1
|
Lv X, Zhan L, Ye T, Xie H, Chen Z, Lin Y, Cai X, Yang W, Liao X, Liu J, Sun J. Gut commensal Agathobacter rectalis alleviates microglia-mediated neuroinflammation against pathogenesis of Alzheimer disease. iScience 2024; 27:111116. [PMID: 39498309 PMCID: PMC11532950 DOI: 10.1016/j.isci.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Gut microbiota plays a crucial role in the pathogenesis of Alzheimer disease (AD). Here, we found that AD patients had significantly lower abundance of Agathobacter, which were negatively correlated with cognitive impairment. Animal experiments showed that Agathobacter rectalis (A. rectalis) supplementation increased beneficial commensal bacteria, significantly improved pathological damage, and suppressed microglial activation in APP/PS1 mice. We further demonstrated that butyric acid, a metabolite of A. rectalis, reduced microglial activation and pro-inflammatory factor production via Akt/ nuclear factor κB (NF-κB) signal pathway in vitro. Meanwhile, we revealed that A. rectalis effectively inhibited activation of microglia in the APP/PS1 mice by regulating Akt/ NF-κB pathway. This finding highlights the role of A. rectalis and its metabolite butyrate in mitigating neuroinflammation in AD by modulating the Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Xinhuang Lv
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Lu Zhan
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Tao Ye
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zhibo Chen
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yan Lin
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xianlei Cai
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Wenwen Yang
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaolan Liao
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jing Sun
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
2
|
Vidal PM, Brockie S, Farkas C, Hong J, Zhou C, Fehlings MG. Neuromotor decline is associated with gut dysbiosis following surgical decompression for Degenerative Cervical Myelopathy. Neurobiol Dis 2024; 200:106640. [PMID: 39159895 DOI: 10.1016/j.nbd.2024.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) describes a spectrum of disorders that cause progressive and chronic cervical spinal cord compression. The clinical presentation can be complex and can include locomotor impairment, hand and upper extremity dysfunction, pain, loss of bladder and bowel function, as well as gastrointestinal dysfunction. Once diagnosed, surgical decompression is the recommended treatment for DCM patients with moderate to severe impairment. Our body is composed of a large community of microorganisms, known as the microbiota. Traumatic and non-traumatic spinal cord injuries (SCIs) can induce changes in the gut microbiota and gut microbiota derived metabolites. These changes have been reported as important disease-modifying factors after injury. However, whether gut dysbiosis is associated with functional neurological recovery after surgical decompression has not been examined to date. Here, DCM was induced in C57BL/6 mice by implanting an aromatic polyether material underneath the C5-6 laminae. The extent of gut dysbiosis was assessed by gas chromatography and 16S rRNA sequencing from fecal samples before and after decompression. Neuromotor activity was assessed using the Catwalk test. Our results show that DCM pre- and post- surgical decompression is associated with gut dysbiosis, without altering short chain fatty acids (SCFAs) levels. Significant differences in Clostridia, Verrumicrobiae, Lachnospiracea, Firmicutes, Bacteroidales, and Clostridiaceae were observed between the DCM group (before decompression) and after surgical decompression (2 and 5 weeks). The changes in gut microbiota composition correlated with locomotor features of the Catwalk. For example, a longer duration of ground contact and dysfunctional swing in the forelimbs, were positively correlated with gut dysbiosis. These results show for the first time an association between gut dysbiosis and locomotor deterioration after delayed surgical decompression. Thus, providing a better understanding of the extent of changes in microbiota composition in the setting of DCM pre- and post- surgical decompression.
Collapse
Affiliation(s)
- Pia M Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Sydney Brockie
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Carlos Farkas
- Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Cindy Zhou
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
3
|
Zhu L, Wang F, Xing J, Hu X, Gou X, Li J, Pang R, Zhang A. Modulatory effects of gut microbiota on innate and adaptive immune responses following spinal cord injury. Exp Neurol 2024; 379:114866. [PMID: 38876194 DOI: 10.1016/j.expneurol.2024.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Spinal cord injury (SCI) represents a highly debilitating trauma to the central nervous system, currently lacking effective therapeutic strategies. The cascade of inflammatory responses induced by secondary damage following SCI disrupts the local immune environment at the injury site, ultimately exacerbating functional impairments post-injury. With advancing research on the gut-brain axis, evidence suggests that dysbiosis of the gut microbiota post-SCI amplifies inflammatory responses and plays a pivotal role in modulating post-injury immune-inflammatory responses. In this review article, we will explore the significant role of the gut microbiota and its metabolic products in modulating the responses of central and peripheral immune cells post-SCI, as well as their potential as therapeutic interventions for SCI treatment.
Collapse
Affiliation(s)
- Li Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Fangfang Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiajia Xing
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiaomin Hu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiang Gou
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiayu Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China.
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Hamilton AM, Blackmer-Raynolds L, Li Y, Kelly SD, Kebede N, Williams AE, Chang J, Garraway SM, Srinivasan S, Sampson TR. Diet-microbiome interactions promote enteric nervous system resilience following spinal cord injury. NPJ Biofilms Microbiomes 2024; 10:75. [PMID: 39209925 PMCID: PMC11362535 DOI: 10.1038/s41522-024-00556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Spinal cord injury (SCI) results in numerous systemic dysfunctions, including intestinal dysmotility and enteric nervous system (ENS) atrophy. The ENS has capacity to recover following perturbation, yet intestinal pathologies persist. With emerging evidence demonstrating SCI-induced alterations to gut microbiome composition, we hypothesized that microbiome modulation contributes to post-injury enteric recovery. Here, we show that intervention with the dietary fiber, inulin, prevents SCI-induced ENS atrophy and dysmotility in mice. While SCI-associated microbiomes and specific injury-sensitive gut microbes are not sufficient to modulate intestinal dysmotility after injury, intervention with microbially-derived short-chain fatty acid (SCFA) metabolites prevents ENS dysfunctions in injured mice. Notably, inulin-mediated resilience is dependent on IL-10 signaling, highlighting a critical diet-microbiome-immune axis that promotes ENS resilience post-injury. Overall, we demonstrate that diet and microbially-derived signals distinctly impact ENS survival after traumatic spinal injury and represent a foundation to uncover etiological mechanisms and future therapeutics for SCI-induced neurogenic bowel.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Yaqing Li
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean D Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nardos Kebede
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna E Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sandra M Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Zhang H, Zhang Y, Bai D, Zhong J, Hu X, Zhang R, Zhen W, Ito K, Zhang B, Yang Y, Li J, Ma Y. Effect of dietary aspirin eugenol ester on the growth performance, antioxidant capacity, intestinal inflammation, and cecal microbiota of broilers under high stocking density. Poult Sci 2024; 103:103825. [PMID: 38772090 PMCID: PMC11131080 DOI: 10.1016/j.psj.2024.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
This study was designed to examine the impact of aspirin eugenol ester (AEE) on the growth performance, serum antioxidant capacity, jejunal barrier function, and cecal microbiota of broilers raised under stressful high density (HD) stocking conditions compared with normal density broilers (ND). A total of 432 one-day-old AA+ male broilers were randomly divided into 4 groups: normal density (ND, 14 broilers /m2), high density (HD, 22 broilers /m2), ND + AEE, and HD + AEE. The results of the study revealed a significant decrease in the growth performance of broiler chickens as a result of HD stress (P < 0.05). The total antioxidant capacity (T-AOC) in serum demonstrated a significant decrease (P < 0.05) at both 28 and 35 d. Conversely, the serum level of malondialdehyde (MDA) exhibited a significant increase (P < 0.05). Dietary supplementation of AEE resulted in a significant elevation (P < 0.05) of serum GSH-PX, SOD and T-AOC activity at both 28 and 35 d. Moreover, exposure to HD stress resulted in a considerable reduction in the height of intestinal villi and mRNA expression of tight junction proteins in the jejunum, along with, a significant elevation in the mRNA expression of inflammatory cytokines (P < 0.05). However, the administration of AEE reversed the adverse effects of HD-induced stress on villus height and suppressed the mRNA expression of the pro-inflammatory genes, COX-2 and mPGES-1. Additionally, the exposure to HD stress resulted in a substantial reduction in the α-diversity of cecal microbiota and disruption in the equilibrium of intestinal microbial composition, with a notable decrease in the relative abundance of Bacteroides and Faecalibacterium (P < 0.05). In contrast, the addition of AEE to the feed resulted in a notable increase in the relative abundance of Phascolarctobacterium and enhanced microbial diversity (P < 0.05). The inclusion of AEE in the diet has been demonstrated to enhance intestinal integrity and growth performance of broilers by effectively mitigating disruptions in gut microbiota induced by HD stress.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiale Zhong
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiaodi Hu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ruilin Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 319-0206, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajun Yang
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jianyong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; Innovative Research Team of Livestock Intelligent Breeding and Equipment, Longmen Laboratory, Luoyang 471023, China; Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
6
|
Hamilton AM, Blackmer-Raynolds L, Li Y, Kelly S, Kebede N, Williams A, Chang J, Garraway SM, Srinivasan S, Sampson TR. Diet-microbiome interactions promote enteric nervous system resilience following spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597793. [PMID: 38895207 PMCID: PMC11185755 DOI: 10.1101/2024.06.06.597793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Spinal cord injury (SCI) results in a plethora of physiological dysfunctions across all body systems, including intestinal dysmotility and atrophy of the enteric nervous system (ENS). Typically, the ENS has capacity to recover from perturbation, so it is unclear why intestinal pathophysiologies persist after traumatic spinal injury. With emerging evidence demonstrating SCI-induced alterations to the gut microbiome composition, we hypothesized that modulation of the gut microbiome could contribute to enteric nervous system recovery after injury. Here, we show that intervention with the dietary fiber, inulin prevents ENS atrophy and limits SCI-induced intestinal dysmotility in mice. However, SCI-associated microbiomes and exposure to specific SCI-sensitive gut microbes are not sufficient to modulate injury-induced intestinal dysmotility. Intervention with microbially-derived short-chain fatty acid (SCFA) metabolites prevents ENS dysfunctions and phenocopies inulin treatment in injured mice, implicating these microbiome metabolites in protection of the ENS. Notably, inulin-mediated resilience is dependent on signaling by the cytokine IL-10, highlighting a critical diet-microbiome-immune axis that promotes ENS resilience following SCI. Overall, we demonstrate that diet and microbially-derived signals distinctly impact recovery of the ENS after traumatic spinal injury. This protective diet-microbiome-immune axis may represent a foundation to uncover etiological mechanisms and future therapeutics for SCI-induced neurogenic bowel.
Collapse
Affiliation(s)
- Adam M. Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | | | - Yaqing Li
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Sean Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Nardos Kebede
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Anna Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta GA 30329
| | - Timothy R. Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| |
Collapse
|
7
|
Jing Y, Wang Q, Bai F, Li Z, Li Y, Liu W, Yan Y, Zhang S, Gao C, Yu Y. Role of microbiota-gut-brain axis in natural aging-related alterations in behavior. Front Neurosci 2024; 18:1362239. [PMID: 38699678 PMCID: PMC11063250 DOI: 10.3389/fnins.2024.1362239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Aging is a complex, time-dependent biological process that involves a decline of overall function. Over the past decade, the field of intestinal microbiota associated with aging has received considerable attention. However, there is limited information surrounding microbiota-gut-brain axis (MGBA) to further reveal the mechanism of aging. Methods In this study, locomotory function and sensory function were evaluated through a series of behavioral tests.Metabolic profiling were determined by using indirect calorimetry.16s rRNA sequence and targeted metabolomics analyses were performed to investigate alterations in the gut microbiota and fecal short-chain fatty acids (SCFAs). The serum cytokines were detected by a multiplex cytokine assay.The expression of proinflammatory factors were detected by western blotting. Results Decreased locomotor activity, decreased pain sensitivity, and reduced respiratory metabolic profiling were observed in aged mice. High-throughput sequencing revealed that the levels of genus Lactobacillus and Dubosiella were reduced, and the levels of genus Alistipes and Bacteroides were increased in aged mice. Certain bacterial genus were directly associated with the decline of physiological behaviors in aged mice. Furthermore, the amount of fecal SCFAs in aged mice was decreased, accompanied by an upregulation in the circulating pro-inflammatory cytokines and increased expression of inflammatory factors in the brain. Discussion Aging-induced microbial dysbiosis was closely related with the overall decline in behavior, which may attribute to the changes in metabolic products, e.g., SCFAs, caused by an alteration in the gut microbiota, leading to inflammaging and contributing to neurological deficits. Investigating the MGBA might provide a novel viewpoint to exploring the pathogenesis of aging and expanding appropriate therapeutic targets.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Qiuying Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Zihan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Weijin Liu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yitong Yan
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuangyue Zhang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Chen Gao
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
8
|
Li Y, Zhang C, Li Z, Bai F, Jing Y, Ke H, Zhang S, Yan Y, Yu Y. Nicotinamide Riboside Regulates Chemotaxis to Decrease Inflammation and Ameliorate Functional Recovery Following Spinal Cord Injury in Mice. Curr Issues Mol Biol 2024; 46:1291-1307. [PMID: 38392200 PMCID: PMC10887503 DOI: 10.3390/cimb46020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Changes in intracellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in various disease states. A decrease in NAD+ levels has been noted following spinal cord injury (SCI). Nicotinamide riboside (NR) serves as the precursor of NAD+. Previous research has demonstrated the anti-inflammatory and apoptosis-reducing effects of NR supplements. However, it remains unclear whether NR exerts a similar role in mice after SCI. The objective of this study was to investigate the impact of NR on these changes in a mouse model of SCI. Four groups were considered: (1) non-SCI without NR (Sham), (2) non-SCI with NR (Sham +NR), (3) SCI without NR (SCI), and (4) SCI with NR (SCI + NR). Female C57BL/6J mice aged 6-8 weeks were intraperitoneally administered with 500 mg/kg/day NR for a duration of one week. The supplementation of NR resulted in a significant elevation of NAD+ levels in the spinal cord tissue of mice after SCI. In comparison to the SCI group, NR supplementation exhibited regulatory effects on the chemotaxis/recruitment of leukocytes, leading to reduced levels of inflammatory factors such as IL-1β, TNF-α, and IL-22 in the injured area. Moreover, NR supplementation notably enhanced the survival of neurons and synapses within the injured area, ultimately resulting in improved motor functions after SCI. Therefore, our research findings demonstrated that NR supplementation had inhibitory effects on leukocyte chemotaxis, anti-inflammatory effects, and could significantly improve the immune micro-environment after SCI, thereby promoting neuronal survival and ultimately enhancing the recovery of motor functions after SCI. NR supplementation showed promise as a potential clinical treatment strategy for SCI.
Collapse
Affiliation(s)
- Yan Li
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| | - Zihan Li
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Fan Bai
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yingli Jing
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| | - Shuangyue Zhang
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yitong Yan
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yan Yu
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| |
Collapse
|