1
|
Yuan J, Yang L, Li Z, Zhang H, Wang Q, Wang B, Chinnathambi A, Govindasamy C, Basappa S, Nagaraja O, Madegowda M, Beeraka NM, Nikolenko VN, Wang M, Wang G, Rangappa KS, Basappa B. Pyrimidine-triazole-tethered tert-butyl-piperazine-carboxylate suppresses breast cancer by targeting estrogen receptor signaling and β-catenin activation. IUBMB Life 2024; 76:1309-1324. [PMID: 39275910 DOI: 10.1002/iub.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/16/2024]
Abstract
Several chemotherapeutics against breast cancer are constrained by their adverse effects and chemoresistance. The development of novel chemotherapeutics to target metastatic breast cancer can bring effective clinical outcomes. Many breast cancer patients present with tumors that are positive for estrogen receptors (ERs), highlighting the importance of targeting the ER pathway in this particular subtype. Although selective estrogen receptor modulators (SERMs) are commonly used, their side effects and resistance issues necessitate the development of new ER-targeting agents. In this study, we report that a newly synthesized compound, TTP-5, a hybrid of pyrimidine, triazole, and tert-butyl-piperazine-carboxylate, effectively binds to estrogen receptor alpha (ERα) and suppresses breast cancer cell growth. We assessed the impact of TTP-5 on cell proliferation using MTT and colony formation assays and evaluated its effect on cell motility through wound healing and invasion assays. We further explored the mechanism of action of this novel compound by detecting protein expression changes using Western blotting. Molecular docking was used to confirm the interaction of TTP-5 with ERα. The results indicated that TTP-5 significantly reduced the proliferation of MCF-7 cells by blocking the ERα signaling pathway. Conversely, although it did not influence the growth of MDA-MB-231 cells, TTP-5 hindered their motility by modulating the expression of proteins associated with epithelial-mesenchymal transition (EMT), possibly via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi Li
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bei Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Medchal, India
| | | | | | - Narasimha M Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, India
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | | | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| |
Collapse
|
2
|
Liu X, Matsuyama Y, Sugiyama M, Suyama K, Nose T, Shimohigashi M, Shimohigashi Y. The N-terminal activation function AF-1 domain of ERα interacts directly with the C-terminal AF-2-holding ligand-binding domain to recruit the coactivator proteins. PLoS One 2024; 19:e0312276. [PMID: 39432505 PMCID: PMC11493271 DOI: 10.1371/journal.pone.0312276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Cryoelectron microscopy (cryo-EM) clarified the quaternary structure of the DNA complex of coactivator-bound estrogen receptor alpha (ERα), revealing the adjacency of the N-terminal domain (NTD) and C-terminal ligand-binding domain (LBD). ERα-NTD and LBD constitute activation function 1 (AF-1) and activation function 2 (AF-2), respectively. These domains are essential for transcription activation. Their spatial proximity was judged to be essential for ERα to recruit the SRC coactivator proteins. In the present study, we first evaluated untethered free ERα-NTD(AF-1) [residues 1-180] and its-truncated desNTD(AF-1)-ERα [residues 181-595] in a luciferase reporter gene assay. ERα-NTD(AF-1) was completely inactive, whereas desNTD(AF-1)-ERα exhibited 66% activity of wild-type ERα. Surprisingly, ERα-NTD(AF-1) was found to inhibit desNTD(AF-1)-ERα markedly. Therefore, assuming that ERα-NTD(AF-1) must also inhibit wild-type full-length ERα, we co-expressed ERα-NTD(AF-1) and full-length ERα. As expected, ERα-NTD(AF-1) inhibited ERα in a dose-dependent manner, but non-competitively for 17β-estradiol. When their intracellular transport was examined immunocytochemically, ERα-NTD(AF-1) showed a distinct translocation from the cytoplasm to the nucleus, despite being expressed solely in the cytoplasm without full-length ERα. This nuclear translocation was attributable to a direct interaction between ERα-NTD(AF-1) and full-length ERα consisting of the nuclear localization signal. The present results demonstrated that, in full-length ERα, the N-terminally tethered NTD(AF-1) domain collaborates with the C-terminal LBD(AF-2) for coactivator recruitment.
Collapse
Affiliation(s)
- Xiaohui Liu
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Yutaka Matsuyama
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Makiko Sugiyama
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Keitaro Suyama
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Takeru Nose
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Miki Shimohigashi
- Division of Biology, Department of Earth System of Science, Faculty of Science, Fukuoka University, Fukuoka, Japan
- Risk Science Research Institute, Fukuoka, Japan
| | - Yasuyuki Shimohigashi
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- Risk Science Research Institute, Fukuoka, Japan
| |
Collapse
|
3
|
Han K, Suh JS, Choi G, Jang YK, Ahn S, Lee Y, Kim TJ. Novel FRET-Based Biosensors for Real-Time Monitoring of Estrogen Receptor Dimerization and Translocation Dynamics in Living Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406907. [PMID: 39418112 DOI: 10.1002/advs.202406907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Estrogen receptors (ERs), comprising ER α and ER β, are crucial for regulating cell growth and differentiation via homo- and hetero-dimer formation. However, accurately detecting ER dimerization with precise spatiotemporal resolution remains a significant challenge. In this study, fluorescence resonance energy transfer-based biosensors to monitor ER dynamics in real-time, are developed and optimized. This approach involves comprehensive structural analysis, linker comparison, and the selection of optimal fluorescent protein pairs, resulting in three distinct biosensors capable of detecting all ER homo- and hetero-dimerizations within the nucleus. These biosensors are utilized to reveal interactions between ER α/β and calmodulin during dimer formation. Furthermore, by leveraging the ligand-binding domain (LBD) of ER β, ER ββ LBD biosensor is designed for real-time analysis of ER ββ homodimerization in the cytoplasm, enhancing the ability to screen ER dimerization-related drugs. Additionally, we developed a novel ER ββ translocation biosensor, which enables real-time observation of ER ββ translocation to the nucleus-a capability previously unavailable, is developed. This spatiotemporal analysis demonstrates the relevance of ER translocation in response to drug binding efficacy and extracellular matrix changes. Our biosensors offertransformative tools for studying ER dynamics, providing valuable insights for drug screening and the investigation of ER-related cellular processes.
Collapse
Affiliation(s)
- Kiseok Han
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Yoon-Kwan Jang
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Sanghyun Ahn
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Yerim Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
4
|
Singla P, Broughton T, Sullivan MV, Garg S, Berlinguer‐Palmini R, Gupta P, Smith KJ, Gardner B, Canfarotta F, Turner NW, Velliou E, Amarnath S, Peeters M. Double Imprinted Nanoparticles for Sequential Membrane-to-Nuclear Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309976. [PMID: 38973256 PMCID: PMC11423068 DOI: 10.1002/advs.202309976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Efficient and site-specific delivery of therapeutics drugs remains a critical challenge in cancer treatment. Traditional drug nanocarriers such as antibody-drug conjugates are not generally accessible due to their high cost and can lead to serious side effects including life-threatening allergic reactions. Here, these problems are overcome via the engineering of supramolecular agents that are manufactured with an innovative double imprinting approach. The developed molecularly imprinted nanoparticles (nanoMIPs) are targeted toward a linear epitope of estrogen receptor alfa (ERα) and loaded with the chemotherapeutic drug doxorubicin. These nanoMIPs are cost-effective and rival the affinity of commercial antibodies for ERα. Upon specific binding of the materials to ERα, which is overexpressed in most breast cancers (BCs), nuclear drug delivery is achieved via receptor-mediated endocytosis. Consequentially, significantly enhanced cytotoxicity is elicited in BC cell lines overexpressing ERα, paving the way for precision treatment of BC. Proof-of-concept for the clinical use of the nanoMIPs is provided by evaluating their drug efficacy in sophisticated three-dimensional (3D) cancer models, which capture the complexity of the tumor microenvironment in vivo without requiring animal models. Thus, these findings highlight the potential of nanoMIPs as a promising class of novel drug compounds for use in cancer treatment.
Collapse
Affiliation(s)
- Pankaj Singla
- Department of Chemical EngineeringThe University of ManchesterEngineering building A, East Booth Street, Oxford RoadManchesterM13 9PLUK
- School of EngineeringNewcastle UniversityMerz Court, Claremont RoadNewcastle Upon TyneNE1 7RUUK
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Thomas Broughton
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- NIHR, Biomedical Research CentreNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Mark V. Sullivan
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldS3 7HFUK
| | - Saweta Garg
- Department of Chemical EngineeringThe University of ManchesterEngineering building A, East Booth Street, Oxford RoadManchesterM13 9PLUK
- School of EngineeringNewcastle UniversityMerz Court, Claremont RoadNewcastle Upon TyneNE1 7RUUK
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Rolando Berlinguer‐Palmini
- The Bio‐Imaging Unit, Medical SchoolNewcastle UniversityWilliam Leech BuildingNewcastle Upon TyneNE2 4HHUK
| | - Priyanka Gupta
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional ScienceUniversity College LondonLondonW1W 7TYUK
| | - Katie J Smith
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Ben Gardner
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | | | - Nicholas W. Turner
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldS3 7HFUK
| | - Eirini Velliou
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional ScienceUniversity College LondonLondonW1W 7TYUK
| | - Shoba Amarnath
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- NIHR, Biomedical Research CentreNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Marloes Peeters
- Department of Chemical EngineeringThe University of ManchesterEngineering building A, East Booth Street, Oxford RoadManchesterM13 9PLUK
- School of EngineeringNewcastle UniversityMerz Court, Claremont RoadNewcastle Upon TyneNE1 7RUUK
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| |
Collapse
|
5
|
Sun S, Chen S, Wang N, Hong Z, Sun Y, Xu Y, Chi J, Wang X, Li L. DNA methylation profiling deciphers three EMT subtypes with distinct prognoses and therapeutic vulnerabilities in breast cancer. J Cancer 2024; 15:4922-4938. [PMID: 39132156 PMCID: PMC11310866 DOI: 10.7150/jca.96096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/30/2024] [Indexed: 08/13/2024] Open
Abstract
Background: Epithelial-mesenchymal transition (EMT), deemed a pivotal hallmark of tumours, is intricately regulated by DNA methylation and encompasses multiple states along tumour progression. The potential mechanisms that drive the intrinsic heterogeneity of breast cancer (BC) via EMT transformation have not been identified, presenting a significant obstacle in clinical diagnosis and treatment. Methods: A total of 7,602 patients have been included in this study. We leveraged integrated multiomics data (epigenomic, genomic, and transcriptomic data) to delineate the comprehensive landscape of EMT in BC. Subsequently, a subtyping classifier was developed through a machine learning framework proposed by us. Results: We classified the BC samples into three methylation-driven EMT subtypes with distinct features, namely, C1 (the mammary duct development subtype with TP53 activation), C2 (the immune infiltration subtype with high TP53 mutation), and C3 (the ERBB2 amplification subtype with an unfavorable prognosis). Specifically, patients with the C1 subtype might respond to endocrine therapy or the p53-MDM2 antagonist nutlin-3. Patients with the C2 subtype might benefit from combined therapeutic regimens involving radiotherapy, PARP inhibitors, and immune checkpoint blockade therapy. Patients with the C3 subtype might benefit from anti-HER2 agents such as lapatinib. Notably, to increase the clinical applicability of the EMT subtypes, we devised a 96-gene panel-based classifier via a machine learning framework. Conclusions: Our study identified three methylation-driven EMT subtypes with distinct prognoses and biological traits to capture heterogeneity in BC and provided a rationale for the use of this classification as a powerful tool for developing new strategies for clinical trials.
Collapse
Affiliation(s)
- Shihao Sun
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuang Chen
- Center of Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Nan Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zehao Hong
- Zhengzhou University, Henan 450052, China
| | - Yi Sun
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yijia Xu
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiangrui Chi
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinxing Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lin Li
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
6
|
Baker Frost D, Savchenko A, Takamura N, Wolf B, Fierkens R, King K, Feghali-Bostwick C. A Positive Feedback Loop Exists between Estradiol and IL-6 and Contributes to Dermal Fibrosis. Int J Mol Sci 2024; 25:7227. [PMID: 39000334 PMCID: PMC11241801 DOI: 10.3390/ijms25137227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic sclerosis (SSc) is characterized by dermal fibrosis with a female predominance, suggesting a hormonal influence. Patients with SSc have elevated interleukin (IL)-6 levels, and post-menopausal women and older men also have high estradiol (E2) levels. In the skin, IL-6 increases the enzymatic activity of aromatase, thereby amplifying the conversion of testosterone to E2. Therefore, we hypothesized that an interplay between E2 and IL-6 contributes to dermal fibrosis. We used primary dermal fibroblasts from healthy donors and patients with diffuse cutaneous (dc)SSc, and healthy donor skin tissues stimulated with recombinant IL-6 and its soluble receptor (sIL-6R) or E2. Primary human dermal fibroblasts and tissues from healthy donors stimulated with IL-6+sIL-6R produced E2, while E2-stimulated dermal tissues and fibroblasts produced IL-6. Primary dermal fibroblasts from healthy donors treated with IL-6+sIL-6R and the aromatase inhibitor anastrozole (ANA) and dcSSc fibroblasts treated with ANA produced less fibronectin (FN), type III collagen A1 (Col IIIA1), and type V collagen A1 (Col VA1). Finally, dcSSc dermal fibroblasts treated with the estrogen receptor inhibitor fulvestrant also generated less FN, Col IIIA1, and Col VA1. Our data show that IL-6 exerts its pro-fibrotic influence in human skin in part through E2 and establish a positive feedback loop between E2 and IL-6.
Collapse
Affiliation(s)
- DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, MSC 637, Charleston, SC 29425, USA;
| | - Alisa Savchenko
- College of Osteopathic Medicine, Rocky Vista University, 4130 Rocky Vista Way, Billings, MT 59106, USA;
| | - Naoko Takamura
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan;
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Room 305F, Charleston, SC 29425, USA;
| | - Roselyn Fierkens
- Barabara Davis Center, Department of Pediatrics, University of Colorado, School of Medicine, M20-3201N, 1775 Aurora Court, Aurora, CO 80045, USA;
| | - Kimberly King
- School of Medicine, Morehouse College, 720 Westview Drive, Atlanta, GA 30310, USA;
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, MSC 637, Charleston, SC 29425, USA;
| |
Collapse
|
7
|
Dridi R, Abdelkafi-Koubaa Z, Srairi-Abid N, Socha B, Zid MF. One-pot synthesis, structural investigation, antitumor activity and molecular docking approach of two decavanadate compounds. J Inorg Biochem 2024; 255:112533. [PMID: 38547784 DOI: 10.1016/j.jinorgbio.2024.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Two bases-decavanadates coordination compounds [(C6H13N4)2][Mg(H2O)6]2[O28V10].6H2O (1) and [(C7H11N2)4][Mg(H2O)6][O28V10].4H2O (2) have been synthesized and well characterized using vibrational spectroscopy (infrared), UV-Visible analysis and single crystal X-ray diffraction technique. The formula unit, for both compounds, is composed by the decavanadate [V10O28]6-, hydrated magnesium ion, a counter anion and free water molecules. The transition metal adopts octahedral geometries in both compound (1) and (2). The existence of a multitude of hydrogen bonding interactions for both compounds provides a stable three-dimensional supramolecular structure. Optical absorption reveals a band gap energy indicating the semi-conductive nature of the compound. In this study, the cytotoxic and the anti-proliferative activities of compounds (1) and (2) on human cancer cells (U87 and MDA-MB-231) were investigated. Both compounds demonstrated dose-dependent anti-proliferative activity on U87 and MDA-MB-231 with respective IC50 values of 0.82 and 0.31 μM and 1.4 and 1.75 μM. These data provide evidence on the potential anticancer activity of [(C6H13N4)2][Mg(H2O)6]2[O28V10].6H2O and [(C7H11N2)4][Mg(H2O)2][O28V10].4H2O. Molecular docking of the compounds was also examined. Molecular docking studies were performed for both compounds against four target receptors and revealed better binding affinity with these targets in comparison to Cisplatin. Moreover, molecular docking investigations suggest that these compounds may function as potential inhibitors of proteins in brain and breast cells, exhibiting greater efficiency compared to Cisplatin.
Collapse
Affiliation(s)
- Rihab Dridi
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia.
| | - Zaineb Abdelkafi-Koubaa
- University of Tunis El Manar, Salah Azaiz Institute, LR21SP01, Laboratory of Personalized Medicine, Precision Medicine and Investigation in Oncology, Tunis 1006, Tunisia.; University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01, Laboratory of Biomolecules, Venoms and Theranostic Applications, Tunis 1002, Tunisia
| | - Najet Srairi-Abid
- University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01, Laboratory of Biomolecules, Venoms and Theranostic Applications, Tunis 1002, Tunisia
| | - Bhavesh Socha
- Department of Physics, Sardar Patel University, Gujarat, India
| | - Mohamed Faouzi Zid
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia
| |
Collapse
|
8
|
Hancock GR, Gertz J, Jeselsohn R, Fanning SW. Estrogen Receptor Alpha Mutations, Truncations, Heterodimers, and Therapies. Endocrinology 2024; 165:bqae051. [PMID: 38643482 PMCID: PMC11075793 DOI: 10.1210/endocr/bqae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Annual breast cancer (BCa) deaths have declined since its apex in 1989 concomitant with widespread adoption of hormone therapies that target estrogen receptor alpha (ERα), the prominent nuclear receptor expressed in ∼80% of BCa. However, up to ∼50% of patients who are ER+ with high-risk disease experience post endocrine therapy relapse and metastasis to distant organs. The vast majority of BCa mortality occurs in this setting, highlighting the inadequacy of current therapies. Genomic abnormalities to ESR1, the gene encoding ERα, emerge under prolonged selective pressure to enable endocrine therapy resistance. These genetic lesions include focal gene amplifications, hotspot missense mutations in the ligand binding domain, truncations, fusions, and complex interactions with other nuclear receptors. Tumor cells utilize aberrant ERα activity to proliferate, spread, and evade therapy in BCa as well as other cancers. Cutting edge studies on ERα structural and transcriptional relationships are being harnessed to produce new therapies that have shown benefits in patients with ESR1 hotspot mutations. In this review we discuss the history of ERα, current research unlocking unknown aspects of ERα signaling including the structural basis for receptor antagonism, and future directions of ESR1 investigation. In addition, we discuss the development of endocrine therapies from their inception to present day and survey new avenues of drug development to improve pharmaceutical profiles, targeting, and efficacy.
Collapse
Affiliation(s)
- Govinda R Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| |
Collapse
|
9
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
10
|
Al-Kabariti AY, Abbas MA. Progress in the Understanding of Estrogen Receptor Alpha Signaling in Triple-Negative Breast Cancer: Reactivation of Silenced ER-α and Signaling through ER-α36. Mol Cancer Res 2023; 21:1123-1138. [PMID: 37462782 DOI: 10.1158/1541-7786.mcr-23-0321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 11/02/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive tumor that accounts for approximately 15% of total breast cancer cases. It is characterized by poor prognosis and high rate of recurrence compared to other types of breast cancer. TNBC has a limited range of treatment options that include chemotherapy, surgery, and radiation due to the absence of estrogen receptor alpha (ER-α) rendering hormonal therapy ineffective. However, possible targets for improving the clinical outcomes in TNBC exist, such as targeting estrogen signaling through membranous ER-α36 and reactivating silenced ER-α. It has been shown that epigenetic drugs such as DNA methyltransferase and histone deacetylase inhibitors can restore the expression of ER-α. This reactivation of ER-α, presents a potential strategy to re-sensitize TNBC to hormonal therapy. Also, this review provides up-to-date information related to the direct involvement of miRNA in regulating the translation of ER-α mRNA. Specific epi-miRNAs can regulate ER-α expression indirectly by post-transcriptional targeting of mRNAs of enzymes that are involved in DNA methylation and histone deacetylation. Furthermore, ER-α36, an alternative splice variant of ER-α66, is highly expressed in ER-negative breast tumors and activates MAPK/ERK pathway, promoting cell proliferation, escaping apoptosis, and enhancing metastasis. In the future, these recent advances may be helpful for researchers working in the field to obtain novel treatment options for TNBC, utilizing epigenetic drugs and epi-miRNAs that regulate ER-α expression. Also, there is some evidence to suggest that drugs that decrease the expression of ER-α36 may be effective in treating TNBC.
Collapse
Affiliation(s)
- Aya Y Al-Kabariti
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
| | - Manal A Abbas
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
11
|
Estrogen Receptor Alpha Splice Variants, Post-Translational Modifications, and Their Physiological Functions. Cells 2023; 12:cells12060895. [PMID: 36980236 PMCID: PMC10047206 DOI: 10.3390/cells12060895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
The importance of estrogenic signaling for a broad spectrum of biological processes, including reproduction, cancer development, energy metabolism, memory and learning, and so on, has been well documented. Among reported estrogen receptors, estrogen receptor alpha (ERα) has been known to be a major mediator of cellular estrogenic signaling. Accumulating evidence has shown that the regulations of ERα gene transcription, splicing, and expression across the tissues are highly complex. The ERα promoter region is composed of multiple leader exons and 5′-untranslated region (5′-UTR) exons. Differential splicing results in multiple ERα proteins with different molecular weights and functional domains. Furthermore, various post-translational modifications (PTMs) further impact ERα cellular localization, ligand affinity, and therefore functionality. These splicing isoforms and PTMs are differentially expressed in a tissue-specific manner, mediate certain aspects of ERα signaling, and may work even antagonistically against the full-length ERα. The fundamental understanding of the ERα splicing isoforms in normal physiology is limited and association studies of the splicing isoforms and the PTMs are scarce. This review aims to summarize the functional diversity of these ERα variants and the PTMs in normal physiological processes, particularly as studied in transgenic mouse models.
Collapse
|
12
|
Grinshpun A, Chen V, Sandusky ZM, Fanning SW, Jeselsohn R. ESR1 activating mutations: From structure to clinical application. Biochim Biophys Acta Rev Cancer 2023; 1878:188830. [PMID: 36336145 DOI: 10.1016/j.bbcan.2022.188830] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Estrogen receptor-positive breast cancer is the most common type of both early and advanced breast cancer. Estrogen receptor alpha (ER) is a nuclear hormone receptor and a key driver of tumorigenesis and tumor progression in these breast cancers. As such, it is a key treatment target and a biomarker predictive of response to endocrine therapy. Activating ESR1 ligand binding domain mutations engender constitutive/ligand independent transcriptional activities and emerge following prolonged first-line hormone therapy regimens, mainly from aromatase inhibitors. The full scale of the biological and clinical significance of these mutations continue to evolve and additional studies are required to further discern the multimodal effects of these mutations on ER transcription, metastatic propensity, and the tumor microenvironment. Furthermore, recent and ongoing studies highlight the potential clinical utility of these mutations as therapeutic targets and dynamic biomarkers. Herein, we review the structure, functional consequences, and clinical implications of the activating ESR1 mutations in advanced estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Albert Grinshpun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Breast Oncology Center, Dana-Farber Cancer Center, Boston, MA, United States of America
| | - Vincent Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Breast Oncology Center, Dana-Farber Cancer Center, Boston, MA, United States of America
| | - Zachary M Sandusky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Center for Functional Cancer Epigenetics, Dana Farber-Cancer Institute, Boston, MA, United States of America
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University, Chicago, IL, United States of America
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Breast Oncology Center, Dana-Farber Cancer Center, Boston, MA, United States of America; Center for Functional Cancer Epigenetics, Dana Farber-Cancer Institute, Boston, MA, United States of America.
| |
Collapse
|