloroplast function, including non-photosynthetic designs. Moreover, chloroplast engineering in C. reinhardtii is facile, with the ability to generate novel lines in a matter of weeks, and a well-defined molecular toolbox allows for rapid iterations of the "Design-Build-Test-Learn" (DBTL) cycle of modern synthetic biology approaches. The recent development of combinatorial DNA assembly pipelines for designing and building transgene clusters, simple methods for marker-free delivery of these clusters into the chloroplast genome, and the pre-existing wealth of knowledge regarding chloroplast gene expression and regulation in C. reinhardtii further adds to the versatility of transplastomics using this organism. Herein, we review the inherent advantages of the algal chloroplast as a simple and tractable testbed for metabolic engineering designs, which could then be implemented in higher plants.
Collapse
Affiliation(s)
- Harry O. Jackson
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Henry N. Taunt
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Pawel M. Mordaka
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- *Correspondence: Saul Purton
| |
Collapse
|
25
|
Tightening the Screws on PsbA in Cyanobacteria. Trends Genet 2020; 37:211-215. [PMID: 32977998 DOI: 10.1016/j.tig.2020.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
Cyanobacterial genomes encode several isoforms of the D1 (PsbA) subunit of Photosystem II (PSII). The distinct regulation of each isoform ensures adaptation under changing environmental conditions. Uncovering the missing elements of signal transduction pathways and psbA gene expression could open new avenues in engineering programs of cyanobacterial strains.
Collapse
|