1
|
Harada T, Yamada Y, Toda M, Takamatsu Y, Tomita K, Inoue K, Kouzuma A, Watanabe K. Geobacter sulfurreducens strain 60473, a potent bioaugmentation agent for improving the performances of bioelectrochemical systems. J Biosci Bioeng 2024:S1389-1723(24)00305-0. [PMID: 39510935 DOI: 10.1016/j.jbiosc.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Bioaugmentation with electrochemically active bacteria (EAB) has been suggested useful for improving the performance of bioelectrochemical systems (BESs) for sustainable energy generation, while its success is dependent on EAB introduced into the systems. Here we report on the isolation of a novel EAB, Geobacter sulfurreducens strain 60473, from microbes that colonized on an anode of a sediment microbial fuel cell. This strain is highly adhesive to graphite electrodes, forms dense biofilms on electrode surfaces, and generates high current densities in BESs. When microbial electrolysis cells (MECs) inoculated with paddy-field soil and fed starch as the major organic substrate were augmented with strain 60473, Geobacter bacteria predominantly colonized on anodes, and MEC performances, including current generation, hydrogen production and organics removal, were substantially improved compared to non-bioaugmented controls. Results suggest that bioaugmentation with electrode-adhesive EAB, such as strain 60473, is a promising approach for improving the performance of BESs, including MECs treating fermentable organics and biomass wastes.
Collapse
Affiliation(s)
- Tomoka Harada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | - Mizuki Toda
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Takamatsu
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Tomita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kengo Inoue
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
2
|
El Salamony DH, Hassouna MSE, Zaghloul TI, He Z, Abdallah HM. Bioenergy production from chicken feather waste by anaerobic digestion and bioelectrochemical systems. Microb Cell Fact 2024; 23:102. [PMID: 38575972 PMCID: PMC10996200 DOI: 10.1186/s12934-024-02374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.
Collapse
Affiliation(s)
- Dina Hassan El Salamony
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Mohamed Salah Eldin Hassouna
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Taha Ibrahim Zaghloul
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hanan Moustafa Abdallah
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Fattahi N, Reed J, Heronemus E, Fernando P, Hansen R, Parameswaran P. Polyethylene glycol hydrogel coatings for protection of electroactive bacteria against chemical shocks. Bioelectrochemistry 2024; 156:108595. [PMID: 37976771 DOI: 10.1016/j.bioelechem.2023.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Loss of bioelectrochemical activity in low resource environments or from chemical toxin exposure is a significant limitation in microbial electrochemical cells (MxCs), necessitating the development of materials that can stabilize and protect electroactive biofilms. Here, polyethylene glycol (PEG) hydrogels were designed as protective coatings over anodic biofilms, and the effect of the hydrogel coatings on biofilm viability under oligotrophic conditions and ammonia-N (NH4+-N) shocks was investigated. Hydrogel deposition occurred through polymerization of PEG divinyl sulfone and PEG tetrathiol precursor molecules, generating crosslinked PEG coatings with long-term hydrolytic stability between pH values of 3 and 10. Simultaneous monitoring of coated and uncoated electrodes co-located within the same MxC anode chamber confirmed that the hydrogel did not compromise biofilm viability, while the coated anode sustained nearly a 4 × higher current density (0.44 A/m2) compared to the uncoated anode (0.12 A/m2) under oligotrophic conditions. Chemical interactions between NH4+-N and PEG hydrogels revealed that the hydrogels provided a diffusive barrier to NH4+-N transport. This enabled PEG-coated biofilms to generate higher current densities during NH4+-N shocks and faster recovery afterwards. These results indicate that PEG-based coatings can expand the non-ideal chemical environments that electroactive biofilms can reliably operate in.
Collapse
Affiliation(s)
- Niloufar Fattahi
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Jeffrey Reed
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Evan Heronemus
- Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Priyasha Fernando
- Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Ryan Hansen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | - Prathap Parameswaran
- Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
4
|
Nguyen HTT, Le GTH, Park SG, Jadhav DA, Le TTQ, Kim H, Vinayak V, Lee G, Yoo K, Song YC, Chae KJ. Optimizing electrochemically active microorganisms as a key player in the bioelectrochemical system: Identification methods and pathways to large-scale implementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169766. [PMID: 38181955 DOI: 10.1016/j.scitotenv.2023.169766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-purpose solution, harnessing electrochemical processes and the capabilities of electrochemically active microorganisms (EAM) to simultaneously recover energy and treat wastewater. This review examines critical performance factors in BES, including inoculum selection, pretreatment methods, electrodes, and operational conditions. Further, authors explore innovative approaches to suppress methanogens and simultaneously enhance the EAM in mixed cultures. Additionally, advanced techniques for detecting EAM are discussed. The rapid detection of EAM facilitates the selection of suitable inoculum sources and optimization of enrichment strategies in BESs. This optimization is essential for facilitating the successful scaling up of BES applications, contributing substantially to the realization of clean energy and sustainable wastewater treatment. This analysis introduces a novel viewpoint by amalgamating contemporary research on the selective enrichment of EAM in mixed cultures. It encompasses identification and detection techniques, along with methodologies tailored for the selective enrichment of EAM, geared explicitly toward upscaling applications in BES.
Collapse
Affiliation(s)
- Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School (OST), Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Sung-Gwan Park
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hyunsu Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Gihan Lee
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
5
|
Choi Y, Kim D, Choi H, Cha J, Baek G, Lee C. Comparative study of exoelectrogenic utilization preferences and hydrogen conversion among major fermentation products in microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2024; 393:130032. [PMID: 38013038 DOI: 10.1016/j.biortech.2023.130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
This study comparatively investigated the exoelectrogenic utilization and hydrogen conversion of major dark fermentation products (acetate, propionate, butyrate, lactate, and ethanol) from organic wastes in dual-chamber microbial electrolysis cells (MECs) alongside their mixture as a simulated dark fermentation effluent (DFE). Acetate-fed MECs showed the highest hydrogen yield (1,465 mL/g chemical oxygen demand), near the theoretical maximum yield, with the highest coulombic efficiency (105%) and maximum current density (7.9 A/m2), followed by lactate-fed, propionate-fed, butyrate-fed, mixture-fed, and ethanol-fed MECs. Meanwhile, the highest hydrogen production rate (514 mL/L anolyte∙d) was observed in ethanol-fed MECs despite their lower coulombic efficiency. Butyrate was the least favored substrate, followed by propionate, leading to significantly delayed startup and reaction. The active anodic microbial community structure varied considerably among the MECs utilizing different substrates, particularly between Geobacter and Acetobacterium dominance. The results highlight the substantial effect of the DFE composition on its utilization and current-producing bioanode development.
Collapse
Affiliation(s)
- Yunjeong Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Danbee Kim
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea; Gwangju Clean Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Hyungmin Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Junho Cha
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Gahyun Baek
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea.
| |
Collapse
|
6
|
Jiang Y, Dong Y, Sui M, Yu J, Wu J, Fu D. Towards a new understanding of bioelectrochemical systems from the perspective of microecosystems: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168410. [PMID: 37939951 DOI: 10.1016/j.scitotenv.2023.168410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Bioelectrochemical system (BES) holds promise for sustainable energy generation and wastewater treatment. The microbial communities, as the core of BES, play a crucial role in its performance, thus needing to be systematically studied. However, researches considering microbial communities in BES from an ecological perspective are limited. This review provided a comprehensive summary of the BES with special emphasis on microecological principles, commencing with the dynamic formation and succession of the microbial communities. It also clarified the intricate interspecies relationships and quorum-sensing mechanisms regulated by dominant species. Furthermore, this review addressed the crucial themes in BES-related researches on ecological processes, including growth patterns, ecological structures, and defense strategies against external disturbances. By offering this novel perspective, it would contribute to enhancing the understanding of BES-centered technologies and facilitating future research in this field.
Collapse
Affiliation(s)
- Yiying Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yue Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Mingrui Sui
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China.
| | - Jimeng Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiaxin Wu
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Daxuan Fu
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
7
|
Yang FA, Hou YN, Cao C, Ren N, Wang AJ, Guo J, Liu Z, Huang C. Mechanistic insights into the response of electroactive biofilms to Cd 2+ shock: bacterial viability and electron transfer behavior at the cellular and community levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132183. [PMID: 37531766 DOI: 10.1016/j.jhazmat.2023.132183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Electroactive biofilms (EABs) play a crucial role in environmental bioremediation due to their excellent extracellular electron transfer (EET) capabilities. However, Cd2+ can have toxic effects on the electrochemical performance of EABs, and the comprehensive inhibition mechanism of EABs in response to Cd2+ shock remains elusive. This study indicated that Cd2+ shock significantly reduced biomass and increased oxidative stress in EABs at the cellular level. The bacterial viability of EABs in phase III under 0.5 mM Cd2+ shock (EABCd2+-III0.5) decreased by 16.31% compared to EABCK-III. Moreover, intracellular NADH, c-Cyts, and the abundance of electroactive species were essential indicators to evaluate EET behavior of EABs. In EABCd2+-III0.5, these indicators decreased by 26.32%, 33.40%, and 20.65%, respectively. Structural equation modeling analysis established quantitative correlations between core components and electrochemical activity at cellular and community levels. The correlation analysis revealed that the growth and electron transfer functions of EABs were predictive indicators for their electrochemical performance, with standardized path coefficients of 0.407 and 0.358, respectively. These findings enhance our understanding of EABs' response to Cd2+ shock and provide insights for improving their performance in heavy metal wastewater.
Collapse
Affiliation(s)
- Feng-Ai Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ce Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nanqi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ai-Jie Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhihua Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
8
|
Sun Y, Ter Heijne A, Rijnaarts H, Chen WS. The effect of anode potential on electrogenesis, methanogenesis and sulfidogenesis in a simulated sewer condition. WATER RESEARCH 2022; 226:119229. [PMID: 36242938 DOI: 10.1016/j.watres.2022.119229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Methane emissions from the sewer system are considered to be a non-negligible source of aggravating the greenhouse effect. Meanwhile, the sewer system has long been plagued by sulfide-induced corrosion problems. This study explored the possibility of using a bioelectrochemical system to intensify the competition between electroactive bacteria, methanogens and sulfate-reducing bacteria, thereby reducing the production of methane and sulfide. Dual-chamber bioelectrochemical reactors were constructed and operated in fed-batch mode with the coexistence of Electroactive bacteria, Methanogenic archaea and Sulfate-reducing bacteria. Acetate was supplied as the sole carbon source. The results indicated that electrogenesis induced by the anode potentials of -0.42 V and -0.2 V (vs. Ag/AgCl) had advantages over methanogenesis and sulfidogenesis in consuming acetate. The stimulated electrogenesis by anode potentials resulted in a decrease in pH. Methane production was suppressed in the reactors with anode potentials of -0.42 and -0.2 V compared to open circuit controls. In contrast to methane, the capacity for sulfide production was facilitated in the reactors with the anode potentials of -0.42 V and -0.2 V compared to open circuit controls. 16s rRNA gene analysis showed that Geobacter was the most abundant genus on the anode biofilm in the anode potential-controlled reactor, while acetoclastic methanogens dominated in open circuit controls. Methanosaeta and Methanosarcina were the most abundant methanogens in open circuit controls. Collectively, our study demonstrates that the use of electrodes with anode potential control can help to control methane emissions, but could not yet prevent sulfide production, which requires further research.
Collapse
Affiliation(s)
- Yue Sun
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Huub Rijnaarts
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Wei-Shan Chen
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
9
|
Belleville P, Merlin G, Ramousse J, Deseure J. Characterization of spatiotemporal electroactive anodic biofilm activity distribution using 1D simulations. Sci Rep 2022; 12:5849. [PMID: 35393459 PMCID: PMC8990003 DOI: 10.1038/s41598-022-09596-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Activity distribution limitation in electroactive biofilm remains an unclear phenomenon. Some observations using confocal microscopy have shown notable difference between activity close to the anode and activity at the liquid interface. A numerical model is developed in this work to describe biofilm growth and local biomass segregation in electroactive biofilm. Under our model hypothesis, metabolic activity distribution in the biofilm results from the competition between two limiting factors: acetate diffusion and electronic conduction in the biofilm. Influence of inactive biomass fraction (i.e. non-growing biomass fraction) properties (such as conductivity and density) is simulated to show variation in local biomass distribution. Introducing a dependence of effective diffusion to local density leads to a drastic biomass fraction segregation. Increasing density of inactive fraction reduces significantly acetate diffusion in biofilm, enhances biomass activity on the outer layer (liquid/biofilm interface) and maintains inner core largely inactive. High inactive fraction conductivity enhances biomass activity in the outer layer and enhances current production. Hence, investment in extracellular polymer substance (EPS), anchoring redox components, is benefit for biofilm electroactivity. However, under our model hypothesis it means that conductivity should be two order lower than biofilm conductivity reported in order to observe inner core active biomass segregation.
Collapse
Affiliation(s)
- Pierre Belleville
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP Institute of Engineering, LEPMI, 38000, Grenoble, France.,Univ. Savoie Mont-Blanc, CNRS, LOCIE, UMR 5271, Polytech Annecy, Chambéry, bât. Helios, 60 rue du lac Léman, Savoie Technolac, 73370, Le Bourget du Lac, France
| | - Gerard Merlin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP Institute of Engineering, LEPMI, 38000, Grenoble, France.,Univ. Savoie Mont-Blanc, CNRS, LOCIE, UMR 5271, Polytech Annecy, Chambéry, bât. Helios, 60 rue du lac Léman, Savoie Technolac, 73370, Le Bourget du Lac, France
| | - Julien Ramousse
- Univ. Savoie Mont-Blanc, CNRS, LOCIE, UMR 5271, Polytech Annecy, Chambéry, bât. Helios, 60 rue du lac Léman, Savoie Technolac, 73370, Le Bourget du Lac, France
| | - Jonathan Deseure
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP Institute of Engineering, LEPMI, 38000, Grenoble, France.
| |
Collapse
|
10
|
ACETONE-BUTYL FERMENTATION PECULIARITIES OF THE BUTANOL STRAINS -PRODUCER. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this review was to generalize and analyze the features of acetone-butyl fermentation as a type of butyric acid fermentation in the process of obtaining butanol as an alternative biofuel. Methods. The methods of analysis and generalization of analytical information and literature sources were used in the review. The results were obtained using the following methods such as microbiological (morphological properties of strains), chromatographic (determination of solvent concentration), spectrophotometric (determination of bacterial concentration), and molecular genetic (phylogenetic analysis of strains). Results. The process of acetone-butyl fermentation was analyzed, the main producer strains were considered, the features of the relationship between alcohol formation and sporulation were described, the possibility of butanol obtaining from synthesis gas was shown, and the features of the industrial production of butanol were considered. Conclusions. The features of the mechanism of acetone-butyl fermentation (the relationships between alcohol formation and sporulation, the duration of the acid-forming and alcohol-forming stages during batch fermentation depending on the change in the concentration of H2, CO, partial pressure, organic acids and mineral additives) and obtaining an enrichment culture during the production of butanol as an alternative fuel were shown. The possibility of using synthesis gas as a substrate for reducing atmospheric emissions during the fermentation process was shown. The direction of increasing the productivity of butanol-producing strains to create a competitive industrial biofuel technology was proposed.
Collapse
|
11
|
Kilbane JJ. Shining a Light on Wastewater Treatment with Microalgae. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 47:45-56. [PMID: 35036288 PMCID: PMC8752175 DOI: 10.1007/s13369-021-06444-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022]
Abstract
Microalgae can produce biofuels, nutriceuticals, pigments and many other products, but commercialization has been limited by the cost of growing, harvesting and processing algal biomass. Nutrients, chiefly nitrogen and phosphorus, are a key cost for growing microalgae, but these nutrients are present in abundance in municipal wastewater where they pose environmental problems if not removed. This is not a traditional review article; rather, it is a fact-based set of suggestions that will have to be investigated by scientists and engineers. It is suggested that if microalgae were grown as biofilms rather than as planktonic cells, and if internal illumination rather than external illumination were employed, then the use of microalgae may provide useful improvements to the wastewater treatment process. The use of microalgae to remove nutrients from wastewater has been demonstrated, but has not yet been widely implemented due to cost, and because microalgae derived from wastewater treatment has not yet been demonstrated as a commercial source for value-added products. Future facilities are likely to be called Municipal Resource Recovery Facilities as wastewater will increasingly be viewed as a resource for water, biofuels, fertilizer, monitoring public health and value-added products. Advances in photonics will accelerate this transition.
Collapse
|
12
|
Yan X, Du Q, Mu Q, Tian L, Wan Y, Liao C, Zhou L, Yan Y, Li N, Logan BE, Wang X. Long-Term Succession Shows Interspecies Competition of Geobacter in Exoelectrogenic Biofilms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14928-14937. [PMID: 34676765 DOI: 10.1021/acs.est.1c03010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Geobacter spp. are well-known exoelectrogenic microorganisms that often predominate acetate-fed biofilms in microbial fuel cells (MFCs) and other bioelectrochemical systems (BESs). By using an amplicon sequence variance analysis (at one nucleotide resolution), we observed a succession between two closely related species (98% similarity in 16S RNA), Geobacter sulfurreducens and Geobacter anodireducens, in the long-term studies (20 months) of MFC biofilms. Geobacter spp. predominated in the near-electrode portion of the biofilm, while the outer layer contained an abundance of aerobes, which may have helped to consume oxygen but reduced the relative abundance of Geobacter. Removal of the outer aerobes by norspermidine washing of biofilms revealed a transition from G. sulfurreducens to G. anodireducens. This succession was also found to occur rapidly in co-cultures in BES tests even in the absence of oxygen, suggesting that oxygen was not a critical factor. G. sulfurreducens likely dominated in early biofilms by its relatively larger cell size and production of extracellular polymeric substances (individual advantages), while G. anodireducens later predominated due to greater cell numbers (quantitative advantage). Our findings revealed the interspecies competition in the long-term evolution of Geobacter genus, providing microscopic insights into Geobacter's niche and competitiveness in complex electroactive microbial consortia.
Collapse
Affiliation(s)
- Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Quanhua Mu
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lean Zhou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yuqing Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|