1
|
Cheng J, Yang S, Shou D, Chen J, Li Y, Huang C, Chen H, Zhou Y. FOXO1 induced fatty acid oxidation in hepatic cells by targeting ALDH1L2. J Gastroenterol Hepatol 2024; 39:2197-2207. [PMID: 38923573 DOI: 10.1111/jgh.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM Lipid metabolism disorder is the primary feature of numerous refractory chronic diseases. Fatty acid oxidation, an essential aerobic biological process, is closely related to the progression of NAFLD. The forkhead transcription factor FOXO1 has been reported to play an important role in lipid metabolism. However, the molecular mechanism through which FOXO1 regulates fatty acid oxidation remains unclear. METHODS Transcriptomic analysis was performed to examine the cellular expression profile to determine the functional role of FOXO1 in HepG2 cells with palmitic acid (PA)-induced lipid accumulation. FOXO1-binding motifs at the promoter region of aldehyde dehydrogenase 1 family member L2 (ALDH1L2) were predicted via bioinformatic analysis and confirmed via luciferase reporter assay. Overexpression of ALDH1L2 was induced to recover the impaired fatty acid oxidation in FOXO1-knockout cells. RESULTS Knockout of FOXO1 aggravated lipid deposition in hepatic cells. Transcriptomic profiling revealed that knockout of FOXO1 increased the expression of genes associated with fatty acid synthesis but decreased the expression of carnitine palmitoyltransferase1a (CPT1α) and adipose triglyceride lipase (ATGL), which contribute to fatty acid oxidation. Mechanistically, FOXO1 was identified as a transcription factor of ALDH1L2. Knockout of FOXO1 significantly decreased the protein expression of ALDH1L2 and CPT1α in vitro and in vivo. Furthermore, overexpression of ALDH1L2 restored fatty acid oxidation in FOXO1-knockout cells. CONCLUSION The findings of this study indicate that FOXO1 modulates fatty acid oxidation by targeting ALDH1L2.
Collapse
Affiliation(s)
- Jiemin Cheng
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Siqi Yang
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Jiawei Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
2
|
Yu Y, Martins LM. Mitochondrial One-Carbon Metabolism and Alzheimer's Disease. Int J Mol Sci 2024; 25:6302. [PMID: 38928008 PMCID: PMC11203557 DOI: 10.3390/ijms25126302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Mitochondrial one-carbon metabolism provides carbon units to several pathways, including nucleic acid synthesis, mitochondrial metabolism, amino acid metabolism, and methylation reactions. Late-onset Alzheimer's disease is the most common age-related neurodegenerative disease, characterised by impaired energy metabolism, and is potentially linked to mitochondrial bioenergetics. Here, we discuss the intersection between the molecular pathways linked to both mitochondrial one-carbon metabolism and Alzheimer's disease. We propose that enhancing one-carbon metabolism could promote the metabolic processes that help brain cells cope with Alzheimer's disease-related injuries. We also highlight potential therapeutic avenues to leverage one-carbon metabolism to delay Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - L. Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
3
|
Cavestro C, Morra F, Legati A, D'Amato M, Nasca A, Iuso A, Lubarr N, Morrison JL, Wheeler PG, Serra‐Juhé C, Rodríguez‐Santiago B, Turón‐Viñas E, Prouteau C, Barth M, Hayflick SJ, Ghezzi D, Tiranti V, Di Meo I. Emerging variants, unique phenotypes, and transcriptomic signatures: an integrated study of COASY-associated diseases. Ann Clin Transl Neurol 2024; 11:1615-1629. [PMID: 38750253 PMCID: PMC11187879 DOI: 10.1002/acn3.52079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE COASY, the gene encoding the bifunctional enzyme CoA synthase, which catalyzes the last two reactions of cellular de novo coenzyme A (CoA) biosynthesis, has been linked to two exceedingly rare autosomal recessive disorders, such as COASY protein-associated neurodegeneration (CoPAN), a form of neurodegeneration with brain iron accumulation (NBIA), and pontocerebellar hypoplasia type 12 (PCH12). We aimed to expand the phenotypic spectrum and gain insights into the pathogenesis of COASY-related disorders. METHODS Patients were identified through targeted or exome sequencing. To unravel the molecular mechanisms of disease, RNA sequencing, bioenergetic analysis, and quantification of critical proteins were performed on fibroblasts. RESULTS We identified five new individuals harboring novel COASY variants. While one case exhibited classical CoPAN features, the others displayed atypical symptoms such as deafness, language and autism spectrum disorders, brain atrophy, and microcephaly. All patients experienced epilepsy, highlighting its potential frequency in COASY-related disorders. Fibroblast transcriptomic profiling unveiled dysregulated expression in genes associated with mitochondrial respiration, responses to oxidative stress, transmembrane transport, various cellular signaling pathways, and protein translation, modification, and trafficking. Bioenergetic analysis revealed impaired mitochondrial oxygen consumption in COASY fibroblasts. Despite comparable total CoA levels to control cells, the amounts of mitochondrial 4'-phosphopantetheinylated proteins were significantly reduced in COASY patients. INTERPRETATION These results not only extend the clinical phenotype associated with COASY variants but also suggest a continuum between CoPAN and PCH12. The intricate interplay of altered cellular processes and signaling pathways provides valuable insights for further research into the pathogenesis of COASY-associated diseases.
Collapse
Affiliation(s)
- Chiara Cavestro
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Francesca Morra
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Andrea Legati
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Marco D'Amato
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Alessia Nasca
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Arcangela Iuso
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
- Institute of NeurogenomicsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Naomi Lubarr
- Department of NeurologyIcahn School of Medicine at Mount Sinai, Mount Sinai Beth IsraelNew YorkNew YorkUSA
| | | | | | - Clara Serra‐Juhé
- Genetics DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Benjamín Rodríguez‐Santiago
- Genetics DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)MadridSpain
- Genomic Instability Syndromes and DNA Repair Group and Join Research Unit on Genomic Medicine UAB‐Sant Pau Biomedical Research InstituteHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Eulalia Turón‐Viñas
- Child Neurology Unit, Pediatrics ServiceHospital de la Santa Creu i Sant PauBarcelonaSpain
| | | | - Magalie Barth
- Department of GeneticsUniversity Hospital of AngersAngersFrance
| | - Susan J. Hayflick
- Department of Molecular and Medical GeneticsOregon Health & Science UniversityPortlandOregonUSA
- Department of PediatricsOregon Health & Science UniversityPortlandOregonUSA
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Daniele Ghezzi
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Valeria Tiranti
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Ivano Di Meo
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| |
Collapse
|
4
|
Fioretti T, Martora F, De Maggio I, Ambrosio A, Piscopo C, Vallone S, Amato F, Passaro D, Acquaviva F, Gaudiello F, Di Girolamo D, Maiolo V, Zarrilli F, Esposito S, Vitiello G, Auricchio L, Sammarco E, Brasi DD, Petillo R, Gambale A, Cattaneo F, Ammendola R, Nappa P, Esposito G. Comprehensive Molecular Analysis of Disease-Related Genes as First-Tier Test for Early Diagnosis, Classification, and Management of Patients Affected by Nonsyndromic Ichthyosis. Biomedicines 2024; 12:1112. [PMID: 38791074 PMCID: PMC11117922 DOI: 10.3390/biomedicines12051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited ichthyoses are a group of clinically and genetically heterogeneous rare disorders of skin keratinization with overlapping phenotypes. The clinical picture and family history are crucial to formulating the diagnostic hypothesis, but only the identification of the genetic defect allows the correct classification. In the attempt to molecularly classify 17 unrelated Italian patients referred with congenital nonsyndromic ichthyosis, we performed massively parallel sequencing of over 50 ichthyosis-related genes. Genetic data of 300 Italian unaffected subjects were also analyzed to evaluate frequencies of putative disease-causing alleles in our population. For all patients, we identified the molecular cause of the disease. Eight patients were affected by autosomal recessive congenital ichthyosis associated with ALOX12B, NIPAL4, and TGM1 mutations. Three patients had biallelic loss-of-function variants in FLG, whereas 6/11 males were affected by X-linked ichthyosis. Among the 24 different disease-causing alleles we identified, 8 carried novel variants, including a synonymous TGM1 variant that resulted in a splicing defect. Moreover, we generated a priority list of the ichthyosis-related genes that showed a significant number of rare and novel variants in our population. In conclusion, our comprehensive molecular analysis resulted in an effective first-tier test for the early classification of ichthyosis patients. It also expands the genetic, mutational, and phenotypic spectra of inherited ichthyosis and provides new insight into the current understanding of etiologies and epidemiology of this group of rare disorders.
Collapse
Affiliation(s)
- Tiziana Fioretti
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
| | - Fabrizio Martora
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Ilaria De Maggio
- Medical and Laboratory Genetics Unit, AORN A. Cardarelli, 80131 Naples, Italy; (I.D.M.); (C.P.); (R.P.)
| | - Adelaide Ambrosio
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, AORN A. Cardarelli, 80131 Naples, Italy; (I.D.M.); (C.P.); (R.P.)
| | - Sabrina Vallone
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Felice Amato
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Diego Passaro
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Fabio Acquaviva
- Medical Genetics Unit, Department of General and Emergency Paediatrics, AORN Santobono-Pausilipon, 80122 Naples, Italy; (F.A.); (D.D.B.)
| | - Francesca Gaudiello
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Daniela Di Girolamo
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Valeria Maiolo
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Federica Zarrilli
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Speranza Esposito
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Giuseppina Vitiello
- Medical Genetics Unit, Integrated Care Department of Laboratory and Transfusion Medicine, Federico II Hospital, 80131 Naples, Italy; (G.V.); (A.G.)
| | - Luigi Auricchio
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Elena Sammarco
- Pediatric Dermatology Unit, Department of Dermo-Immuno-Rheumatology Paediatrics, AORN Santobono-Pausilipon, 80122 Naples, Italy;
| | - Daniele De Brasi
- Medical Genetics Unit, Department of General and Emergency Paediatrics, AORN Santobono-Pausilipon, 80122 Naples, Italy; (F.A.); (D.D.B.)
| | - Roberta Petillo
- Medical and Laboratory Genetics Unit, AORN A. Cardarelli, 80131 Naples, Italy; (I.D.M.); (C.P.); (R.P.)
| | - Antonella Gambale
- Medical Genetics Unit, Integrated Care Department of Laboratory and Transfusion Medicine, Federico II Hospital, 80131 Naples, Italy; (G.V.); (A.G.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Paola Nappa
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Gabriella Esposito
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| |
Collapse
|
5
|
You M, Shamseldin HE, Fogle HM, Rushing BR, AlMalki RH, Jaafar A, Hashem M, Abdulwahab F, Rahman AMA, Krupenko NI, Alkuraya FS, Krupenko SA. Further delineation of the phenotypic and metabolomic profile of ALDH1L2-related neurodevelopmental disorder. Clin Genet 2024; 105:488-498. [PMID: 38193334 PMCID: PMC10990829 DOI: 10.1111/cge.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
ALDH1L2, a mitochondrial enzyme in folate metabolism, converts 10-formyl-THF (10-formyltetrahydrofolate) to THF (tetrahydrofolate) and CO2. At the cellular level, deficiency of this NADP+-dependent reaction results in marked reduction in NADPH/NADP+ ratio and reduced mitochondrial ATP. Thus far, a single patient with biallelic ALDH1L2 variants and the phenotype of a neurodevelopmental disorder has been reported. Here, we describe another patient with a neurodevelopmental disorder associated with a novel homozygous missense variant in ALDH1L2, Pro133His. The variant caused marked reduction in the ALDH1L2 enzyme activity in skin fibroblasts derived from the patient as probed by 10-FDDF, a stable synthetic analog of 10-formyl-THF. Additional associated abnormalities in these fibroblasts include reduced NADPH/NADP+ ratio and pool of mitochondrial ATP, upregulated autophagy and dramatically altered metabolomic profile. Overall, our study further supports a link between ALDH1L2 deficiency and abnormal neurodevelopment in humans.
Collapse
Affiliation(s)
- Mikyoung You
- UNC Nutrition Research Institute, Kannapolis, NC, USA
| | - Hanan E. Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Halle M. Fogle
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| | - Blake R. Rushing
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Natalia I. Krupenko
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Sergey A. Krupenko
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| |
Collapse
|
6
|
Grüning NM, Ralser M. Monogenic Disorders of ROS Production and the Primary Anti-Oxidative Defense. Biomolecules 2024; 14:206. [PMID: 38397443 PMCID: PMC10887155 DOI: 10.3390/biom14020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the cellular anti-oxidant defense mechanisms, plays a critical role in the pathogenesis of various human diseases. Redox metabolism, comprising a network of enzymes and genes, serves as a crucial regulator of ROS levels and maintains cellular homeostasis. This review provides an overview of the most important human genes encoding for proteins involved in ROS generation, ROS detoxification, and production of reduced nicotinamide adenine dinucleotide phosphate (NADPH), and the genetic disorders that lead to dysregulation of these vital processes. Insights gained from studies on inherited monogenic metabolic diseases provide valuable basic understanding of redox metabolism and signaling, and they also help to unravel the underlying pathomechanisms that contribute to prevalent chronic disorders like cardiovascular disease, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Nana-Maria Grüning
- Department of Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
7
|
Yan B, Fan H, Ji H, Li S, Hu H, Gu X, Jia S, Liu Y, Guo J, Yang Z, Zhou L, Xiao X, Li L, Mao Z. DNA strand displacement and TdT-Mediated DNA extension for swift, convenient, and quantitative evaluation of sperm DNA integrity and its clinical implications. Anal Chim Acta 2023; 1280:341821. [PMID: 37858544 DOI: 10.1016/j.aca.2023.341821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
DNA integrity is crucial for the clinical pregnancy outcome and offspring health, while detection methods currently used (comet assay, TUNNEL assay, SCSA, etc.) can only provide the ratio of positive sperms at the cellular level and are unable to quantitatively detect the breakpoints at the DNA molecular level. Herein, we developed a detection system based on terminal deoxynucleotidyl transferase and DNA strand displacement fluorescent probe, which could efficiently and conveniently measure the number of 3'-OH (equivalent to the number of breakpoints). We further investigated the use of this technique in assisted reproduction after completing the principle verification, system optimization, and research on analytical performance. The detection system was shown to have a good linear range from 0.01 nM to 4 nM, using single-stranded DNA with 3'-OH end as the calibrator. The system underwent thorough optimization for stability and accuracy. In comparison to the widely accepted index DFI detected by SCSA, the new system demonstrated reasonable correlation and better prediction efficiency. Its applicability was also proven through its use in assisted reproductive technology procedures.
Collapse
Affiliation(s)
- Bei Yan
- Human Sperm Bank, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Heng Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hanxu Ji
- School of Life Science and Technology, Wuhan Poly-technic University, Wuhan, 430023, China
| | - Siqi Li
- School of Life Science and Technology, Wuhan Poly-technic University, Wuhan, 430023, China
| | - Hao Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiuli Gu
- Wuhan Huake Reproductive Hospital, Wuhan, 430030, China
| | - Shaotong Jia
- Human Sperm Bank, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Ying Liu
- Wuhan Biobank, Wuhan, 430070, China
| | - Jing Guo
- Wuhan Biobank, Wuhan, 430070, China
| | | | | | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230031, China.
| | - Longjie Li
- School of Life Science and Technology, Wuhan Poly-technic University, Wuhan, 430023, China; Wuhan Huchuang United Technology Co., Ltd, Wuhan, 430070, China.
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China.
| |
Collapse
|
8
|
Pratim Das P, Jyoti Kalita M, Jyoti Talukdar A, Mohd Khan F, Dutta K, Kalita S, Goswami N, Hazarika G, Samudrala G, Ghaznavi Idris M, Dutta S, Medhi S. Evaluation and analysis of novel germline variants in ethanol metabolism pathway genes predisposition to liver disease. Gene 2023; 873:147451. [PMID: 37150234 DOI: 10.1016/j.gene.2023.147451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
The pathogenetic events of liver disease are seemingly determined by factors linked to ethanol metabolism. The variations in genes encoding enzymes of the ethanol metabolic pathway can influence exposure to alcohol and thus may act as risk factors for the development of liver disease. The present study aimed to understand the genetic aspect of germline variations in ethanol metabolic pathway genes in two major categories of liver disease i.e. ALD and NAFLD. Targeted Re-sequencing was performed in the two disease categories along with healthy control followed by an assessment and evaluation of the variants in a case vs control manner. The pathogenicity prediction was evaluated using SIFT, PolyPhen, PROVEN, LRT, CADD, FATHMM, EIGEN, REVEL and VarSome, while MD simulation of a novel significant variant was performed using the GROMACS 5.1.4 package. The annotation of targeted re-sequencing results revealed 2172 variants in different locations of the genes. Upon recurrent assessment predominantly focusing on exonic missense variants from these genes of the alcohol metabolism pathway, the ALDH1L2 [c.337C>G, p.Pro113Ala, (rs199841702)] variant was found highly significant with comprehensive results. The amino acid substitution tool that predicted protein stability due to a point mutation showed a decrease in stability. The genotyping distribution of the identified novel variant in the population revealed that heterozygosity is significantly distributed in ALD patients. However, the predominant association between the inherited variant and the cause of developing disease needs further robust study.
Collapse
Affiliation(s)
- Partha Pratim Das
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | - Manash Jyoti Kalita
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | - Anjan Jyoti Talukdar
- Department of Medicine, Gauhati Medical College & Hospital, Guwahati, Assam-781032
| | - Faraz Mohd Khan
- School of Life sciences, Jawaharlal Nehru University, New Delhi, 110067
| | - Kalpajit Dutta
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | - Simanta Kalita
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | - Nabajyoti Goswami
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | - Gautam Hazarika
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | | | | | - Sangit Dutta
- Department of Medicine, Gauhati Medical College & Hospital, Guwahati, Assam-781032
| | - Subhash Medhi
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014.
| |
Collapse
|
9
|
Wan H, Gao W, Zhang W, Tao Z, Lu X, Chen F, Qin J. Network-based inference of master regulators in epithelial membrane protein 2-treated human RPE cells. BMC Genom Data 2022; 23:52. [PMID: 35799115 PMCID: PMC9264685 DOI: 10.1186/s12863-022-01047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The application of cell-specific construction of transcription regulatory networks (TRNs) to identify their master regulators (MRs) in EMP2 induced vascular proliferation disorders has been largely unexplored.
Methods
Different expression gene (DEGs) analyses was processed with DESeq2 R package, for public RNA-seq transcriptome data of EMP2-treated hRPECs versus vector control (VC) or wild type (WT) hRPECs. Virtual Inference of protein activity by Enriched Regulon analysis (VIPER) was used for inferring regulator activity and ARACNE algorithm was conducted to construct TRNs and identify some MRs with DEGs from comparisons.
Results
Functional analysis of DEGs and the module analysis of TRNs demonstrated that over-expressed EMP2 leads to a significant induction in the activity of regulators next to transcription factors and other genes implicated in vasculature development, cell proliferation, and protein kinase B signaling, whereas regulators near several genes of platelet activation vascular proliferation were repressed. Among these, PDGFA, ALDH1L2, BA1AP3, ANGPT1 and ST3GAL5 were found differentially expressed and significantly activitve in EMP2-over-expressed hRPECs versus vector control under hypoxia and may thus identified as MRs for EMP2-induced lesion under hypoxia.
Conclusions
MRs obtained in this study might serve as potential biomarkers for EMP2 induced lesion under hypoxia, illustrating gene expression landscapes which might be specific for diabetic retinopathy and might provide improved understanding of the disease.
Collapse
|
10
|
ALDH1L2 Knockout in U251 Glioblastoma Cells Reduces Tumor Sphere Formation by Increasing Oxidative Stress and Suppressing Methionine Dependency. Nutrients 2022; 14:nu14091887. [PMID: 35565854 PMCID: PMC9105572 DOI: 10.3390/nu14091887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Previously, the in vitro growth of cancer stem cells in the form of tumor spheres from five different brain cancer cell lines was found to be methionine-dependent. As this earlier work indicated that ALDH1L2, a folate-dependent mitochondria aldehyde dehydrogenase gene, is upregulated in glioblastoma stem cells, we invalidated this gene using CRISPR-cas 9 technique in this present work. We reported here that this invalidation was effective in U251 glioblastoma cells, and no cas9 off target site could be detected by genome sequencing of the two independent knockout targeting either exon I or exon III. The knockout of ALDH1L2 gene in U251 cells rendered the growth of the cancer stem cells of U251 methionine independent. In addition, a much higher ROS (reactive oxygen radicals) level can be detected in the knockout cells compared to the wild type cells. Our evidence here linked the excessive ROS level of the knockout cells to reduced total cellular NADPH. Our evidence suggested also that the cause of the slower growth of the knockout turmor sphere may be related to its partial differentiation.
Collapse
|
11
|
Gözen D, Kahraman DC, Narci K, Shehwana H, Konu Ö, Çetin-Atalay R. Transcriptome profiles associated with selenium-deficiency-dependent oxidative stress identify potential diagnostic and therapeutic targets in liver cancer cells. ACTA ACUST UNITED AC 2021; 45:149-161. [PMID: 33907497 PMCID: PMC8068766 DOI: 10.3906/biy-2009-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/01/2021] [Indexed: 12/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer types with high mortality rates and displays increased resistance to various stress conditions such as oxidative stress. Conventional therapies have low efficacies due to resistance and off-target effects in HCC. Here we aimed to analyze oxidative stress-related gene expression profiles of HCC cells and identify genes that could be crucial for novel diagnostic and therapeutic strategies. To identify important genes that cause resistance to reactive oxygen species (ROS), a model of oxidative stress upon selenium (Se) deficiency was utilized. The results of transcriptome-wide gene expression data were analyzed in which the differentially expressed genes (DEGs) were identified between HCC cell lines that are either resistant or sensitive to Se-deficiency-dependent oxidative stress. These DEGs were further investigated for their importance in oxidative stress resistance by network analysis methods, and 27 genes were defined to have key roles; 16 of which were previously shown to have impact on liver cancer patient survival. These genes might have Se-deficiency-dependent roles in hepatocarcinogenesis and could be further exploited for their potentials as novel targets for diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Damla Gözen
- Cancer Systems Biology Laboratory, Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara Turkey
| | - Deniz Cansen Kahraman
- Cancer Systems Biology Laboratory, Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara Turkey
| | - Kübra Narci
- Cancer Systems Biology Laboratory, Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara Turkey
| | - Huma Shehwana
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi Pakistan
| | - Özlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara Turkey
| | - Rengül Çetin-Atalay
- Cancer Systems Biology Laboratory, Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara Turkey
| |
Collapse
|
12
|
Zhao LN, Björklund M, Caldez MJ, Zheng J, Kaldis P. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene 2021; 40:2339-2354. [PMID: 33664451 DOI: 10.1038/s41388-021-01695-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Most of the drugs currently prescribed for cancer treatment are riddled with substantial side effects. In order to develop more effective and specific strategies to treat cancer, it is of importance to understand the biology of drug targets, particularly the newly emerging ones. A comprehensive evaluation of these targets will benefit drug development with increased likelihood for success in clinical trials. The folate-mediated one-carbon (1C) metabolism pathway has drawn renewed attention as it is often hyperactivated in cancer and inhibition of this pathway displays promise in developing anticancer treatment with fewer side effects. Here, we systematically review individual enzymes in the 1C pathway and their compartmentalization to mitochondria and cytosol. Based on these insight, we conclude that (1) except the known 1C targets (DHFR, GART, and TYMS), MTHFD2 emerges as good drug target, especially for treating hematopoietic cancers such as CLL, AML, and T-cell lymphoma; (2) SHMT2 and MTHFD1L are potential drug targets; and (3) MTHFD2L and ALDH1L2 should not be considered as drug targets. We highlight MTHFD2 as an excellent therapeutic target and SHMT2 as a complementary target based on structural/biochemical considerations and up-to-date inhibitor development, which underscores the perspectives of their therapeutic potential.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Haining, Zhejiang, PR China.,2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.,Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Matias J Caldez
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Jie Zheng
- School of Information Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
13
|
Krupenko NI, Sharma J, Pediaditakis P, Helke KL, Hall MS, Du X, Sumner S, Krupenko SA. Aldh1l2 knockout mouse metabolomics links the loss of the mitochondrial folate enzyme to deregulation of a lipid metabolism observed in rare human disorder. Hum Genomics 2020; 14:41. [PMID: 33168096 PMCID: PMC7654619 DOI: 10.1186/s40246-020-00291-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Mitochondrial folate enzyme ALDH1L2 (aldehyde dehydrogenase 1 family member L2) converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2 simultaneously producing NADPH. We have recently reported that the lack of the enzyme due to compound heterozygous mutations was associated with neuro-ichthyotic syndrome in a male patient. Here, we address the role of ALDH1L2 in cellular metabolism and highlight the mechanism by which the enzyme regulates lipid oxidation. Methods We generated Aldh1l2 knockout (KO) mouse model, characterized its phenotype, tissue histology, and levels of reduced folate pools and applied untargeted metabolomics to determine metabolic changes in the liver, pancreas, and plasma caused by the enzyme loss. We have also used NanoString Mouse Inflammation V2 Code Set to analyze inflammatory gene expression and evaluate the role of ALDH1L2 in the regulation of inflammatory pathways. Results Both male and female Aldh1l2 KO mice were viable and did not show an apparent phenotype. However, H&E and Oil Red O staining revealed the accumulation of lipid vesicles localized between the central veins and portal triads in the liver of Aldh1l2-/- male mice indicating abnormal lipid metabolism. The metabolomic analysis showed vastly changed metabotypes in the liver and plasma in these mice suggesting channeling of fatty acids away from β-oxidation. Specifically, drastically increased plasma acylcarnitine and acylglycine conjugates were indicative of impaired β-oxidation in the liver. Our metabolomics data further showed that mechanistically, the regulation of lipid metabolism by ALDH1L2 is linked to coenzyme A biosynthesis through the following steps. ALDH1L2 enables sufficient NADPH production in mitochondria to maintain high levels of glutathione, which in turn is required to support high levels of cysteine, the coenzyme A precursor. As the final outcome, the deregulation of lipid metabolism due to ALDH1L2 loss led to decreased ATP levels in mitochondria. Conclusions The ALDH1L2 function is important for CoA-dependent pathways including β-oxidation, TCA cycle, and bile acid biosynthesis. The role of ALDH1L2 in the lipid metabolism explains why the loss of this enzyme is associated with neuro-cutaneous diseases. On a broader scale, our study links folate metabolism to the regulation of lipid homeostasis and the energy balance in the cell. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-020-00291-3.
Collapse
Affiliation(s)
- Natalia I Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Jaspreet Sharma
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Madeline S Hall
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Xiuxia Du
- Department of Bioinformatics & Genomics, UNC Charlotte, Charlotte, NC, USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Sergey A Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA. .,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Rose J, Brian C, Pappa A, Panayiotidis MI, Franco R. Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Front Neurosci 2020; 14:536682. [PMID: 33224019 PMCID: PMC7674659 DOI: 10.3389/fnins.2020.536682] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
In the brain, mitochondrial metabolism has been largely associated with energy production, and its dysfunction is linked to neuronal cell loss. However, the functional role of mitochondria in glial cells has been poorly studied. Recent reports have demonstrated unequivocally that astrocytes do not require mitochondria to meet their bioenergetics demands. Then, the question remaining is, what is the functional role of mitochondria in astrocytes? In this work, we review current evidence demonstrating that mitochondrial central carbon metabolism in astrocytes regulates overall brain bioenergetics, neurotransmitter homeostasis and redox balance. Emphasis is placed in detailing carbon source utilization (glucose and fatty acids), anaplerotic inputs and cataplerotic outputs, as well as carbon shuttles to neurons, which highlight the metabolic specialization of astrocytic mitochondria and its relevance to brain function.
Collapse
Affiliation(s)
- Jordan Rose
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Christian Brian
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
15
|
Cytosolic 10-formyltetrahydrofolate dehydrogenase regulates glycine metabolism in mouse liver. Sci Rep 2019; 9:14937. [PMID: 31624291 PMCID: PMC6797707 DOI: 10.1038/s41598-019-51397-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism highly expressed in liver, metabolizes 10-formyltetrahydrofolate to produce tetrahydrofolate (THF). This reaction might have a regulatory function towards reduced folate pools, de novo purine biosynthesis, and the flux of folate-bound methyl groups. To understand the role of the enzyme in cellular metabolism, Aldh1l1−/− mice were generated using an ES cell clone (C57BL/6N background) from KOMP repository. Though Aldh1l1−/− mice were viable and did not have an apparent phenotype, metabolomic analysis indicated that they had metabolic signs of folate deficiency. Specifically, the intermediate of the histidine degradation pathway and a marker of folate deficiency, formiminoglutamate, was increased more than 15-fold in livers of Aldh1l1−/− mice. At the same time, blood folate levels were not changed and the total folate pool in the liver was decreased by only 20%. A two-fold decrease in glycine and a strong drop in glycine conjugates, a likely result of glycine shortage, were also observed in Aldh1l1−/− mice. Our study indicates that in the absence of ALDH1L1 enzyme, 10-formyl-THF cannot be efficiently metabolized in the liver. This leads to the decrease in THF causing reduced generation of glycine from serine and impaired histidine degradation, two pathways strictly dependent on THF.
Collapse
|