1
|
Song J, Datla R, Zou J, Xiang D. Haploid induction: an overview of parental factor manipulation during seed formation. FRONTIERS IN PLANT SCIENCE 2024; 15:1439350. [PMID: 39297013 PMCID: PMC11408167 DOI: 10.3389/fpls.2024.1439350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
In plants, in vivo haploid induction has gained increasing attention for its significant potential applications in crop breeding and genetic research. This strategy reduces the chromosome number in progeny after fertilization, enabling the rapid production of homozygous plants through double haploidization, contrasting with traditional inbreeding over successive generations. Haploidy typically initiates at the onset of seed development, with several key genes identified as paternal or maternal factors that play critical roles during meiosis, fertilization, gamete communication, and chromosome integrity maintenance. The insights gained have led to the development of efficient haploid inducer lines. However, the molecular and genetic mechanisms underlying these factors vary considerably, making it challenging to create broadly applicable haploidy induction systems for plants. In this minireview, we summarize recent discoveries and advances in paternal and maternal haploid induction factors, examining their current understanding and functionalities to further develop efficient haploid inducer systems through the application of parental factor manipulation.
Collapse
Affiliation(s)
- Jingpu Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Fu H, Zhong J, Zhao J, Huo L, Wang C, Ma D, Pan W, Sun L, Ren Z, Fan T, Wang Z, Wang W, Lei X, Yu G, Li J, Zhu Y, Geelen D, Liu B. Ultraviolet attenuates centromere-mediated meiotic genome stability and alters gametophytic ploidy consistency in flowering plants. THE NEW PHYTOLOGIST 2024; 243:2214-2234. [PMID: 39039772 DOI: 10.1111/nph.19978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Ultraviolet (UV) radiation influences development and genome stability in organisms; however, its impact on meiosis, a special cell division essential for the delivery of genetic information across generations in eukaryotes, has not yet been elucidated. In this study, by performing cytogenetic studies, we reported that UV radiation does not damage meiotic chromosome integrity but attenuates centromere-mediated chromosome stability and induces unreduced gametes in Arabidopsis thaliana. We showed that functional centromere-specific histone 3 (CENH3) is required for obligate crossover formation and plays a role in the protection of sister chromatid cohesion under UV stress. Moreover, we found that UV specifically alters the orientation and organization of spindles and phragmoplasts at meiosis II, resulting in meiotic restitution and unreduced gametes. We determined that UV-induced meiotic restitution does not rely on the UV Resistance Locus8-mediated UV perception and the Tapetal Development and Function1- and Aborted Microspores-dependent tapetum development, but possibly occurs via altered JASON function and downregulated Parallel Spindle1. This study provides evidence that UV radiation influences meiotic genome stability and gametophytic ploidy consistency in flowering plants.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jiaqi Zhong
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Li Huo
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Dexuan Ma
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenjing Pan
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Limin Sun
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tianyi Fan
- Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Ze Wang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenyi Wang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaoning Lei
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guanghui Yu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jing Li
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yan Zhu
- Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Bing Liu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
3
|
Crhak Khaitova L, Mikulkova P, Pecinkova J, Kalidass M, Heckmann S, Lermontova I, Riha K. Heat stress impairs centromere structure and segregation of meiotic chromosomes in Arabidopsis. eLife 2024; 12:RP90253. [PMID: 38629825 PMCID: PMC11023694 DOI: 10.7554/elife.90253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.
Collapse
Affiliation(s)
| | | | | | - Manikandan Kalidass
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Karel Riha
- CEITEC Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
4
|
Han F, Zhang X, Liu Y, Liu Y, Zhao H, Li Z. One-step creation of CMS lines using a BoCENH3-based haploid induction system in Brassica crop. NATURE PLANTS 2024; 10:581-586. [PMID: 38499776 PMCID: PMC11035129 DOI: 10.1038/s41477-024-01643-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Heterosis utilization in a large proportion of crops depends on the use of cytoplasmic male sterility (CMS) tools, requiring the development of homozygous fertile lines and CMS lines1. Although doubled haploid (DH) technology has been developed for several crops to rapidly generate fertile lines2,3, CMS lines are generally created by multiple rounds of backcrossing, which is time consuming and expensive4. Here we describe a method for generating both homozygous fertile and CMS lines through in vivo paternal haploid induction (HI). We generated in-frame deletion and restored frameshift mutants of BoCENH3 in Brassica oleracea using the CRISPR/Cas9 system. The mutants induced paternal haploids by outcrossing. We subsequently generated HI lines with CMS cytoplasm, which enabled the generation of homozygous CMS lines in one step. The BoCENH3-based HI system provides a new DH technology to accelerate breeding in Brassica and other crops.
Collapse
Affiliation(s)
- Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoli Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yuxiang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Quiroz LF, Gondalia N, Brychkova G, McKeown PC, Spillane C. Haploid rhapsody: the molecular and cellular orchestra of in vivo haploid induction in plants. THE NEW PHYTOLOGIST 2024; 241:1936-1949. [PMID: 38180262 DOI: 10.1111/nph.19523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
In planta haploid induction (HI), which reduces the chromosome number in the progeny after fertilization, has garnered increasing attention for its significant potential in crop breeding and genetic research. Despite the identification of several natural and synthetic HI systems in different plant species, the molecular and cellular mechanisms underlying these HI systems remain largely unknown. This review synthesizes the current understanding of HI systems in plants (with a focus on genes and molecular mechanisms involved), including the molecular and cellular interactions which orchestrate the HI process. As most HI systems can function across taxonomic boundaries, we particularly discuss the evidence for conserved mechanisms underlying the process. These include mechanisms involved in preserving chromosomal integrity, centromere function, gamete communication and/or fusion, and maintenance of karyogamy. While significant discoveries and advances on haploid inducer systems have arisen over the past decades, we underscore gaps in understanding and deliberate on directions for further research for a more comprehensive understanding of in vivo HI processes in plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Nikita Gondalia
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Galina Brychkova
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| |
Collapse
|
6
|
Puchta H, Houben A. Plant chromosome engineering - past, present and future. THE NEW PHYTOLOGIST 2024; 241:541-552. [PMID: 37984056 DOI: 10.1111/nph.19414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Spontaneous chromosomal rearrangements (CRs) play an essential role in speciation, genome evolution and crop domestication. To be able to use the potential of CRs for breeding, plant chromosome engineering was initiated by fragmenting chromosomes by X-ray irradiation. With the rise of the CRISPR/Cas system, it became possible to induce double-strand breaks (DSBs) in a highly efficient manner at will at any chromosomal position. This has enabled a completely new level of predesigned chromosome engineering. The genetic linkage between specific genes can be broken by inducing chromosomal translocations. Natural inversions, which suppress genetic exchange, can be reverted for breeding. In addition, various approaches for constructing minichromosomes by downsizing regular standard A or supernumerary B chromosomes, which could serve as future vectors in plant biotechnology, have been developed. Recently, a functional synthetic centromere could be constructed. Also, different ways of genome haploidization have been set up, some based on centromere manipulations. In the future, we expect to see even more complex rearrangements, which can be combined with previously developed engineering technologies such as recombinases. Chromosome engineering might help to redefine genetic linkage groups, change the number of chromosomes, stack beneficial genes on mini cargo chromosomes, or set up genetic isolation to avoid outcrossing.
Collapse
Affiliation(s)
- Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP) - Molecular Biology, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
7
|
Finseth F. Female meiotic drive in plants: mechanisms and dynamics. Curr Opin Genet Dev 2023; 82:102101. [PMID: 37633231 DOI: 10.1016/j.gde.2023.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 08/28/2023]
Abstract
Female meiosis is fundamentally asymmetric, creating an arena for genetic elements to compete for inclusion in the egg to maximize their transmission. Centromeres, as mediators of chromosomal segregation, are prime candidates to evolve via 'female meiotic drive'. According to the centromere-drive model, the asymmetry of female meiosis ignites a coevolutionary arms race between selfish centromeres and kinetochore proteins, the by-product of which is accelerated sequence divergence. Here, I describe and compare plant models that have been instrumental in uncovering the mechanistic basis of female meiotic drive (maize) and the dynamics of active selfish centromeres in nature (monkeyflowers). Then, I speculate on the mechanistic basis of drive in monkeyflowers, discuss how centromere strength influences chromosomal segregation in plants, and describe new insights into the evolution of plant centromeres.
Collapse
Affiliation(s)
- Findley Finseth
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA.
| |
Collapse
|