1
|
Khidr R, Qurbani K, Muhammed V, Salim S, Abdulla S, Wsw H. Synergistic effects of indigenous bacterial consortia on heavy metal tolerance and reduction. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:79. [PMID: 39966180 DOI: 10.1007/s10653-025-02392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Heavy metal contamination represents a critical environmental and public health challenge, necessitating effective remediation approaches. This study examines the bioremediation potential of three indigenous bacterial strains Aeromonas caviae KQ_21, Aeromonas hydrophila AUoR_24, and Shewanella putrefaciens SUoR_24 evaluated both individually and in consortia for their capacity to remove heavy metals. Tolerance assessments demonstrated that the coculture of these strains exhibited superior resistance to copper (Cu), zinc (Zn), and nickel (Ni), with optimal growth observed up to 6 mM for Cu, 9 mM for Zn, and 5 mM for Ni, outperforming the monocultures. The co-culture system also achieved higher metal reduction efficiencies, with reductions of 47.02% for Cu, 61.49% for Ni, and 61.93% for Zn, in contrast to lower reductions observed in individual strains. The study further explored the impact of environmental conditions on bioremediation efficiency. Optimal temperature for both monoculture and coculture setups was found to be 30 °C. pH and salt concentration variations significantly affected bacterial growth and metal reduction, highlighting the necessity of tailored conditions for enhanced bioremediation. In terms of metal removal mechanisms, the results demonstrated that nickel (Ni) removal occurred primarily through bioaccumulation, while copper (Cu) removal involved both biosorption and bioaccumulation. Zinc (Zn) removal was facilitated through biosorption, bioaccumulation, and biotransformation. These findings underscore the effectiveness of bacterial consortia, particularly indigenous strains, in improving heavy metal tolerance and reduction through synergistic interactions and cooperative metabolic processes. This research offers valuable insights into optimizing bacterial consortia for environmental cleanup and advances the application of indigenous bacteria in bioremediation strategies. Future investigations should focus on exploring additional microbial species and further elucidating the molecular mechanisms that contribute to enhanced bioremediation efficacy.
Collapse
Affiliation(s)
- Rahel Khidr
- Department of Biology, College of Science, University of Raparin, Sulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Karzan Qurbani
- Department of Biology, College of Science, University of Raparin, Sulaymaniyah, Kurdistan Region, 46012, Iraq.
| | - Vania Muhammed
- Department of Biology, College of Science, University of Raparin, Sulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Sazgar Salim
- Department of Biology, College of Science, University of Raparin, Sulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Shajwan Abdulla
- Department of Biology, College of Science, University of Raparin, Sulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Hevy Wsw
- Department of Biology, College of Science, University of Raparin, Sulaymaniyah, Kurdistan Region, 46012, Iraq
| |
Collapse
|
2
|
Martín-Rodríguez AJ, Fernández-Juárez V, Valeriano VD, Mihindukulasooriya I, Ceresnova L, Joffré E, Jensie-Markopoulos S, Moore ERB, Sjöling Å. A hotspot of diversity: novel Shewanella species isolated from Baltic Sea sediments delineate a sympatric species complex. Int J Syst Evol Microbiol 2024; 74. [PMID: 39150443 PMCID: PMC11329295 DOI: 10.1099/ijsem.0.006480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Two bacterial strains, SP1S1-4T and SP2S1-2T, were isolated from sediment samples collected in the Stockholm archipelago in November 2021. Following whole-genome sequencing, these strains were identified as tentatively belonging to two novel Shewanella genospecies, based on digital DNA-DNA hybridization, as implemented in the Type Strain Genome Server. Shewanella septentrionalis, Shewanella baltica and Shewanella hafniensis were, in this order and within a narrow genomic relatedness range, their closest genotypic relatives. Additional sampling and sequencing efforts led to the retrieval of distinct isolates that were monophyletic with SP1S1-4T and SP2S1-2T, respectively, based on phylogenomic analysis of whole-genome sequences. Comparative analyses of genome sequence data, which included blast-based average nucleotide identity, core genome-based and core proteome-based phylogenomics, in addition to MALDI-TOF MS-based protein profiling, confirmed the distinctness of the putative novel genospecies with respect to their closest genotypic relatives. A comprehensive phenotypic characterisation of SP1S1-4T and SP2S1-2T revealed only minor differences with respect to the type strains of S. septentrionalis, S. baltica and S. hafniensis. Based on the collective phylogenomic, proteomic, and phenotypic evidence presented here, we describe two novel genospecies within the genus Shewanella, for which the names Shewanella scandinavica sp. nov. and Shewanella vaxholmensis sp. nov. are proposed. The type strains are, respectively, SP2S1-2T (=CCUG 76457T=CECT 30688T), with a draft genome sequence of 5 041 805 bp and a G+C content of 46.3 mol%, and SP1S1-4T (=CCUG 76453T=CECT 30684T), with a draft genome sequence of 4 920147 bp and a G+C content of 46.0 mol%. Our findings suggest the existence of a species complex formed by the species S. baltica, S. septentrionalis, S. scandinavica sp. nov., and S. vaxholmensis sp. nov., with S. hafniensis falling in the periphery, where distinct genomic species clusters could be identified. However, this does not exclude the possibility of a continuum of genomic diversity within this sedimental ecosystem, as discussed herein with additional sequenced isolates.
Collapse
Affiliation(s)
- Alberto J Martín-Rodríguez
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Víctor Fernández-Juárez
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Valerie D Valeriano
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Indiwari Mihindukulasooriya
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Livia Ceresnova
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Enrique Joffré
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Gothenburg, Sweden
| | - Susanne Jensie-Markopoulos
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Nie L, Xiao Y, Zhou T, Feng H, He M, Liang Q, Mu K, Nie H, Huang Q, Chen W. Cyclic di-GMP inhibits nitrate assimilation by impairing the antitermination function of NasT in Pseudomonas putida. Nucleic Acids Res 2024; 52:186-203. [PMID: 38000372 PMCID: PMC10783516 DOI: 10.1093/nar/gkad1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The ubiquitous bacterial second messenger cyclic diguanylate (c-di-GMP) coordinates diverse cellular processes through its downstream receptors. However, whether c-di-GMP participates in regulating nitrate assimilation is unclear. Here, we found that NasT, an antiterminator involved in nitrate assimilation in Pseudomonas putida, specifically bound c-di-GMP. NasT was essential for expressing the nirBD operon encoding nitrite reductase during nitrate assimilation. High-level c-di-GMP inhibited the binding of NasT to the leading RNA of nirBD operon (NalA), thus attenuating the antitermination function of NasT, resulting in decreased nirBD expression and nitrite reductase activity, which in turn led to increased nitrite accumulation in cells and its export. Molecular docking and point mutation assays revealed five residues in NasT (R70, Q72, D123, K127 and R140) involved in c-di-GMP-binding, of which R140 was essential for both c-di-GMP-binding and NalA-binding. Three diguanylate cyclases (c-di-GMP synthetases) were found to interact with NasT and inhibited nirBD expression, including WspR, PP_2557, and PP_4405. Besides, the c-di-GMP-binding ability of NasT was conserved in the other three representative Pseudomonas species, including P. aeruginosa, P. fluorescens and P. syringae. Our findings provide new insights into nitrate assimilation regulation by revealing the mechanism by which c-di-GMP inhibits nitrate assimilation via NasT.
Collapse
Affiliation(s)
- Liang Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoqi Feng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meina He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyuan Liang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kexin Mu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailing Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Yunda E, Phan Le QN, Björn E, Ramstedt M. Biochemical characterization and mercury methylation capacity of Geobacter sulfurreducens biofilms grown in media containing iron hydroxide or fumarate. Biofilm 2023; 6:100144. [PMID: 37583615 PMCID: PMC10424081 DOI: 10.1016/j.bioflm.2023.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Geobacter species are common in iron-rich environments and can contribute to formation of methylmercury (MeHg), a neurotoxic compound with high bioaccumulation potential formed as a result of bacterial and archaeal physiological activity. Geobacter sulfurreducens can utilize various electron acceptors for growth including iron hydroxides or fumarate. However, it remains poorly understood how the growth on these compounds affects physiological properties of bacterial cells in biofilms, including the capacity to produce MeHg. The purpose of this study was to determine changes in the biochemical composition of G. sulfurreducens during biofilm cultivation in media containing iron hydroxide or fumarate, and to quantify mercury (Hg) methylation capacity of the formed biofilms. Biofilms were characterized by Fourier-transform infrared spectroscopy in the attenuated total reflection mode (ATR-FTIR), Resonance Raman spectroscopy and confocal laser scanning microscopy. MeHg formation was quantified by mass spectrometry after incubation of biofilms with 100 nM Hg. The results of ATR-FTIR experiments showed that in presence of fumarate, G. sulfurreducens biofilm formation was accompanied by variation in content of the energy-reserve polymer glycogen over time, which could be cancelled by the addition of supplementary nutrients (yeast extract). In contrast, biofilms cultivated on Fe(III) hydroxide did not accumulate glycogen. The ATR-FTIR results further suggested that Fe(III) hydroxide surfaces bind cells via phosphate and carboxylate groups of bacteria that form complexes with iron. Furthermore, biofilms grown on Fe(III) hydroxide had higher fraction of oxidized cytochromes and produced two to three times less biomass compared to conditions with fumarate. Normalized to biofilm volume, the content of MeHg was similar in assays with biofilms grown on Fe(III) hydroxide and on fumarate (with yeast extract and without). These results suggest that G. sulfurreducens biofilms produce MeHg irrespectively from glycogen content and cytochrome redox state in the cells, and warrant further investigation of the mechanisms controlling this process.
Collapse
Affiliation(s)
- Elena Yunda
- Department of Chemistry, Umeå University, Sweden
| | | | - Erik Björn
- Department of Chemistry, Umeå University, Sweden
| | | |
Collapse
|
5
|
Römling U. Cyclic di-GMP signaling-Where did you come from and where will you go? Mol Microbiol 2023; 120:564-574. [PMID: 37427497 DOI: 10.1111/mmi.15119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
Microbes including bacteria are required to respond to their often continuously changing ecological niches in order to survive. While many signaling molecules are produced as seemingly circumstantial byproducts of common biochemical reactions, there are a few second messenger signaling systems such as the ubiquitous cyclic di-GMP second messenger system that arise through the synthesis of dedicated multidomain enzymes triggered by multiple diverse external and internal signals. Being one of the most numerous and widespread signaling system in bacteria, cyclic di-GMP signaling contributes to adjust physiological and metabolic responses in all available ecological niches. Those niches range from deep-sea and hydrothermal springs to the intracellular environment in human immune cells such as macrophages. This outmost adaptability is possible by the modularity of the cyclic di-GMP turnover proteins which enables coupling of enzymatic activity to the diversity of sensory domains and the flexibility in cyclic di-GMP binding sites. Nevertheless, commonly regulated fundamental microbial behavior include biofilm formation, motility, and acute and chronic virulence. The dedicated domains carrying out the enzymatic activity indicate an early evolutionary origin and diversification of "bona fide" second messengers such as cyclic di-GMP which is estimated to have been present in the last universal common ancestor of archaea and bacteria and maintained in the bacterial kingdom until today. This perspective article addresses aspects of our current view on the cyclic di-GMP signaling system and points to knowledge gaps that still await answers.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Radouani F, Sanchez-Cid C, Silbande A, Laure A, Ruiz-Valencia A, Robert F, Vogel TM, Salvin P. Evolution and interaction of microbial communities in mangrove microbial fuel cells and first description of Shewanella fodinae as electroactive bacterium. Bioelectrochemistry 2023; 153:108460. [PMID: 37224603 DOI: 10.1016/j.bioelechem.2023.108460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Understanding exoelectrogenic bacteria mechanisms and their interactions in complex biofilm is critical for the development of microbial fuel cells (MFCs). In this article, assumptions concerning the benefits of the complex sediment microbial community for electricity production were explored with both the complex microbial community and isolates identified as Shewanella. Analysis of the microbial community revealed a strong influence of the sediment community on anodes and electrolytes compared to that of only water. Moreover, while Pelobacteraceae-related genera were dominant in our MFCs instead of Desulfuromonas and Geobacter as usually reported, the electroactive Shewanella algae and Shewanella fodinae were isolated and cultivated from the anodic biofilm. S. fodinae, described for the first time as an electroactive bacterium to the best of our knowledge, led to a maximal current density of 3.6 A/m2 set as 0.3 V/SCE in a three-electrode set-up fed with lactate. S. algae, in a complex medium containing several available substrates, showed several preferential oxidative behaviors including a diauxic behavior. In pure culture and under our conditions, S. fodinae and S. algae were not able to use acetate as a sole electron donor. However, their presence in our acetate-fed MFCs and the adaptive behavior of S. algae hint a syntrophic interaction between the bacteria to optimize the use of the substrate in a complex environment.
Collapse
Affiliation(s)
- Fatima Radouani
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Adèle Silbande
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Adeline Laure
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Azariel Ruiz-Valencia
- Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Florent Robert
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Timothy M Vogel
- Université de Lyon, Université Claude Bernard Lyon 1, UMR 5557, UMR INRAe 1418, VetAgro Sup, Écologie Microbienne, équipe BEER, F-69622 Villeurbanne, France
| | - Paule Salvin
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France.
| |
Collapse
|
7
|
Römling U, Möglich A. Seeing the light brings more food in the deep sea. EMBO J 2023:e114091. [PMID: 37051729 DOI: 10.15252/embj.2023114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Cyclic di-GMP signaling regulates sessile-to-motile lifestyle transition and associated physiological and metabolic features in bacteria. The presence of potential cyclic di-GMP turnover proteins in deepest branching bacteria indicates that cyclic di-GMP is an ancient signaling molecule. In this issue of The EMBO Journal, Cai et al (2023) describe light-induced activation of a thiosulfate oxidation pathway in the deep-sea cold-seep bacterium Qipengyuania flava, thus coupling cyclic di-GMP with the regulation of the global abiotic sulfur cycle.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Möglich
- Department of Biochemistry, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
8
|
Martín-Rodríguez AJ. Respiration-induced biofilm formation as a driver for bacterial niche colonization. Trends Microbiol 2023; 31:120-134. [PMID: 36075785 DOI: 10.1016/j.tim.2022.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
Depending on their physiology and metabolism, bacteria can carry out diverse redox processes for energy acquisition, which facilitates adaptation to environmental or host-associated niches. Of these processes, respiration, using oxygen or alternative terminal electron acceptors, is energetically the most favorable in heterotrophic bacteria. The biofilm lifestyle, a coordinated multicellular behavior, is ubiquitous in bacteria and is regulated by a variety of intrinsic and extrinsic cues. Respiration of distinct electron acceptors has been shown to induce biofilm formation or dispersal. The notion of biofilm formation regulation by electron acceptor availability and respiration has often been considered species-specific. However, recent evidence suggests that this phenomenon can be strain-specific, even in strains sharing the same functional respiratory pathways, thereby implying subtle regulatory mechanisms. On this basis, I argue that induction of biofilm formation by sensing and respiration of electron acceptors might direct subgroups of redox-specialized strains to occupy certain niches. A palette of respiration and electron-transfer-mediated microbial social interactions within biofilms may broaden ecological opportunities. The strain specificity of this phenomenon represents an important opportunity to identify key molecular mechanisms and their ecophysiological significance, which in turn may lay the ground for applications in areas ranging from biotechnology to the prevention of antimicrobial resistance.
Collapse
|
9
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Wang G, He X, Wang Q. Intratumoral bacteria are an important "accomplice" in tumor development and metastasis. Biochim Biophys Acta Rev Cancer 2023; 1878:188846. [PMID: 36496095 DOI: 10.1016/j.bbcan.2022.188846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Department of General Surgery, The 74th Group Army Hospital, Guangzhou 510318, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
11
|
Summer K, Browne J, Hollanders M, Benkendorff K. Out of control: The need for standardised solvent approaches and data reporting in antibiofilm assays incorporating dimethyl-sulfoxide (DMSO). Biofilm 2022; 4:100081. [PMID: 36060119 PMCID: PMC9428811 DOI: 10.1016/j.bioflm.2022.100081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kate Summer
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
- Faculty of Health, Southern Cross University, Terminal Drive, Bilinga, Qld, 4225, Australia
- Corresponding author. Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia.
| | - Jessica Browne
- Faculty of Health, Southern Cross University, Terminal Drive, Bilinga, Qld, 4225, Australia
| | - Matthijs Hollanders
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
- QuantEcol, 53 Bentinck St, Ballina, NSW 2478, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
12
|
Comparative Genomics of Cyclic di-GMP Metabolism and Chemosensory Pathways in Shewanella algae Strains: Novel Bacterial Sensory Domains and Functional Insights into Lifestyle Regulation. mSystems 2022; 7:e0151821. [PMID: 35311563 PMCID: PMC9040814 DOI: 10.1128/msystems.01518-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shewanella spp. play important ecological and biogeochemical roles, due in part to their versatile metabolism and swift integration of stimuli. While Shewanella spp. are primarily considered environmental microbes, Shewanella algae is increasingly recognized as an occasional human pathogen. S. algae shares the broad metabolic and respiratory repertoire of Shewanella spp. and thrives in similar ecological niches. In S. algae, nitrate and dimethyl sulfoxide (DMSO) respiration promote biofilm formation strain specifically, with potential implication of taxis and cyclic diguanosine monophosphate (c-di-GMP) signaling. Signal transduction systems in S. algae have not been investigated. To fill these knowledge gaps, we provide here an inventory of the c-di-GMP turnover proteome and chemosensory networks of the type strain S. algae CECT 5071 and compare them with those of 41 whole-genome-sequenced clinical and environmental S. algae isolates. Besides comparative analysis of genetic content and identification of laterally transferred genes, the occurrence and topology of c-di-GMP turnover proteins and chemoreceptors were analyzed. We found S. algae strains to encode 61 to 67 c-di-GMP turnover proteins and 28 to 31 chemoreceptors, placing S. algae near the top in terms of these signaling capacities per Mbp of genome. Most c-di-GMP turnover proteins were predicted to be catalytically active; we describe in them six novel N-terminal sensory domains that appear to control their catalytic activity. Overall, our work defines the c-di-GMP and chemosensory signal transduction pathways in S. algae, contributing to a better understanding of its ecophysiology and establishing S. algae as an auspicious model for the analysis of metabolic and signaling pathways within the genus Shewanella. IMPORTANCEShewanella spp. are widespread aquatic bacteria that include the well-studied freshwater model strain Shewanella oneidensis MR-1. In contrast, the physiology of the marine and occasionally pathogenic species Shewanella algae is poorly understood. Chemosensory and c-di-GMP signal transduction systems integrate environmental stimuli to modulate gene expression, including the switch from a planktonic to sessile lifestyle and pathogenicity. Here, we systematically dissect the c-di-GMP proteome and chemosensory pathways of the type strain S. algae CECT 5071 and 41 additional S. algae isolates. We provide insights into the activity and function of these proteins, including a description of six novel sensory domains. Our work will enable future analyses of the complex, intertwined c-di-GMP metabolism and chemotaxis networks of S. algae and their ecophysiological role.
Collapse
|
13
|
Lamprokostopoulou A, Römling U. Yin and Yang of Biofilm Formation and Cyclic di-GMP Signaling of the Gastrointestinal Pathogen Salmonella enterica Serovar Typhimurium. J Innate Immun 2021; 14:275-292. [PMID: 34775379 PMCID: PMC9275015 DOI: 10.1159/000519573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Within the last 60 years, microbiological research has challenged many dogmas such as bacteria being unicellular microorganisms directed by nutrient sources; these investigations produced new dogmas such as cyclic diguanylate monophosphate (cyclic di-GMP) second messenger signaling as a ubiquitous regulator of the fundamental sessility/motility lifestyle switch on the single-cell level. Successive investigations have not yet challenged this view; however, the complexity of cyclic di-GMP as an intracellular bacterial signal, and, less explored, as an extracellular signaling molecule in combination with the conformational flexibility of the molecule, provides endless opportunities for cross-kingdom interactions. Cyclic di-GMP-directed microbial biofilms commonly stimulate the immune system on a lower level, whereas host-sensed cyclic di-GMP broadly stimulates the innate and adaptive immune responses. Furthermore, while the intracellular second messenger cyclic di-GMP signaling promotes bacterial biofilm formation and chronic infections, oppositely, Salmonella Typhimurium cellulose biofilm inside immune cells is not endorsed. These observations only touch on the complexity of the interaction of biofilm microbial cells with its host. In this review, we describe the Yin and Yang interactive concepts of biofilm formation and cyclic di-GMP signaling using S. Typhimurium as an example.
Collapse
Affiliation(s)
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Complete Genome Sequence and Methylome of the Type Strain of Shewanella algae. Microbiol Resour Announc 2021; 10:e0055921. [PMID: 34351223 PMCID: PMC8340859 DOI: 10.1128/mra.00559-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome sequence and base modification analysis of the Shewanella algae type strain CECT 5071 (= OK-1 = ATCC 51192 = DSM 9167 = IAM 14159). The genome is composed of a single chromosome of 4,924,764 bp, with a GC content of 53.10%.
Collapse
|
15
|
Martín‐Rodríguez AJ, Villion K, Yilmaz‐Turan S, Vilaplana F, Sjöling Å, Römling U. Regulation of colony morphology and biofilm formation in Shewanella algae. Microb Biotechnol 2021; 14:1183-1200. [PMID: 33764668 PMCID: PMC8085958 DOI: 10.1111/1751-7915.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial colony morphology can reflect different physiological stages such as virulence or biofilm formation. In this work we used transposon mutagenesis to identify genes that alter colony morphology and cause differential Congo Red (CR) and Brilliant Blue G (BBG) binding in Shewanella algae, a marine indigenous bacterium and occasional human pathogen. Microscopic analysis of colonies formed by the wild-type strain S. algae CECT 5071 and three transposon integration mutants representing the diversity of colony morphotypes showed production of biofilm extracellular polymeric substances (EPS) and distinctive morphological alterations. Electrophoretic and chemical analyses of extracted EPS showed differential patterns between strains, although the targets of CR and BBG binding remain to be identified. Galactose and galactosamine were the preponderant sugars in the colony biofilm EPS of S. algae. Surface-associated biofilm formation of transposon integration mutants was not directly correlated with a distinct colony morphotype. The hybrid sensor histidine kinase BarA abrogated surface-associated biofilm formation. Ectopic expression of the kinase and mutants in the phosphorelay cascade partially recovered biofilm formation. Altogether, this work provides the basic analysis to subsequently address the complex and intertwined networks regulating colony morphology and biofilm formation in this poorly understood species.
Collapse
Affiliation(s)
| | - Katia Villion
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Secil Yilmaz‐Turan
- Division of GlycoscienceDepartment of ChemistryKTH Royal Institute of TechnologyAlbaNova University CentreStockholmSweden
| | - Francisco Vilaplana
- Division of GlycoscienceDepartment of ChemistryKTH Royal Institute of TechnologyAlbaNova University CentreStockholmSweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
16
|
Kamal SM, Cimdins-Ahne A, Lee C, Li F, Martín-Rodríguez AJ, Seferbekova Z, Afasizhev R, Wami HT, Katikaridis P, Meins L, Lünsdorf H, Dobrindt U, Mogk A, Römling U. A recently isolated human commensal Escherichia coli ST10 clone member mediates enhanced thermotolerance and tetrathionate respiration on a P1 phage-derived IncY plasmid. Mol Microbiol 2020; 115:255-271. [PMID: 32985020 PMCID: PMC7984374 DOI: 10.1111/mmi.14614] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022]
Abstract
The ubiquitous human commensal Escherichia coli has been well investigated through its model representative E. coli K‐12. In this work, we initially characterized E. coli Fec10, a recently isolated human commensal strain of phylogroup A/sequence type ST10. Compared to E. coli K‐12, the 4.88 Mbp Fec10 genome is characterized by distinct single‐nucleotide polymorphisms and acquisition of genomic islands. In addition, E. coli Fec10 possesses a 155.86 kbp IncY plasmid, a composite element based on phage P1. pFec10 harbours multiple cargo genes such as coding for a tetrathionate reductase and its corresponding regulatory two‐component system. Among the cargo genes is also the Transmissible Locus of Protein Quality Control (TLPQC), which mediates tolerance to lethal temperatures in bacteria. The disaggregase ClpGGI of TLPQC constitutes a major determinant of the thermotolerance of E. coli Fec10. We confirmed stand‐alone disaggregation activity, but observed distinct biochemical characteristics of ClpGGI‐Fec10 compared to the nearly identical Pseudomonas aeruginosa ClpGGI‐SG17M. Furthermore, we noted a unique contribution of ClpGGI‐Fec10 to the exquisite thermotolerance of E. coli Fec10, suggesting functional differences between both disaggregases in vivo. Detection of thermotolerance in 10% of human commensal E. coli isolates hints to the successful establishment of food‐borne heat‐resistant strains in the human gut.
Collapse
Affiliation(s)
- Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | | | - Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fengyang Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Zaira Seferbekova
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Robert Afasizhev
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | | | - Panagiotis Katikaridis
- Center for Molecular Biology, University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lena Meins
- Center for Molecular Biology, University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Axel Mogk
- Center for Molecular Biology, University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|