1
|
Yadav S, Couch FJ, Domchek SM. Germline Genetic Testing for Hereditary Breast and Ovarian Cancer: Current Concepts in Risk Evaluation. Cold Spring Harb Perspect Med 2024; 14:a041318. [PMID: 38151326 PMCID: PMC11293548 DOI: 10.1101/cshperspect.a041318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our understanding of hereditary breast and ovarian cancer has significantly improved over the past two decades. In addition to BRCA1/2, pathogenic variants in several other DNA-repair genes have been shown to increase the risks of breast and ovarian cancer. The magnitude of cancer risk is impacted not only by the gene involved, but also by family history of cancer, polygenic risk scores, and, in certain genes, pathogenic variant type or location. While estimates of breast and ovarian cancer risk associated with pathogenic variants are available, these are predominantly based on studies of high-risk populations with young age at diagnosis of cancer, multiple primary cancers, or family history of cancer. More recently, breast cancer risk for germline pathogenic variant carriers has been estimated from population-based studies. Here, we provide a review of the field of germline genetic testing and risk evaluation for hereditary breast and ovarian cancers in high-risk and population-based settings.
Collapse
Affiliation(s)
- Siddhartha Yadav
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
2
|
Abbouche L, Bythell-Douglas R, Deans AJ. FANCM branchpoint translocase: Master of traverse, reverse and adverse DNA repair. DNA Repair (Amst) 2024; 140:103701. [PMID: 38878565 DOI: 10.1016/j.dnarep.2024.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
3
|
Liu Z, Jiang H, Lee SY, Kong N, Chan YW. FANCM promotes PARP inhibitor resistance by minimizing ssDNA gap formation and counteracting resection inhibition. Cell Rep 2024; 43:114464. [PMID: 38985669 DOI: 10.1016/j.celrep.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) exhibit remarkable anticancer activity in tumors with homologous recombination (HR) gene mutations. However, the role of other DNA repair proteins in PARPi-induced lethality remains elusive. Here, we reveal that FANCM promotes PARPi resistance independent of the core Fanconi anemia (FA) complex. FANCM-depleted cells retain HR proficiency, acting independently of BRCA1 in response to PARPis. FANCM depletion leads to increased DNA damage in the second S phase after PARPi exposure, driven by elevated single-strand DNA (ssDNA) gap formation behind replication forks in the first S phase. These gaps arise from both 53BP1- and primase and DNA directed polymerase (PRIMPOL)-dependent mechanisms. Notably, FANCM-depleted cells also exhibit reduced resection of collapsed forks, while 53BP1 deletion restores resection and mitigates PARPi sensitivity. Our results suggest that FANCM counteracts 53BP1 to repair PARPi-induced DNA damage. Furthermore, FANCM depletion leads to increased chromatin bridges and micronuclei formation after PARPi treatment, elucidating the mechanism underlying extensive cell death in FANCM-depleted cells.
Collapse
Affiliation(s)
- Zeyuan Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Yuen Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nannan Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
4
|
Klarić ML, Marić T, Žunić L, Trgovec-Greif L, Rokić F, Fiolić A, Šorgić AM, Ježek D, Vugrek O, Jakovčević A, Barbalić M, Belužić R, Katušić Bojanac A. FANCM Gene Variants in a Male Diagnosed with Sertoli Cell-Only Syndrome and Diffuse Astrocytoma. Genes (Basel) 2024; 15:707. [PMID: 38927643 PMCID: PMC11202954 DOI: 10.3390/genes15060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Azoospermia is a form of male infertility characterized by a complete lack of spermatozoa in the ejaculate. Sertoli cell-only syndrome (SCOS) is the most severe form of azoospermia, where no germ cells are found in the tubules. Recently, FANCM gene variants were reported as novel genetic causes of spermatogenic failure. At the same time, FANCM variants are known to be associated with cancer predisposition. We performed whole-exome sequencing on a male patient diagnosed with SCOS and a healthy father. Two compound heterozygous missense mutations in the FANCM gene were found in the patient, both being inherited from his parents. After the infertility assessment, the patient was diagnosed with diffuse astrocytoma. Immunohistochemical analyses in the testicular and tumor tissues of the patient and adequate controls showed, for the first time, not only the existence of a cytoplasmic and not nuclear pattern of FANCM in astrocytoma but also in non-mitotic neurons. In the testicular tissue of the SCOS patient, cytoplasmic anti-FANCM staining intensity appeared lower than in the control. Our case report raises a novel possibility that the infertile carriers of FANCM gene missense variants could also be prone to cancer development.
Collapse
Affiliation(s)
| | - Tihana Marić
- Department of Medical Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
| | - Lucija Žunić
- Genom Ltd., Ilica 190, 10000 Zagreb, Croatia; (M.L.K.); (L.Ž.); (A.F.); (M.B.)
| | - Lovro Trgovec-Greif
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.T.-G.); (F.R.); (O.V.)
| | - Filip Rokić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.T.-G.); (F.R.); (O.V.)
| | - Ana Fiolić
- Genom Ltd., Ilica 190, 10000 Zagreb, Croatia; (M.L.K.); (L.Ž.); (A.F.); (M.B.)
| | - Ana Merkler Šorgić
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
| | - Davor Ježek
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.T.-G.); (F.R.); (O.V.)
| | - Antonia Jakovčević
- Department of Pathology, University Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Maja Barbalić
- Genom Ltd., Ilica 190, 10000 Zagreb, Croatia; (M.L.K.); (L.Ž.); (A.F.); (M.B.)
- Faculty of Science, University of Split, Rudjera Bošković 33, 21000 Split, Croatia
| | - Robert Belužić
- Laboratory for Metabolism and Aging, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Ana Katušić Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
| |
Collapse
|
5
|
Ng JY, Warwick L, Craft P, Austen L, Ashford B, Gorddard N, Ballinger ML, Thomas DM, Blombery P, Tucker K, Polizzotto MN. Myelodysplastic syndrome and multiple solid tumours in an individual with compound heterozygous deleterious FANCM variants: A case report and review of the literature. Br J Haematol 2023; 203:481-484. [PMID: 37608704 DOI: 10.1111/bjh.19059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Affiliation(s)
- Jun Yen Ng
- Department of Haematology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Linda Warwick
- ACT Genetic Service, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Paul Craft
- Department of Oncology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Lynette Austen
- Department of Radiation Oncology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Bruce Ashford
- Department of Surgery, Wollongong Hospital, Wollongong, New South Wales, Australia
| | - Nicole Gorddard
- Department of Oncology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Mandy L Ballinger
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - David M Thomas
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Piers Blombery
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kathy Tucker
- Hereditary Cancer Clinic, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Mark N Polizzotto
- Department of Haematology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
6
|
Zhu QY, Li PC, Zhu YF, Pan JN, Wang R, Li XL, Ye WW, Ding XW, Wang XJ, Cao WM. A comprehensive analysis of Fanconi anemia genes in Chinese patients with high-risk hereditary breast cancer. J Cancer Res Clin Oncol 2023; 149:14303-14313. [PMID: 37566130 PMCID: PMC10590287 DOI: 10.1007/s00432-023-05236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Four Fanconi anemia (FA) genes (BRCA1, BRCA2, PALB2 and RAD51C) are defined as breast cancer (BC) susceptibility genes. Other FA genes have been inconsistently associated with BC. Thus, the role of other FA genes in BC should be explored in specific populations. METHODS Mutations in 16 FA genes were screened with a 98-gene panel sequencing assay in a cohort of 1481 Chinese patients with high-risk hereditary BC. The association between mutations and clinicopathological characteristics as well as prognosis was analyzed. The risk of BC in carriers of FA gene mutations was assessed in the Genome Aggregation Database and the Westlake Biobank for Chinese cohort. RESULTS A total of 2.57% (38/1481) BC patients were identified who had 12 other FA gene germline mutations. Among them, the most frequently mutated gene was FANCA (8/1481, 0.54%). These 38 patients carried 35 distinct pathogenic/likely pathogenic variants, of which 21 were novel. We found one rare FANCB deleterious variant (c.1327-3dupT) in our cohort. There was a statistically significant difference in lymph node status between FA gene mutation carriers and non-carriers (p = 0.041). We observed a trend that mutation carriers had larger tumor sizes, lower estrogen receptor (ER) and progesterone receptor (PR) positivity rates, and lower 3.5-year invasive disease-free survival (iDFS) and distant recurrence-free survival (DRFS) rates than non-carriers (tumor size > 2 cm: 51.43% vs. 45.63%; ER positivity rates: 51.43% vs. 60.81%; PR positivity rates: 48.57% vs. 55.16%; 3.5-year iDFS rates: 58.8% vs. 66.7%; 3.5-year DRFS rates: 58.8% vs. 68.8%). The frequency of the mutations in FANCD2, FANCM and BRIP1 trended to be higher among BC cases than that in controls (p = 0.055, 0.08 and 0.08, respectively). CONCLUSION This study comprehensively estimated the prevalence, clinicopathological characteristics, prognosis and risk of BC associated with deleterious variants in FA genes in Chinese high-risk hereditary BC patients. It enriches our understanding of the role of FA genes with BC.
Collapse
Affiliation(s)
- Qiao-Yan Zhu
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Pu-Chun Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi-Fan Zhu
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Ni Pan
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Rong Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
| | - Xiao-Lin Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
| | - Wei-Wu Ye
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
| | - Xiao-Wen Ding
- Department of Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
| | - Xiao-Jia Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China.
- Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Jensen MR, Jelsig AM, Gerdes AM, Hölmich LR, Kainu KH, Lorentzen HF, Hansen MH, Bak M, Johansson PA, Hayward NK, Van Overeem Hansen T, Wadt KA. TINF2 is a major susceptibility gene in Danish patients with multiple primary melanoma. HGG ADVANCES 2023; 4:100225. [PMID: 37646013 PMCID: PMC10461021 DOI: 10.1016/j.xhgg.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023] Open
Abstract
TINF2 encodes the TINF2 protein, which is a subunit in the shelterin complex critical for telomere regulation. Three recent studies have associated six truncating germline variants in TINF2 that have previously been associated with a cancer predisposition syndrome (CPS) caused by elongation of the telomeres. This has added TINF2 to the long telomere syndrome genes, together with other telomere maintenance genes such as ACD, POT1, TERF2IP, and TERT. We report a clinical study of 102 Danish patients with multiple primary melanoma (MPM) in which a germline truncating variant in TINF2 (p.(Arg265Ter)) was identified in four unrelated participants. The telomere lengths of three variant carriers were >90% percentile. In a routine diagnostic setting, the variant was identified in two more families, including an additional MPM patient and monozygotic twins with thyroid cancer and other cancer types. A total of 10 individuals from six independent families were confirmed carriers, all with cancer history, predominantly melanoma. Our findings suggest a major role of TINF2 in Danish patients with MPM. In addition to melanoma, other cancers in the six families include thyroid, renal, breast, and sarcoma, supporting a CPS in which melanoma, thyroid cancer, and sarcoma predominate. Further studies are needed to establish the full spectrum of associated cancer types and characterize lifetime cancer risk in carriers.
Collapse
Affiliation(s)
- Marlene Richter Jensen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anne Marie Jelsig
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lisbet Rosenkrantz Hölmich
- Department of Plastic and Reconstructive Surgery, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kati Hannele Kainu
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergology, Herlev and Gentofte Hospital, 2900 Gentofte, Denmark
| | | | | | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Thomas Van Overeem Hansen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin A.W. Wadt
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Figlioli G, Billaud A, Wang Q, Bolla MK, Dennis J, Lush M, Kvist A, Adank MA, Ahearn TU, Antonenkova NN, Auvinen P, Behrens S, Bermisheva M, Bogdanova NV, Bojesen SE, Bonanni B, Brüning T, Camp NJ, Campbell A, Castelao JE, Cessna MH, Czene K, Devilee P, Dörk T, Eriksson M, Fasching PA, Flyger H, Gabrielson M, Gago-Dominguez M, García-Closas M, Glendon G, Gómez Garcia EB, González-Neira A, Grassmann F, Guénel P, Hahnen E, Hamann U, Hillemanns P, Hooning MJ, Hoppe R, Howell A, Humphreys K, Jakubowska A, Khusnutdinova EK, Kristensen VN, Lindblom A, Loizidou MA, Lubiński J, Mannermaa A, Maurer T, Mavroudis D, Newman WG, Obi N, Panayiotidis MI, Radice P, Rashid MU, Rhenius V, Ruebner M, Saloustros E, Sawyer EJ, Schmidt MK, Schmutzler RK, Shah M, Southey MC, Tomlinson I, Truong T, van Veen EM, Wendt C, Yang XR, Michailidou K, Dunning AM, Pharoah PDP, Easton DF, Andrulis IL, Evans DG, Hollestelle A, Chang-Claude J, Milne RL, Peterlongo P. Spectrum and Frequency of Germline FANCM Protein-Truncating Variants in 44,803 European Female Breast Cancer Cases. Cancers (Basel) 2023; 15:3313. [PMID: 37444426 DOI: 10.3390/cancers15133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
FANCM germline protein truncating variants (PTVs) are moderate-risk factors for ER-negative breast cancer. We previously described the spectrum of FANCM PTVs in 114 European breast cancer cases. In the present, larger cohort, we report the spectrum and frequency of four common and 62 rare FANCM PTVs found in 274 carriers detected among 44,803 breast cancer cases. We confirmed that p.Gln1701* was the most common PTV in Northern Europe with lower frequencies in Southern Europe. In contrast, p.Gly1906Alafs*12 was the most common PTV in Southern Europe with decreasing frequencies in Central and Northern Europe. We verified that p.Arg658* was prevalent in Central Europe and had highest frequencies in Eastern Europe. We also confirmed that the fourth most common PTV, p.Gln498Thrfs*7, might be a founder variant from Lithuania. Based on the frequency distribution of the carriers of rare PTVs, we showed that the FANCM PTVs spectra in Southwestern and Central Europe were much more heterogeneous than those from Northeastern Europe. These findings will inform the development of more efficient FANCM genetic testing strategies for breast cancer cases from specific European populations.
Collapse
Affiliation(s)
- Gisella Figlioli
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Amandine Billaud
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Muriel A Adank
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Family Cancer Clinic, 1066 CX Amsterdam, The Netherlands
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040 Minsk, Belarus
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Oncology, Cancer Center, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040 Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789 Bochum, Germany
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, 36312 Vigo, Spain
| | | | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Henrik Flyger
- Department of Breast Surgery, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS) Foundation, IDIS Cancer Genetics and Epidemiology Group, Genomic Medicine Group, Complejo Hospitalario Universitario de Santiago, SERGAS, 15706 Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON M5G 1X5, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Encarna B Gómez Garcia
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Medicine, Institute for Clinical Research and Systems Medicine, Health and Medical University, 14467 Potsdam, Germany
| | - Pascal Guénel
- CESP U1018, Inserm "Exposome, Heredity, Cancer and Health" Team, UVSQ, University Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Ute Hamann
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, 69120 Heidelberg, Germany
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379 Oslo, Norway
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Maria A Loizidou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland
- Kuopio University Hospital, Biobank of Eastern Finland, 70210 Kuopio, Finland
| | - Tabea Maurer
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10 Heraklion, Greece
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Nadia Obi
- University Medical Center Hamburg-Eppendorf, Institute for Medical Biometry and Epidemiology, 20246 Hamburg, Germany
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Paolo Radice
- Unit of 'Predictive Medicine: Molecular Bases of Genetic Risk', Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy
| | - Muhammad U Rashid
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, 69120 Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore 54000, Pakistan
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | | - Elinor J Sawyer
- King's College London, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, London SE1 9RT, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3000, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
| | - Ian Tomlinson
- Cancer Research Centre, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Thérèse Truong
- CESP U1018, Inserm "Exposome, Heredity, Cancer and Health" Team, UVSQ, University Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
| | - Elke M van Veen
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Camilla Wendt
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
9
|
Peng Y, Huang X, Wang H. Serum lncRNA LINC01535 as Biomarker of Diagnosis, Prognosis, and Disease Progression in Breast Cancer. Clin Breast Cancer 2023:S1526-8209(23)00109-X. [PMID: 37268524 DOI: 10.1016/j.clbc.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Breast cancer has become the world's leading cancer, the leading killer of women's health, with a high mortality rate. With the development of medical technology, lncRNAs are widely used in the diagnosis and prognosis of various tumors, so finding new specific molecular markers and targets is the key to prolonging the survival time of breast cancer patients. MATERIALS AND METHODS The expressions of lncRNA LINC01535 and miR-214-3p in breast cancer were detected by quantitative real-time PCR (qRT-PCR). The diagnostic significance of LINC01535 in breast cancer was assessed by ROC curve. The prognostic value of LINC01535 was verified by Kaplan-Meier method. The regulation of low expression of LINC01535 on proliferation and other biological abilities of breast cancer cells was determined by CCK-8 and Transwell method. The luciferase activity report assays indicated the relationship between LINC01535 and miR-214-3p. RESULTS LINC01535 was elevated in breast cancer, which was negatively correlated with miR-214-3p, and miR-214-3p expression was decreased. LINC01535 proved to be promising in the diagnosis and prognosis of breast cancer. Low expression of LINC01535 targeting miR-214-3p had regulatory significance on tumor progression, lymph node metastasis and TNM stage. CONCLUSION Silencing LINC01535 inhibited the proliferation capacity, migration level and invasion of breast cancer cells in vitro. LINC01535 was likely to be the focus of continued attention as a diagnostic and prognosis marker for breast cancer in the future.
Collapse
Affiliation(s)
- Yi Peng
- Department of Breast Surgery, Fujian Provincial Maternity and Children's Hospital, Fuzhou, China.
| | - Xiaoxi Huang
- Department of Breast Surgery, Fujian Provincial Maternity and Children's Hospital, Fuzhou, China
| | - Hongmei Wang
- Department of Breast Surgery, Fujian Provincial Maternity and Children's Hospital, Fuzhou, China
| |
Collapse
|
10
|
Nierenberg JL, Adamson AW, Hu D, Huntsman S, Patrick C, Li M, Steele L, Tong B, Shieh Y, Fejerman L, Gruber SB, Haiman CA, John EM, Kushi LH, Torres-Mejía G, Ricker C, Weitzel JN, Ziv E, Neuhausen SL. Whole exome sequencing and replication for breast cancer among Hispanic/Latino women identifies FANCM as a susceptibility gene for estrogen-receptor-negative breast cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.25.23284924. [PMID: 36747679 PMCID: PMC9901069 DOI: 10.1101/2023.01.25.23284924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Introduction Breast cancer (BC) is one of the most common cancers globally. Genetic testing can facilitate screening and risk-reducing recommendations, and inform use of targeted treatments. However, genes included in testing panels are from studies of European-ancestry participants. We sequenced Hispanic/Latina (H/L) women to identify BC susceptibility genes. Methods We conducted a pooled BC case-control analysis in H/L women from the San Francisco Bay area, Los Angeles County, and Mexico (4,178 cases and 4,344 controls). Whole exome sequencing was conducted on 1,043 cases and 1,188 controls and a targeted 857-gene panel on the remaining samples. Using ancestry-adjusted SKAT-O analyses, we tested the association of loss of function (LoF) variants with overall, estrogen receptor (ER)-positive, and ER-negative BC risk. We calculated odds ratios (OR) for BC using ancestry-adjusted logistic regression models. We also tested the association of single variants with BC risk. Results We saw a strong association of LoF variants in FANCM with ER-negative BC (p=4.1×10-7, OR [CI]: 6.7 [2.9-15.6]) and a nominal association with overall BC risk. Among known susceptibility genes, BRCA1 (p=2.3×10-10, OR [CI]: 24.9 [6.1-102.5]), BRCA2 (p=8.4×10-10, OR [CI]: 7.0 [3.5-14.0]), and PALB2 (p=1.8×10-8, OR [CI]: 6.5 [3.2-13.1]) were strongly associated with BC. There were nominally significant associations with CHEK2, RAD51D, and TP53. Conclusion In H/L women, LoF variants in FANCM were strongly associated with ER-negative breast cancer risk. It previously was proposed as a possible susceptibility gene for ER-negative BC, but is not routinely tested in clinical practice. Our results demonstrate that FANCM should be added to BC gene panels.
Collapse
Affiliation(s)
- Jovia L Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carmina Patrick
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Min Li
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Barry Tong
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yiwey Shieh
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Laura Fejerman
- Department of Public Health Service, University of California, Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
| | - Stephen B Gruber
- Department of Medical Oncology and Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - Charité Ricker
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Elad Ziv
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
11
|
Figlioli G, Billaud A, Ahearn TU, Antonenkova NN, Becher H, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Blok MJ, Bogdanova NV, Bonanni B, Burwinkel B, Camp NJ, Campbell A, Castelao JE, Cessna MH, Chanock SJ, Czene K, Devilee P, Dörk T, Engel C, Eriksson M, Fasching PA, Figueroa JD, Gabrielson M, Gago-Dominguez M, García-Closas M, González-Neira A, Grassmann F, Guénel P, Gündert M, Hadjisavvas A, Hahnen E, Hall P, Hamann U, Harrington PA, He W, Hillemanns P, Hollestelle A, Hooning MJ, Hoppe R, Howell A, Humphreys K, Jager A, Jakubowska A, Khusnutdinova EK, Ko YD, Kristensen VN, Lindblom A, Lissowska J, Lubiński J, Mannermaa A, Manoukian S, Margolin S, Mavroudis D, Newman WG, Obi N, Panayiotidis MI, Rashid MU, Rhenius V, Rookus MA, Saloustros E, Sawyer EJ, Schmutzler RK, Shah M, Sironen R, Southey MC, Suvanto M, Tollenaar RAEM, Tomlinson I, Truong T, van der Kolk LE, van Veen EM, Wappenschmidt B, Yang XR, Bolla MK, Dennis J, Dunning AM, Easton DF, Lush M, Michailidou K, Pharoah PDP, Wang Q, Adank MA, Schmidt MK, Andrulis IL, Chang-Claude J, Nevanlinna H, Chenevix-Trench G, Evans DG, Milne RL, Radice P, Peterlongo P. FANCM missense variants and breast cancer risk: a case-control association study of 75,156 European women. Eur J Hum Genet 2023; 31:578-587. [PMID: 36707629 PMCID: PMC10172381 DOI: 10.1038/s41431-022-01257-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 01/29/2023] Open
Abstract
Evidence from literature, including the BRIDGES study, indicates that germline protein truncating variants (PTVs) in FANCM confer moderately increased risk of ER-negative and triple-negative breast cancer (TNBC), especially for women with a family history of the disease. Association between FANCM missense variants (MVs) and breast cancer risk has been postulated. In this study, we further used the BRIDGES study to test 689 FANCM MVs for association with breast cancer risk, overall and in ER-negative and TNBC subtypes, in 39,885 cases (7566 selected for family history) and 35,271 controls of European ancestry. Sixteen common MVs were tested individually; the remaining rare 673 MVs were tested by burden analyses considering their position and pathogenicity score. We also conducted a meta-analysis of our results and those from published studies. We did not find evidence for association for any of the 16 variants individually tested. The rare MVs were significantly associated with increased risk of ER-negative breast cancer by burden analysis comparing familial cases to controls (OR = 1.48; 95% CI 1.07-2.04; P = 0.017). Higher ORs were found for the subgroup of MVs located in functional domains or predicted to be pathogenic. The meta-analysis indicated that FANCM MVs overall are associated with breast cancer risk (OR = 1.22; 95% CI 1.08-1.38; P = 0.002). Our results support the definition from previous analyses of FANCM as a moderate-risk breast cancer gene and provide evidence that FANCM MVs could be low/moderate risk factors for ER-negative and TNBC subtypes. Further genetic and functional analyses are necessary to clarify better the increased risks due to FANCM MVs.
Collapse
Affiliation(s)
- Gisella Figlioli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Genome Diagnostics Program, Milan, Italy
| | - Amandine Billaud
- IFOM ETS - The AIRC Institute of Molecular Oncology, Genome Diagnostics Program, Milan, Italy
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Heiko Becher
- University Medical Center Hamburg-Eppendorf, Institute of Medical Biometry and Epidemiology, Hamburg, Germany
| | - Matthias W Beckmann
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sabine Behrens
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Javier Benitez
- Spanish National Cancer Research Centre (CNIO), Human Genetics Group, Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Marinus J Blok
- Maastricht University Medical Center, Department of Clinical Genetics, Maastricht, the Netherlands
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
- Hannover Medical School, Department of Radiation Oncology, Hannover, Germany
- Hannover Medical School, Gynaecology Research Unit, Hannover, Germany
| | - Bernardo Bonanni
- IEO, European Institute of Oncology IRCCS, Division of Cancer Prevention and Genetics, Milan, Italy
| | - Barbara Burwinkel
- German Cancer Research Center (DKFZ), Molecular Epidemiology Group, C080, Heidelberg, Germany
- University of Heidelberg, Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, Heidelberg, Germany
| | - Nicola J Camp
- University of Utah, Department of Internal Medicine and Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Archie Campbell
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, Edinburgh, UK
- The University of Edinburgh, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Jose E Castelao
- Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Oncology and Genetics Unit, Vigo, Spain
| | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Kamila Czene
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Peter Devilee
- Leiden University Medical Center, Department of Pathology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Human Genetics, Leiden, the Netherlands
| | - Thilo Dörk
- Hannover Medical School, Gynaecology Research Unit, Hannover, Germany
| | - Christoph Engel
- University of Leipzig, Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany
- University of Leipzig, LIFE - Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
| | - Mikael Eriksson
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Peter A Fasching
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- The University of Edinburgh, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
- The University of Edinburgh, Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Marike Gabrielson
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Santiago de Compostela, Spain
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Anna González-Neira
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
| | - Felix Grassmann
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
- Health and Medical University, Potsdam, Germany
| | - Pascal Guénel
- INSERM, University Paris-Saclay, Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, Villejuif, France
| | - Melanie Gündert
- German Cancer Research Center (DKFZ), Molecular Epidemiology Group, C080, Heidelberg, Germany
- University of Heidelberg, Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, Heidelberg, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Diabetes Research, Neuherberg, Germany
| | - Andreas Hadjisavvas
- The Cyprus Institute of Neurology & Genetics, Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, Nicosia, Cyprus
| | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
| | - Per Hall
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
- Södersjukhuset, Department of Oncology, Stockholm, Sweden
| | - Ute Hamann
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
| | - Patricia A Harrington
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Wei He
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Peter Hillemanns
- Hannover Medical School, Gynaecology Research Unit, Hannover, Germany
| | | | - Maartje J Hooning
- Erasmus MC Cancer Institute, Department of Medical Oncology, Rotterdam, the Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Anthony Howell
- University of Manchester, Division of Cancer Sciences, Manchester, UK
| | - Keith Humphreys
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | | | - Agnes Jager
- Erasmus MC Cancer Institute, Department of Medical Oncology, Rotterdam, the Netherlands
| | - Anna Jakubowska
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Center, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Bashkir State University, Department of Genetics and Fundamental Medicine, Ufa, Russia
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, Bonn, Germany
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Annika Lindblom
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden
- Karolinska University Hospital, Department of Clinical Genetics, Stockholm, Sweden
| | - Jolanta Lissowska
- M. Sklodowska-Curie National Research Oncology Institute, Department of Cancer Epidemiology and Prevention, Warsaw, Poland
| | - Jan Lubiński
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Center, Szczecin, Poland
| | - Arto Mannermaa
- University of Eastern Finland, Translational Cancer Research Area, Kuopio, Finland
- University of Eastern Finland, Institute of Clinical Medicine, Pathology and Forensic Medicine, Kuopio, Finland
- Kuopio University Hospital, Biobank of Eastern Finland, Kuopio, Finland
| | - Siranoush Manoukian
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics, Department of Medical Oncology and Hematology, Milan, Italy
| | - Sara Margolin
- Södersjukhuset, Department of Oncology, Stockholm, Sweden
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | - Dimitrios Mavroudis
- University Hospital of Heraklion, Department of Medical Oncology, Heraklion, Greece
| | - William G Newman
- University of Manchester, Manchester Academic Health Science Centre, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
- St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Nadia Obi
- University Medical Center Hamburg-Eppendorf, Institute of Medical Biometry and Epidemiology, Hamburg, Germany
| | - Mihalis I Panayiotidis
- The Cyprus Institute of Neurology & Genetics, Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, Nicosia, Cyprus
| | - Muhammad U Rashid
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
- Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Department of Basic Sciences, Lahore, Pakistan
| | - Valerie Rhenius
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Matti A Rookus
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, the Netherlands
| | | | - Elinor J Sawyer
- King's College London, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, London, UK
| | - Rita K Schmutzler
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mitul Shah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Reijo Sironen
- University of Eastern Finland, Translational Cancer Research Area, Kuopio, Finland
- University of Eastern Finland, Institute of Clinical Medicine, Pathology and Forensic Medicine, Kuopio, Finland
- Kuopio University Hospital, Imaging Center, Department of Clinical Pathology, Kuopio, Finland
| | - Melissa C Southey
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, Victoria, Australia
- Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, Victoria, Australia
| | - Maija Suvanto
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Rob A E M Tollenaar
- Leiden University Medical Center, Department of Surgery, Leiden, the Netherlands
| | - Ian Tomlinson
- The University of Edinburgh, Cancer Research Centre, Edinburgh, UK
| | - Thérèse Truong
- INSERM, University Paris-Saclay, Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, Villejuif, France
| | - Lizet E van der Kolk
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Family Cancer Clinic, Amsterdam, the Netherlands
| | - Elke M van Veen
- University of Manchester, Manchester Academic Health Science Centre, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
- St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Barbara Wappenschmidt
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Manjeet K Bolla
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Joe Dennis
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Alison M Dunning
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Douglas F Easton
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Michael Lush
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Kyriaki Michailidou
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- The Cyprus Institute of Neurology & Genetics, Biostatistics Unit, Nicosia, Cyprus
| | - Paul D P Pharoah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Qin Wang
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Muriel A Adank
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Family Cancer Clinic, Amsterdam, the Netherlands
| | - Marjanka K Schmidt
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, the Netherlands
- The Netherlands Cancer Institute, Division of Molecular Pathology, Amsterdam, the Netherlands
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, Ontario, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, Ontario, Canada
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), Hamburg, Germany
| | - Heli Nevanlinna
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Queensland, Australia
| | - D Gareth Evans
- University of Manchester, Manchester Academic Health Science Centre, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
- St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Roger L Milne
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
- Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, Victoria, Australia
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Victoria, Australia
| | - Paolo Radice
- Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Experimental Oncology, Milan, Italy
| | - Paolo Peterlongo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Genome Diagnostics Program, Milan, Italy.
| |
Collapse
|
12
|
Rashid MU, Muhammad N, Shehzad U, Khan FA, Loya A, Hamann U. Prevalence of FANCM germline variants in BRCA1/2 negative breast and/or ovarian cancer patients from Pakistan. Fam Cancer 2023; 22:31-41. [PMID: 35802266 DOI: 10.1007/s10689-022-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/18/2022] [Indexed: 01/12/2023]
Abstract
The Fanconi anemia complementation group M (FANCM) gene is a potential candidate for breast/ovarian cancer susceptibility in European populations. Here, we examined the contribution of FANCM germline variants to hereditary breast and/or ovarian cancer in Pakistan. Comprehensive FANCM variant screening was performed in 201 BRCA1 and BRCA2 (BRCA1/2) negative Pakistani patients with and without triple-negative breast cancer (TNBC) and/or ovarian cancer, using denaturing high-performance liquid chromatography analysis (DHPLC) followed by DNA sequencing. Novel variants were tested for their potential effect on protein function using in silico tools. Reverse transcription (RT)-PCR analysis of RNA extracted from one deletion/insertion (delins) variant (p.K1780delinsNGIT) carrier and three non-carriers was performed to evaluate the impact of this variant on splicing. Furthermore, potentially functional variants were evaluated in 200 healthy female controls. A missense variant (p.V1857M) was identified in a 50-year-old TNBC patient with a family history of breast cancer. It was also identified in the index patient´s daughter, who was diagnosed with osteosarcoma at 15 years of age. Further, one delins variant (p.K1780delinsNGIT) was identified in a 45-year-old non-TNBC patient, but not detected in her brother, who was diagnosed with Hodgkin's lymphoma at 38 years of age. Based on in silico and RNA analyses, p.V1857M and p.K1780delinsNGIT were predicted as variants of uncertain significance (VUS), respectively. Both variants were absent in 200 healthy controls. Our findings suggest a marginal contribution of FANCM variants to hereditary breast/ovarian cancer in Pakistan, which need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan.
| | - Noor Muhammad
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan
| | - Umara Shehzad
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan
| | - Faiz Ali Khan
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Lim BWX, Li N, Mahale S, McInerny S, Zethoven M, Rowley SM, Huynh J, Wang T, Lee JEA, Friedman M, Devereux L, Scott RJ, Sloan EK, James PA, Campbell IG. Somatic inactivation of breast cancer predisposition genes in tumors associated with pathogenic germline variants. J Natl Cancer Inst 2022; 115:181-189. [PMID: 36315097 PMCID: PMC9905963 DOI: 10.1093/jnci/djac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Breast cancers (BCs) that arise in individuals heterozygous for a germline pathogenic variant in a susceptibility gene, such as BRCA1 and BRCA2, PALB2, and RAD51C, have been shown to exhibit biallelic loss in the respective genes and be associated with triple-negative breast cancer (TNBC) and distinctive somatic mutational signatures. Tumor sequencing thus presents an orthogonal approach to assess the role of candidate genes in BC development. METHODS Exome sequencing was performed on paired normal-breast tumor DNA from 124 carriers of germline loss-of-function (LoF) or missense variant carriers in 15 known and candidate BC predisposition genes identified in the BEACCON case-control study. Biallelic inactivation and association with tumor genome features including mutational signatures and homologous recombination deficiency (HRD) score were investigated. RESULTS BARD1-carrying TNBC (4 of 5) displayed biallelic loss and associated high HRD scores and mutational signature 3, as did a RAD51D-carrying TNBC and ovarian cancer. Biallelic loss was less frequent in BRIP1 BCs (4 of 13) and had low HRD scores. In contrast to other established BC genes, BCs from carriers of CHEK2 LoF (6 of 17) or missense (2 of 20) variant had low rates of biallelic loss. Exploratory analysis of BC from carriers of LoF variants in candidate genes such as BLM, FANCM, PARP2, and RAD50 found little evidence of biallelic inactivation. CONCLUSIONS BARD1 and RAD51D behave as classic BRCA-like predisposition genes with biallelic inactivation, but this was not observed for any of the candidate genes. However, as demonstrated for CHEK2, the absence of biallelic inactivation does not provide definitive evidence against the gene's involvement in BC predisposition.
Collapse
Affiliation(s)
| | - Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Sakshi Mahale
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Magnus Zethoven
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Joanne Huynh
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Theresa Wang
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Jue Er Amanda Lee
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia,Molecular Genomics Core, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Mia Friedman
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia,Lifepool, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Rodney J Scott
- Discipline of Medical Genetics and The Centre for Cancer Detection and Therapy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia,Division of Molecular Medicine, New South Wales Health Pathology North, Newcastle, New South Wales, Australia
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Ian G Campbell
- Correspondence to: Ian Campbell, PhD, Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia (e-mail: )
| |
Collapse
|
14
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
15
|
Peterlongo P, Figlioli G, Deans AJ, Couch FJ. Protein truncating variants in FANCM and risk for ER-negative/triple negative breast cancer. NPJ Breast Cancer 2021; 7:130. [PMID: 34584094 PMCID: PMC8478958 DOI: 10.1038/s41523-021-00338-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
FANCM protein truncating variants (PTVs) are emerging as risk factors for ER-negative and triple negative breast cancer. Here, we discuss evidence that greatest risk associates with PTVs, such as p.Arg658*, that extensively truncate the 2048 amino acid FANCM protein. Moreover, risks associated with other less-truncating FANCM PTVs such as p.Gln1701* and p.Gly1906Alafs12* may be amplified by additional gene variants acting as modifiers. Further studies need to be conducted taking into considerations these aspects.
Collapse
Affiliation(s)
- Paolo Peterlongo
- Genome Diagnostics Program, IFOM - The FIRC Institute for Molecular Oncology, Milan, Italy.
| | - Gisella Figlioli
- Genome Diagnostics Program, IFOM - The FIRC Institute for Molecular Oncology, Milan, Italy
| | - Andrew J Deans
- Genome Stability Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
| | - Fergus J Couch
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Oncology, Mayo Clinic, Rochester, USA
| |
Collapse
|
16
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2021; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
17
|
TUMOSPEC: A Nation-Wide Study of Hereditary Breast and Ovarian Cancer Families with a Predicted Pathogenic Variant Identified through Multigene Panel Testing. Cancers (Basel) 2021; 13:cancers13153659. [PMID: 34359559 PMCID: PMC8345200 DOI: 10.3390/cancers13153659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary TUMOSPEC was designed for estimating the risk of cancer for carriers of a predicted pathogenic variant (PPV) in a gene usually tested in a hereditary breast and ovarian cancer context. Index cases are enrolled consecutively among patients who undergo genetic testing as part of their care plan in France. First- and second-degree relatives and cousins of PPV carriers are invited to participate whether they are affected by cancer or not, and are tested for the familial PPV. Genetic, clinical, family and epidemiological data are centralized at the coordinating centre. The three-year feasibility study included 4431 prospective index cases, with 19.1% of them carrying a PPV. This showed that the study logistics are well adapted to clinical and laboratory constraints, and collaboration between partners (clinicians, biologists, coordinating centre and participants) is smooth. Hence, TUMOSPEC is being pursued, with the aim of optimizing clinical management guidelines specific to each gene. Abstract Assessment of age-dependent cancer risk for carriers of a predicted pathogenic variant (PPV) is often hampered by biases in data collection, with a frequent under-representation of cancer-free PPV carriers. TUMOSPEC was designed to estimate the cumulative risk of cancer for carriers of a PPV in a gene that is usually tested in a hereditary breast and ovarian cancer context. Index cases are enrolled consecutively among patients who undergo genetic testing as part of their care plan in France. First- and second-degree relatives and cousins of PPV carriers are invited to participate whether they are affected by cancer or not, and genotyped for the familial PPV. Clinical, family and epidemiological data are collected, and all data including sequencing data are centralized at the coordinating centre. The three-year feasibility study included 4431 prospective index cases, with 19.1% of them carrying a PPV. When invited by the coordinating centre, 65.3% of the relatives of index cases (5.7 relatives per family, on average) accepted the invitation to participate. The study logistics were well adapted to clinical and laboratory constraints, and collaboration between partners (clinicians, biologists, coordinating centre and participants) was smooth. Hence, TUMOSPEC is being pursued, with the aim of optimizing clinical management guidelines specific to each gene.
Collapse
|
18
|
Sequencing for germline mutations in Swedish breast cancer families reveals novel breast cancer risk genes. Sci Rep 2021; 11:14737. [PMID: 34282249 PMCID: PMC8289997 DOI: 10.1038/s41598-021-94316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/23/2021] [Indexed: 12/09/2022] Open
Abstract
Identifying genetic cancer risk factors will lead to improved genetic counseling, cancer prevention and cancer care. Analyzing families with a strong history of breast cancer (BC) has been a successful method to identify genes that contribute to the disease. This has led to discoveries of high-risk genes like the BRCA-genes. Nevertheless, many BC incidences are of unknown causes. In this study, exome sequencing on 59 BC patients from 24 Swedish families with a strong history of BC was performed to identify variants in known and novel BC predisposing genes. First, we screened known BC genes and identified two pathogenic variants in the BRIP1 and PALB2 genes. Secondly, to identify novel BC genes, rare and high impact variants and segregating in families were analyzed to identify 544 variants in novel BC candidate genes. Of those, 22 variants were defined as high-risk variants. Several interesting genes, either previously linked with BC or in pathways that when flawed could contribute to BC, were among the detected genes. The strongest candidates identified are the FANCM gene, involved in DNA double-strand break repair, and the RAD54L gene, involved in DNA recombination. Our study shows identifying pathogenic variants is challenging despite a strong family history of BC. Several interesting candidates were observed here that need to be further studied.
Collapse
|
19
|
Kar SP, Considine DP, Tyrer JP, Plummer JT, Chen S, Dezem FS, Barbeira AN, Rajagopal PS, Rosenow WT, Moreno F, Bodelon C, Chang-Claude J, Chenevix-Trench G, deFazio A, Dörk T, Ekici AB, Ewing A, Fountzilas G, Goode EL, Hartman M, Heitz F, Hillemanns P, Høgdall E, Høgdall CK, Huzarski T, Jensen A, Karlan BY, Khusnutdinova E, Kiemeney LA, Kjaer SK, Klapdor R, Köbel M, Li J, Liebrich C, May T, Olsson H, Permuth JB, Peterlongo P, Radice P, Ramus SJ, Riggan MJ, Risch HA, Saloustros E, Simard J, Szafron LM, Titus L, Thompson CL, Vierkant RA, Winham SJ, Zheng W, Doherty JA, Berchuck A, Lawrenson K, Im HK, Manichaikul AW, Pharoah PD, Gayther SA, Schildkraut JM. Pleiotropy-guided transcriptome imputation from normal and tumor tissues identifies candidate susceptibility genes for breast and ovarian cancer. HGG ADVANCES 2021; 2:100042. [PMID: 34317694 PMCID: PMC8312632 DOI: 10.1016/j.xhgg.2021.100042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Familial, sequencing, and genome-wide association studies (GWASs) and genetic correlation analyses have progressively unraveled the shared or pleiotropic germline genetics of breast and ovarian cancer. In this study, we aimed to leverage this shared germline genetics to improve the power of transcriptome-wide association studies (TWASs) to identify candidate breast cancer and ovarian cancer susceptibility genes. We built gene expression prediction models using the PrediXcan method in 681 breast and 295 ovarian tumors from The Cancer Genome Atlas and 211 breast and 99 ovarian normal tissue samples from the Genotype-Tissue Expression project and integrated these with GWAS meta-analysis data from the Breast Cancer Association Consortium (122,977 cases/105,974 controls) and the Ovarian Cancer Association Consortium (22,406 cases/40,941 controls). The integration was achieved through application of a pleiotropy-guided conditional/conjunction false discovery rate (FDR) approach in the setting of a TWASs. This identified 14 candidate breast cancer susceptibility genes spanning 11 genomic regions and 8 candidate ovarian cancer susceptibility genes spanning 5 genomic regions at conjunction FDR < 0.05 that were >1 Mb away from known breast and/or ovarian cancer susceptibility loci. We also identified 38 candidate breast cancer susceptibility genes and 17 candidate ovarian cancer susceptibility genes at conjunction FDR < 0.05 at known breast and/or ovarian susceptibility loci. The 22 genes identified by our cross-cancer analysis represent promising candidates that further elucidate the role of the transcriptome in mediating germline breast and ovarian cancer risk.
Collapse
Affiliation(s)
- Siddhartha P. Kar
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Daniel P.C. Considine
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P. Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jasmine T. Plummer
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Stephanie Chen
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Felipe S. Dezem
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Alvaro N. Barbeira
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Padma S. Rajagopal
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Will T. Rosenow
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Fernando Moreno
- Department of Oncology, Hospital Clínico San Carlos, Madrid, Spain
| | - Clara Bodelon
- Divison of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Anna deFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Erlangen, Germany
- Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Ailith Ewing
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/Evang., Essen, Germany
- Department of Gynecology, Center for Oncologic Surgery, Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Peter Hillemanns
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Estrid Høgdall
- Department of Virus, Lifestyle, and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus K. Høgdall
- The Juliane Marie Centre, Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Department of Genetics and Pathology, University of Zielona Góra, Zielona Góra, Poland
| | - Allan Jensen
- Department of Lifestyle, Reproduction, and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Lambertus A. Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne K. Kjaer
- Department of Virus, Lifestyle, and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rüdiger Klapdor
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Jingmei Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Genome Institute of Singapore, Human Genetics, Singapore, Singapore
| | - Clemens Liebrich
- Department of Obstetrics and Gynecology, Klinikum Wolfsburg, Wolfsburg, Germany
| | - Taymaa May
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | - Håkan Olsson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jennifer B. Permuth
- Departments of Cancer Epidemiology and Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Susan J. Ramus
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Marjorie J. Riggan
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | | | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Lukasz M. Szafron
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Linda Titus
- Muskie School of Public Service, University of Southern Maine, Portland, ME, USA
| | - Cheryl L. Thompson
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Stacey J. Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer A. Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Kate Lawrenson
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Ani W. Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
20
|
Investigation of monogenic causes of familial breast cancer: data from the BEACCON case-control study. NPJ Breast Cancer 2021; 7:76. [PMID: 34117267 PMCID: PMC8196173 DOI: 10.1038/s41523-021-00279-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
Breast cancer (BC) has a significant heritable component but the genetic contribution remains unresolved in the majority of high-risk BC families. This study aims to investigate the monogenic causes underlying the familial aggregation of BC beyond BRCA1 and BRCA2, including the identification of new predisposing genes. A total of 11,511 non-BRCA familial BC cases and population-matched cancer-free female controls in the BEACCON study were investigated in two sequencing phases: 1303 candidate genes in up to 3892 cases and controls, followed by validation of 145 shortlisted genes in an additional 7619 subjects. The coding regions and exon–intron boundaries of all candidate genes and 14 previously proposed BC genes were sequenced using custom designed sequencing panels. Pedigree and pathology data were analysed to identify genotype-specific associations. The contribution of ATM, PALB2 and CHEK2 to BC predisposition was confirmed, but not RAD50 and NBN. An overall excess of loss-of-function (LoF) (OR 1.27, p = 9.05 × 10−9) and missense (OR 1.27, p = 3.96 × 10−73) variants was observed in the cases for the 145 candidate genes. Leading candidates harbored LoF variants with observed ORs of 2–4 and individually accounted for no more than 0.79% of the cases. New genes proposed by this study include NTHL1, WRN, PARP2, CTH and CDK9. The new candidate BC predisposition genes identified in BEACCON indicate that much of the remaining genetic causes of high-risk BC families are due to genes in which pathogenic variants are both very rare and convey only low to moderate risk.
Collapse
|
21
|
Sharp MF, Bythell-Douglas R, Deans AJ, Crismani W. The Fanconi anemia ubiquitin E3 ligase complex as an anti-cancer target. Mol Cell 2021; 81:2278-2289. [PMID: 33984284 DOI: 10.1016/j.molcel.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Agents that induce DNA damage can cure some cancers. However, the side effects of chemotherapy are severe because of the indiscriminate action of DNA-damaging agents on both healthy and cancerous cells. DNA repair pathway inhibition provides a less toxic and targeted alternative to chemotherapy. A compelling DNA repair target is the Fanconi anemia (FA) E3 ligase core complex due to its critical-and likely singular-role in the efficient removal of specific DNA lesions. FA pathway inactivation has been demonstrated to specifically kill some types of cancer cells without the addition of exogenous DNA damage, including cells that lack BRCA1, BRCA2, ATM, or functionally related genes. In this perspective, we discuss the genetic and biochemical evidence in support of the FA core complex as a compelling drug target for cancer therapy. In particular, we discuss the genetic, biochemical, and structural data that could rapidly advance our capacity to identify and implement the use of FA core complex inhibitors in the clinic.
Collapse
Affiliation(s)
- Michael F Sharp
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
22
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
23
|
Panday A, Willis NA, Elango R, Menghi F, Duffey EE, Liu ET, Scully R. FANCM regulates repair pathway choice at stalled replication forks. Mol Cell 2021; 81:2428-2444.e6. [PMID: 33882298 DOI: 10.1016/j.molcel.2021.03.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 01/19/2023]
Abstract
Repair pathway "choice" at stalled mammalian replication forks is an important determinant of genome stability; however, the underlying mechanisms are poorly understood. FANCM encodes a multi-domain scaffolding and motor protein that interacts with several distinct repair protein complexes at stalled forks. Here, we use defined mutations engineered within endogenous Fancm in mouse embryonic stem cells to study how Fancm regulates stalled fork repair. We find that distinct FANCM repair functions are enacted by molecularly separable scaffolding domains. These findings define FANCM as a key mediator of repair pathway choice at stalled replication forks and reveal its molecular mechanism. Notably, mutations that inactivate FANCM ATPase function disable all its repair functions and "trap" FANCM at stalled forks. We find that Brca1 hypomorphic mutants are synthetic lethal with Fancm null or Fancm ATPase-defective mutants. The ATPase function of FANCM may therefore represent a promising "druggable" target for therapy of BRCA1-linked cancer.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Erin E Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
24
|
De Angelis C, Nardelli C, Concolino P, Pagliuca M, Setaro M, De Paolis E, De Placido P, Forestieri V, Scaglione GL, Ranieri A, Lombardo B, Pastore L, De Placido S, Capoluongo E. Case Report: Detection of a Novel Germline PALB2 Deletion in a Young Woman With Hereditary Breast Cancer: When the Patient's Phenotype History Doesn't Lie. Front Oncol 2021; 11:602523. [PMID: 33718150 PMCID: PMC7943848 DOI: 10.3389/fonc.2021.602523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
The partner and localizer of BRCA2 (PALB2) is a major BRCA2 binding partner that participates in homologous recombination repair in response to DNA double-strand breaks. Germline alterations of the PALB2 gene have recently been associated with a high risk of developing breast cancer. We investigated a 37-year-old Caucasian woman with breast cancer and family history of breast cancer using targeted next generation sequencing. A novel heterozygous deletion involving exons 5 and 6 was found in the PALB2 gene, and resulted in the production of a truncated PALB2 protein. These findings expand the mutational spectra of PALB2-associated breast cancer, and may improve the mutation-based screening and genetic diagnosis of breast cancer.
Collapse
Affiliation(s)
- Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carmela Nardelli
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Paola Concolino
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Martina Pagliuca
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Elisa De Paolis
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Valeria Forestieri
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Annalisa Ranieri
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Lucio Pastore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ettore Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
25
|
Chan SH, Ni Y, Li ST, Teo JX, Ishak NDB, Lim WK, Ngeow J. Spectrum of Germline Mutations Within Fanconi Anemia–Associated Genes Across Populations of Varying Ancestry. JNCI Cancer Spectr 2021; 5:6146409. [DOI: 10.1093/jncics/pkaa117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Fanconi anemia (FA) is a rare genetic disorder associated with hematological disorders and solid tumor predisposition. Owing to phenotypic heterogeneity, some patients remain undetected until adulthood, usually following cancer diagnoses. The uneven prevalence of FA cases with different underlying FA gene mutations worldwide suggests variable genetic distribution across populations. Here, we aim to assess the genetic spectrum of FA-associated genes across populations of varying ancestries and explore potential genotype–phenotype associations in cancer.
Methods
Carrier frequency and variant spectrum of potentially pathogenic germline variants in 17 FA genes (excluding BRCA1/FANCS, BRCA2/FANCD1, BRIP1/FANCJ, PALB2/FANCN, RAD51C/FANCO) were evaluated in 3523 Singaporeans and 7 populations encompassing Asian, European, African, and admixed ancestries from the Genome Aggregation Database. Germline and somatic variants of 17 FA genes in 7 cancer cohorts from The Cancer Genome Atlas were assessed to explore genotype–phenotype associations.
Results
Germline variants in FANCA were consistently more frequent in all populations. Similar trends in carrier frequency and variant spectrum were detected in Singaporeans and East Asians, both distinct from other ancestry groups, particularly in the lack of recurrent variants. Our exploration of The Cancer Genome Atlas dataset suggested higher germline and somatic mutation burden between FANCA and FANCC with head and neck and lung squamous cell carcinomas as well as FANCI and SLX4/FANCP with uterine cancer, but the analysis was insufficiently powered to detect any statistical significance.
Conclusion
Our findings highlight the diverse genetic spectrum of FA-associated genes across populations of varying ancestries, emphasizing the need to include all known FA-related genes for accurate molecular diagnosis of FA.
Collapse
Affiliation(s)
- Sock Hoai Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Ying Ni
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shao-Tzu Li
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Nur Diana Binte Ishak
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
26
|
Nguyen-Dumont T, MacInnis RJ, Steen JA, Theys D, Tsimiklis H, Hammet F, Mahmoodi M, Pope BJ, Park DJ, Mahmood K, Severi G, Bolton D, Milne RL, Giles GG, Southey MC. Rare germline genetic variants and risk of aggressive prostate cancer. Int J Cancer 2020; 147:2142-2149. [PMID: 32338768 DOI: 10.1002/ijc.33024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 01/02/2023]
Abstract
Few genetic risk factors have been demonstrated to be specifically associated with aggressive prostate cancer (PrCa). Here, we report a case-case study of PrCa comparing the prevalence of germline pathogenic/likely pathogenic (P/LP) genetic variants in 787 men with aggressive disease and 769 with nonaggressive disease. Overall, we observed P/LP variants in 11.4% of men with aggressive PrCa and 9.8% of men with nonaggressive PrCa (two-tailed Fisher's exact tests, P = .28). The proportion of BRCA2 and ATM P/LP variant carriers in men with aggressive PrCa exceeded that observed in men with nonaggressive PrCa; 18/787 carriers (2.3%) and 4/769 carriers (0.5%), P = .004, and 14/787 carriers (0.02%) and 5/769 carriers (0.01%), P = .06, respectively. Our findings contribute to the extensive international effort to interpret the genetic variation identified in genes included on gene-panel tests, for which there is currently an insufficient evidence-base for clinical translation in the context of PrCa risk.
Collapse
Affiliation(s)
- Tú Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason A Steen
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Derrick Theys
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Helen Tsimiklis
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Fleur Hammet
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Maryam Mahmoodi
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bernard J Pope
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,The University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, Victoria, Australia.,Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel J Park
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gianluca Severi
- CESP Inserm U1018, Faculté de Médecine - Université Paris-Sud, Faculté de Médecine - UVSQ, Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Damien Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,The University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients. Cancers (Basel) 2020; 12:cancers12040829. [PMID: 32235514 PMCID: PMC7226125 DOI: 10.3390/cancers12040829] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) is caused by biallelic mutations in FA genes. Monoallelic mutations in five of these genes (BRCA1, BRCA2, PALB2, BRIP1 and RAD51C) increase the susceptibility to breast/ovarian cancer and are used in clinical diagnostics as bona-fide hereditary cancer genes. Increasing evidence suggests that monoallelic mutations in other FA genes could predispose to tumor development, especially breast cancer. The objective of this study is to assess the mutational spectrum of 14 additional FA genes (FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FANCP, FANCQ, FANCR and FANCU) in a cohort of hereditary cancer patients, to compare with local cancer-free controls as well as GnomAD. A total of 1021 hereditary cancer patients and 194 controls were analyzed using our next generation custom sequencing panel. We identified 35 pathogenic variants in eight genes. A significant association with the risk of breast cancer/breast and ovarian cancer was found for carriers of FANCA mutations (odds ratio (OR) = 3.14 95% confidence interval (CI) 1.4–6.17, p = 0.003). Two patients with early-onset cancer showed a pathogenic FA variant in addition to another germline mutation, suggesting a modifier role for FA variants. Our results encourage a comprehensive analysis of FA genes in larger studies to better assess their role in cancer risk.
Collapse
|
28
|
Figlioli G, Kvist A, Tham E, Soukupova J, Kleiblova P, Muranen TA, Andrieu N, Azzollini J, Balmaña J, Barroso A, Benítez J, Bertelsen B, Blanco A, Bonanni B, Borg Å, Brunet J, Calistri D, Calvello M, Chvojka S, Cortesi L, Darder E, Del Valle J, Diez O, Consortium ENIGMA, Eon-Marchais S, Fostira F, Gensini F, Houdayer C, Janatova M, Kiiski JI, Konstantopoulou I, Kubelka-Sabit K, Lázaro C, Lesueur F, Manoukian S, Marcinkute R, Mickys U, Moncoutier V, Myszka A, Nguyen-Dumont T, Nielsen FC, Norvilas R, Olah E, Osorio A, Papi L, Peissel B, Peixoto A, Plaseska-Karanfilska D, Pócza T, Rossing M, Rudaitis V, Santamariña M, Santos C, Smichkoska S, Southey MC, Stoppa-Lyonnet D, Teixeira M, Törngren T, Toss A, Urioste M, Vega A, Vlckova Z, Yannoukakos D, Zampiga V, Kleibl Z, Radice P, Nevanlinna H, Ehrencrona H, Janavicius R, Peterlongo P. The Spectrum of FANCM Protein Truncating Variants in European Breast Cancer Cases. Cancers (Basel) 2020; 12:cancers12020292. [PMID: 31991861 PMCID: PMC7073216 DOI: 10.3390/cancers12020292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 01/17/2023] Open
Abstract
Germline protein truncating variants (PTVs) in the FANCM gene have been associated with a 2–4-fold increased breast cancer risk in case-control studies conducted in different European populations. However, the distribution and the frequency of FANCM PTVs in Europe have never been investigated. In the present study, we collected the data of 114 European female breast cancer cases with FANCM PTVs ascertained in 20 centers from 13 European countries. We identified 27 different FANCM PTVs. The p.Gln1701* PTV is the most common PTV in Northern Europe with a maximum frequency in Finland and a lower relative frequency in Southern Europe. On the contrary, p.Arg1931* seems to be the most common PTV in Southern Europe. We also showed that p.Arg658*, the third most common PTV, is more frequent in Central Europe, and p.Gln498Thrfs*7 is probably a founder variant from Lithuania. Of the 23 rare or unique FANCM PTVs, 15 have not been previously reported. We provide here the initial spectrum of FANCM PTVs in European breast cancer cases.
Collapse
Affiliation(s)
- Gisella Figlioli
- Genome Diagnostics Program, IFOM - the FIRC Institute for Molecular Oncology, Milan 20139, Italy
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund SE-22381, Sweden
| | - Emma Tham
- Department of Clinical Genetics, Karolinska University Hospital and Department of Molecular Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 12853, Czech Republic
| | - Petra Kleiblova
- Institute of Biology and Medical Genetics, General University Hospital and First Faculty of Medicine, Charles University, Prague 12800, Czech Republic
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, HUS, Helsinki 00029, Finland
| | - Nadine Andrieu
- Inserm, U900, Institut Curie, PSL University, Paris F-75005, France
- Mines ParisTech, Fontainebleau F-77300, France
| | - Jacopo Azzollini
- Department of Medical Oncology and Hematology, Unit of Medical Genetics Fondazione, IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Judith Balmaña
- Hereditary Cancer Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
- Department of Medical Oncology, University Hospital Vall d´Hebron, Barcelona 08035, Spain
| | - Alicia Barroso
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| | - Javier Benítez
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
- Spanish Network on Rare Diseases (CIBERER), Madrid 28029, Spain
- Genotyping Unit, CEGEN, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | - Ana Blanco
- Fundación Pública Galega Medicina Xenómica-SERGAS, Santiago de Compostela 15706, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund SE-22381, Sweden
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, ONCOBELL-IDIBELL-IDIBGI-IGTP, CIBERONC, Barcelona 08908, Spain
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Stepan Chvojka
- Centre for Medical Genetics and Reproductive Medicine, Gennet, Prague 17000, Czech Republic
| | | | - Esther Darder
- Hereditary Cancer Program, Catalan Institute of Oncology, ONCOBELL-IDIBELL-IDIBGI-IGTP, CIBERONC, Barcelona 08908, Spain
| | - Jesús Del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, ONCOBELL-IDIBELL-IDIBGI-IGTP, CIBERONC, Barcelona 08908, Spain
| | - Orland Diez
- Hereditary Cancer Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
- Àrea of Molecular and Clinical Genetics, University Hospital Vall d´Hebron, Barcelona 08035, Spain
| | | | - Séverine Eon-Marchais
- Inserm, U900, Institut Curie, PSL University, Paris F-75005, France
- Mines ParisTech, Fontainebleau F-77300, France
| | - Florentia Fostira
- InRASTES, Molecular Diagnostics Laboratory, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | | | - Francesca Gensini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Claude Houdayer
- Genetics Department, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 12853, Czech Republic
| | - Johanna I Kiiski
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, HUS, Helsinki 00029, Finland
| | - Irene Konstantopoulou
- InRASTES, Molecular Diagnostics Laboratory, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital Acibadem Sistina, Skopje 1000, Republic of North Macedonia
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, ONCOBELL-IDIBELL-IDIBGI-IGTP, CIBERONC, Barcelona 08908, Spain
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Paris F-75005, France
- Mines ParisTech, Fontainebleau F-77300, France
| | - Siranoush Manoukian
- Department of Medical Oncology and Hematology, Unit of Medical Genetics Fondazione, IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Ruta Marcinkute
- Hereditary Cancer Center, Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius 08410, Lithuania
| | - Ugnius Mickys
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius 08410, Lithuania
| | - Virginie Moncoutier
- Service de Génétique, Institut Curie, Inserm, U830, Paris Descartes University, Paris F-75005, France
| | - SWE-BRCA Group
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund SE-22100, Sweden
| | - Aleksander Myszka
- Institute of Medical Sciences, University of Rzeszow, Rzeszow 35-310, Poland
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne 3010, Australia
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | - Rimvydas Norvilas
- Hereditary Cancer Center, Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius 08410, Lithuania
- Department of experimental, preventive and clinical medicine, State Research Institute Centre for Innovative Medicine, Vilnius 08410, Lithuania
| | - Edith Olah
- Department of Molecular Genetics, National Institute of Oncology, Budapest 1122, Hungary
| | - Ana Osorio
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
- Spanish Network on Rare Diseases (CIBERER), Madrid 28029, Spain
| | - Laura Papi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Bernard Peissel
- Department of Medical Oncology and Hematology, Unit of Medical Genetics Fondazione, IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Macedonian Academy of Sciences and Arts, Skopje 1000, Republic of North Macedonia
| | - Timea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest 1122, Hungary
| | - Maria Rossing
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | - Vilius Rudaitis
- Department of Gynaecology, Center of Obsterics and Gynaecology, Vilnius University Hospital Santaros Klinikos, Vilnius 08410, Lithuania
| | - Marta Santamariña
- Fundación Pública Galega Medicina Xenómica-SERGAS, Santiago de Compostela 15706, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Catarina Santos
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal
| | - Snezhana Smichkoska
- Medical Faculty, University Clinic of Radiotherapy and Oncology, Ss. Cyril and Methodius University in Skopje, Skopje 1000, Republic of North Macedonia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne 3010, Australia
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Inserm, U830, Paris Descartes University, Paris F-75005, France
| | - Manuel Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal
- Biomedical Sciences Institute, University of Porto, Porto 4050-313, Portugal
| | - Therese Törngren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund SE-22381, Sweden
| | - Angela Toss
- University Modena Hospital, Modena 41124, Italy
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica-SERGAS, Santiago de Compostela 15706, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Zdenka Vlckova
- Department of Medical Genetics, GHC Genetics, Prague 11000, Czech Republic
| | - Drakoulis Yannoukakos
- InRASTES, Molecular Diagnostics Laboratory, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Valentina Zampiga
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 12853, Czech Republic
| | - Paolo Radice
- Department of Research, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, HUS, Helsinki 00029, Finland
| | - Hans Ehrencrona
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund SE-22100, Sweden
- Office for Medical Services, Region Skåne, Department of Clinical Genetics and Pathology, Laboratory Medicine, Lund SE-22100, Sweden
| | - Ramunas Janavicius
- Hereditary Cancer Center, Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius 08410, Lithuania
- Department of experimental, preventive and clinical medicine, State Research Institute Centre for Innovative Medicine, Vilnius 08410, Lithuania
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute for Molecular Oncology, Milan 20139, Italy
- Correspondence: ; Tel.: +39-02-57430-3867
| |
Collapse
|
29
|
Ryland GL, Fox LC, Wootton V, Thompson ER, Lickiss J, Trainer AH, Barbaro P, Whyte M, Ritchie D, Blombery P. Severe chemotherapy toxicity in a 10-year-old with T-acute lymphoblastic lymphoma harboring biallelic FANCM variants. Leuk Lymphoma 2020; 61:1257-1259. [PMID: 31942822 DOI: 10.1080/10428194.2019.1711075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Georgina L Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lucy C Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Epworth Healthcare, Melbourne, Australia.,Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | | | - Ella R Thompson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Jennifer Lickiss
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alison H Trainer
- Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Morag Whyte
- Queensland Children's Hospital, Brisbane, Australia
| | - David Ritchie
- Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia.,Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|