1
|
Anwardeen NR, Naja K, Elrayess MA. Advancements in precision medicine: multi-omics approach for tailored metformin treatment in type 2 diabetes. Front Pharmacol 2024; 15:1506767. [PMID: 39669200 PMCID: PMC11634602 DOI: 10.3389/fphar.2024.1506767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Metformin has become the frontline treatment in addressing the significant global health challenge of type 2 diabetes due to its proven effectiveness in lowering blood glucose levels. However, the reality is that many patients struggle to achieve their glycemic targets with the medication and the cause behind this variability has not been investigated thoroughly. While genetic factors account for only about a third of this response variability, the potential influence of metabolomics and the gut microbiome on drug efficacy opens new avenues for investigation. This review explores the different molecular signatures to uncover how the complex interplay between genetics, metabolic profiles, and gut microbiota can shape individual responses to metformin. By highlighting the insights from recent studies and identifying knowledge gaps regarding metformin-microbiota interplay, we aim to highlight the path toward more personalized and effective diabetes management strategies and moving beyond the one-size-fits-all approach.
Collapse
Affiliation(s)
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Gallagher CS, Ginsburg GS, Musick A. Biobanking with genetics shapes precision medicine and global health. Nat Rev Genet 2024:10.1038/s41576-024-00794-y. [PMID: 39567741 DOI: 10.1038/s41576-024-00794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Precision medicine provides patients with access to personally tailored treatments based on individual-level data. However, developing personalized therapies requires analyses with substantial statistical power to map genetic and epidemiologic associations that ultimately create models informing clinical decisions. As one solution, biobanks have emerged as large-scale, longitudinal cohort studies with long-term storage of biological specimens and health information, including electronic health records and participant survey responses. By providing access to individual-level data for genotype-phenotype mapping efforts, pharmacogenomic studies, polygenic risk score assessments and rare variant analyses, biobanks support ongoing and future precision medicine research. Notably, due in part to the geographical enrichment of biobanks in Western Europe and North America, European ancestries have become disproportionately over-represented in precision medicine research. Herein, we provide a genetics-focused review of biobanks from around the world that are in pursuit of supporting precision medicine. We discuss the limitations of their designs, ongoing efforts to diversify genomics research and strategies to maximize the benefits of research leveraging biobanks for all.
Collapse
Affiliation(s)
- C Scott Gallagher
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey S Ginsburg
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Anjené Musick
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Abushanab D, Mohammed S, Abdel-latif R, Al-Muftah W, Ismail SI, Al Hail M, Al-Marridi W, Abdallah O, Al-Khuzaei N, Al-Thani A, Al-Badriyeh D. Cost-effectiveness analysis of genotype-guided optimization of major depression treatment in Qatar. J Pharm Policy Pract 2024; 17:2410197. [PMID: 39469318 PMCID: PMC11514395 DOI: 10.1080/20523211.2024.2410197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Background Pharmacogenetic testing improves the efficacy and safety of antidepressant pharmacotherapy for moderate-severe major depressive disorder by identifying genetic variations that influence medication metabolism, and adjusting treatment regimens accordingly. This study aims to assess the cost-effectiveness of implementing a pharmacogenetic testing approach to guide the prescription of antidepressants. Methods From the public hospital perspective, we developed a two-stage decision tree diagram of a short-term 6-week follow up, and a lifetime Markov model with 3-month cycles. The analysis compared the current standard of care with the alternative strategy of Pharmacogenetic-guided (multi-gene panel) testing in adult patients with moderate-severe major depressive disorder. Clinical outcomes and utilities were obtained from published studies, while healthcare costs were locally available. The short-term incremental cost-effectiveness ratio was against treatment response without side effects and without relapse, and against treatment response with/without side effects and without relapse. The long-term incremental cost-effectiveness ratio was against the quality-adjusted life year gained and years of life saved. Results Adopting the pharmacogenetic-guided therapy for adult patients with moderate-severe major depressive disorder in Qatar resulted in cost savings of Qatari Riyal 2,289 (95% confidence interval, -22,654-26,340) for the health system. In the short term, the pharmacogenetic-guided testing was associated with higher response rates without side effects and without relapse (mean difference 0.10, 95% confidence interval 0.09-0.15) and higher response rates with or without side effects and without relapse (mean difference 0.05, 95% confidence interval 0.04-0.06). For long term, the pharmacogenetic-guided testing resulted in 0.13 years of life saved and 0.06 quality-adjusted life year gained, per person, along with cost savings of Qatari Riyal 46,215 (95% confidence interval-15,744-101,758). The sensitivity analyses confirmed the robustness of the model results. Conclusion Implementing pharmacogenetic testing to guide antidepressant use was found to improve population health outcomes, while also significantly reducing health system costs.
Collapse
Affiliation(s)
- Dina Abushanab
- Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
| | | | - Rania Abdel-latif
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, Qatar
| | - Wadha Al-Muftah
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, Qatar
| | - Said I. Ismail
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, Qatar
| | - Moza Al Hail
- Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
| | - Wafa Al-Marridi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Oraib Abdallah
- Pharmacy Department, Mental Health Services, Hamad Medical Corporation, Doha, Qatar
| | - Noriya Al-Khuzaei
- Pharmacy Department, Mental Health Services, Hamad Medical Corporation, Doha, Qatar
| | - Asma Al-Thani
- Medical and Health Sciences Office, Qatar University, Doha, Qatar
| | | |
Collapse
|
4
|
Delabays B, Trajanoska K, Walonoski J, Mooser V. Cardiovascular Pharmacogenetics: From Discovery of Genetic Association to Clinical Adoption of Derived Test. Pharmacol Rev 2024; 76:791-827. [PMID: 39122647 DOI: 10.1124/pharmrev.123.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024] Open
Abstract
Recent breakthroughs in human genetics and in information technologies have markedly expanded our understanding at the molecular level of the response to drugs, i.e., pharmacogenetics (PGx), across therapy areas. This review is restricted to PGx for cardiovascular (CV) drugs. First, we examined the PGx information in the labels approved by regulatory agencies in Europe, Japan, and North America and related recommendations from expert panels. Out of 221 marketed CV drugs, 36 had PGx information in their labels approved by one or more agencies. The level of annotations and recommendations varied markedly between agencies and expert panels. Clopidogrel is the only CV drug with consistent PGx recommendation (i.e., "actionable"). This situation prompted us to dissect the steps from discovery of a PGx association to clinical translation. We found 101 genome-wide association studies that investigated the response to CV drugs or drug classes. These studies reported significant associations for 48 PGx traits mapping to 306 genes. Six of these 306 genes are mentioned in the corresponding PGx labels or recommendations for CV drugs. Genomic analyses also highlighted the wide between-population differences in risk allele frequencies and the individual load of actionable PGx variants. Given the high attrition rate and the long road to clinical translation, additional work is warranted to identify and validate PGx variants for more CV drugs across diverse populations and to demonstrate the utility of PGx testing. To that end, pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond. SIGNIFICANCE STATEMENT: Despite spectacular breakthroughs in human molecular genetics and information technologies, consistent evidence supporting PGx testing in the cardiovascular area is limited to a few drugs. Additional work is warranted to discover and validate new PGx markers and demonstrate their utility. Pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond.
Collapse
Affiliation(s)
- Benoît Delabays
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Joshua Walonoski
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| |
Collapse
|
5
|
Abiib S, Khodjet-El-khil H, El-Akouri K, Bux RI, Rezoug Z, Abualainin W, Alkowari M, Musa SO, Al Mulla M, Al Saleh R, Shahbeck N, Farag M, Ismail SI, Al Sulaiman R, Ben-Omran T, Al-Thani A, Al-Shafai M. Qatar's genetic counseling landscape: Current insights and future prospects. GENETICS IN MEDICINE OPEN 2024; 2:101866. [PMID: 39712968 PMCID: PMC11658542 DOI: 10.1016/j.gimo.2024.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 12/24/2024]
Abstract
Genetic counseling is a dynamic and rapidly growing field. In Qatar, the significance of genetic counseling is underscored by the distinctive demographic characteristics of the population, including elevated rates of consanguinity and larger family sizes, contributing to the increased incidence of many genetic conditions. This emphasizes the crucial role of genetic counseling in addressing the specific needs of the community. Over the past decade, key health care institutions in Qatar, such as Hamad Medical Corporation and Sidra Medicine, have significantly expanded genetic counseling services encompassing premarital, reproductive, prenatal, pediatric, adult, and cancer care. This multifaceted approach reflects Qatar's health care system's commitment to addressing various aspects of genetic health and well-being across different life stages. A pivotal milestone in the field's development in Qatar was the establishment of a genetic counseling master's program at Qatar University in 2018, showcasing the country's dedication to fostering indigenous expertise in genetic counseling with the necessary competencies and cultural sensitivity to address the unique genetic counseling needs of the population. The recognition of genetic counseling as a profession and the licensure by the Ministry of Public Health in Qatar is another key achievement to ensure the high quality of service and protection of the profession. Contributing to global genetic knowledge, various academic and research entities in Qatar are conducting genetic/genomic/genetic counseling research toward advancing precision medicine in the country, and initiatives such as the Qatar Biobank and Qatar Genome Program have played a major role in catalyzing these efforts.
Collapse
Affiliation(s)
- Sumaya Abiib
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Houssein Khodjet-El-khil
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Karen El-Akouri
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Reem Ibrahim Bux
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
| | - Zoulikha Rezoug
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wafa Abualainin
- Diagnostic Genomic Division, Hamad Medical Corporation, Doha, Qatar
| | - Moza Alkowari
- Diagnostic Genomic Division, Hamad Medical Corporation, Doha, Qatar
| | - Sara Osman Musa
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Mariam Al Mulla
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Rehab Al Saleh
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Noora Shahbeck
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Maria Farag
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Said I. Ismail
- Qatar Genome Program, Qatar Foundation Research, Doha, Qatar
| | - Reem Al Sulaiman
- Department of Medical Oncology, National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Tawfeg Ben-Omran
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Asma Al-Thani
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Abdel‐latif R, Badji R, Mohammed S, Al‐Muftah W, Mbarek H, Darwish D, Assaf D, Al‐Badriyeh D, Elewa H, Afifi N, Masoodi NA, Omar AS, Al Suwaidi J, Bujassoum S, Al Hail M, Ismail SI, Althani A. QPGx-CARES: Qatar pharmacogenetics clinical applications and research enhancement strategies. Clin Transl Sci 2024; 17:e13800. [PMID: 38818903 PMCID: PMC11140449 DOI: 10.1111/cts.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
Pharmacogenetic (PGx)-informed medication prescription is a cutting-edge genomic application in contemporary medicine, offering the potential to overcome the conventional "trial-and-error" approach in drug prescription. The ability to use an individual's genetic profile to predict drug responses allows for personalized drug and dosage selection, thereby enhancing the safety and efficacy of treatments. However, despite significant scientific and clinical advancements in PGx, its integration into routine healthcare practices remains limited. To address this gap, the Qatar Genome Program (QGP) has embarked on an ambitious initiative known as QPGx-CARES (Qatar Pharmacogenetics Clinical Applications and Research Enhancement Strategies), which aims to set a roadmap for optimizing PGx research and clinical implementation on a national scale. The goal of QPGx-CARES initiative is to integrate PGx testing into clinical settings with the aim of improving patient health outcomes. In 2022, QGP initiated several implementation projects in various clinical settings. These projects aimed to evaluate the clinical utility of PGx testing, gather valuable insights into the effective dissemination of PGx data to healthcare professionals and patients, and identify the gaps and the challenges for wider adoption. QPGx-CARES strategy aimed to integrate evidence-based PGx findings into clinical practice, focusing on implementing PGx testing for cardiovascular medications, supported by robust scientific evidence. The current initiative sets a precedent for the nationwide implementation of precision medicine across diverse clinical domains.
Collapse
Affiliation(s)
- Rania Abdel‐latif
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | - Radja Badji
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | | | - Wadha Al‐Muftah
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | - Hamdi Mbarek
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | - Dima Darwish
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | - Duha Assaf
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | | | - Hazem Elewa
- College of Pharmacy, QU HealthQatar UniversityDohaQatar
| | - Nahla Afifi
- Qatar Biobank for Medical ResearchQatar Foundation for Education, Science, and CommunityDohaQatar
| | | | - Amr Salah Omar
- Cardiology and Cardiovascular SurgeryDepartment Hamad Medical CorporationDohaQatar
| | - Jassim Al Suwaidi
- Cardiology and Cardiovascular SurgeryDepartment Hamad Medical CorporationDohaQatar
| | - Salha Bujassoum
- Medical Oncology, National Center for Cancer Care and ResearchDepartment Hamad Medical CorporationDohaQatar
| | - Moza Al Hail
- Pharmacy DepartmentHamad Medical CorporationDohaQatar
| | - Said I. Ismail
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | - Asma Althani
- Biomedical Research CenterQatar UniversityDohaQatar
| |
Collapse
|
7
|
Goljan E, Abouelhoda M, Tahir A, ElKalioby M, Meyer B, Monies D. Large-scale next generation sequencing based analysis of SLCO1B1 pharmacogenetics variants in the Saudi population. Hum Genomics 2024; 18:30. [PMID: 38523294 PMCID: PMC10962151 DOI: 10.1186/s40246-024-00594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND SLCO1B1 plays an important role in mediating hepatic clearance of many different drugs including statins, angiotensin-converting enzyme inhibitors, chemotherapeutic agents and antibiotics. Several variants in SLCO1B1 have been shown to have a clinically significant impact, in relation to efficacy of these medications. This study provides a comprehensive overview of SLCO1B1 variation in Saudi individuals, one of the largest Arab populations in the Middle East. METHODS The dataset of 11,889 (9,961 exomes and 1,928 pharmacogenetic gene panel) Saudi nationals, was used to determine the presence and frequencies of SLCO1B1 variants, as described by the Clinical Pharmacogenetic Implementation Consortium (CPIC). RESULTS We identified 141 previously described SNPs, of which rs2306283 (50%) and rs4149056 (28%), were the most common. In addition, we observed six alleles [*15 (24.7%) followed by *20 (8.04%), *14 (5.86%), *5 (3.84%), *31 (0.21%) and *9 (0.03%)] predicted to be clinically actionable. Allele diplotype to phenotype conversion revealed 41 OATP1B1 diplotypes. We estimated the burden of rare, and novel predicted deleterious variants, resulting from 17 such alterations. CONCLUSIONS The data we present, from one of the largest Arab cohorts studied to date, provides the most comprehensive overview of SLCO1B1 variants, and the subsequent OATP1B1 activity of this ethnic group, which thus far remains relatively underrepresented in available international genomic databases. We believe that the presented data provides a basis for further clinical investigations and the application of personalized statin drug therapy guidance in Arabs.
Collapse
Affiliation(s)
- Ewa Goljan
- Clinical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Mohammed Abouelhoda
- Computational Biosciences, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Asma Tahir
- Computational Biosciences, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed ElKalioby
- Computational Biosciences, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Brian Meyer
- Clinical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Dorota Monies
- Clinical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
8
|
Bastaki K, Velayutham D, Irfan A, Adnan M, Mohammed S, Mbarek H, Qoronfleh MW, Jithesh PV. Forging the path to precision medicine in Qatar: a public health perspective on pharmacogenomics initiatives. Front Public Health 2024; 12:1364221. [PMID: 38550311 PMCID: PMC10977610 DOI: 10.3389/fpubh.2024.1364221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024] Open
Abstract
Pharmacogenomics (PGx) is an important component of precision medicine that promises tailored treatment approaches based on an individual's genetic information. Exploring the initiatives in research that help to integrate PGx test into clinical setting, identifying the potential barriers and challenges as well as planning the future directions, are all important for fruitful PGx implementation in any population. Qatar serves as an exemplar case study for the Middle East, having a small native population compared to a diverse immigrant population, advanced healthcare system, national genome program, and several educational initiatives on PGx and precision medicine. This paper attempts to outline the current state of PGx research and implementation in Qatar within the global context, emphasizing ongoing initiatives and educational efforts. The inclusion of PGx in university curricula and healthcare provider training, alongside precision medicine conferences, showcase Qatar's commitment to advancing this field. However, challenges persist, including the requirement for population specific implementation strategies, complex genetic data interpretation, lack of standardization, and limited awareness. The review suggests policy development for future directions in continued research investment, conducting clinical trials for the feasibility of PGx implementation, ethical considerations, technological advancements, and global collaborations to overcome these barriers.
Collapse
Affiliation(s)
- Kholoud Bastaki
- Clinical and Pharmacy Practice Department, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Dinesh Velayutham
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Areeba Irfan
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Mohd Adnan
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Sawsan Mohammed
- College of Medicine, Pre-Clinical Education Department, QU Health, Qatar University, Doha, Qatar
| | | | - M. Waild Qoronfleh
- Q3 Research Institute (QRI), Research & Policy Division, Ann Arbor, MI, United States
| | - Puthen Veettil Jithesh
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| |
Collapse
|
9
|
Jolly B, Scaria V. Ethnic differences in pharmacogenomic variants: a south Asian perspective. Pharmacogenomics 2024; 25:171-174. [PMID: 38511426 DOI: 10.2217/pgs-2024-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Affiliation(s)
- Bani Jolly
- Karkinos Healthcare Private Limited (KHPL), Aurbis Business Parks, Bellandur, Bengaluru, Karnataka, 560103, India
| | - Vinod Scaria
- Vishwanath Cancer Care Foundation (VCCF), Neelkanth Business Park Kirol Village, West Mumbai, Maharashtra, 400086, India
| |
Collapse
|
10
|
Abouelhoda M, Almuqati N, Abogosh A, Alfraih F, Maddirevula S, Alkuraya FS. Mining local exome and HLA data to characterize pharmacogenetic variants in Saudi Arabia. Hum Genet 2024; 143:125-136. [PMID: 38159139 DOI: 10.1007/s00439-023-02628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Pharmacogenomics (PGx) is a promising field of precision medicine where efficacy of drugs is maximized while side effects are minimized for individual patients. Knowledge of the frequency of PGx-relevant variants (pharmacovariants) in the local population is a pre-requisite to informed policy making. Unfortunately, such knowledge is largely lacking from the Middle East. Here, we describe the use of a large clinical exome database (n = 13,473) and HLA haplotypes (n = 64,737) from Saudi Arabia, one of the largest countries in the Middle East, along with previously published data from the local population to ascertain allele frequencies of known pharmacovariants. In addition, we queried another exome database (n = 816) of well-phenotyped research subjects from Saudi Arabia to discover novel candidate variants in known PGx genes (pharmacogenes). Although our results show that only 26% (63/242) of class 1A/1B PharmGKB variants were identified, we estimate that 99.57% of the local population have at least one such variant. This translates to a minimum estimated impact of 9% of medications dispensed by our medical center annually. We also highlight the contribution of rare variants where 71% of the pharmacogenes devoid of common pharmacovariants had at least one potentially deleterious rare variant. Thus, we show that approaches that go beyond the use of commercial PGx kits that have been optimized for other populations should be implemented to ensure universal and equitable access of all members of the local population to personalized prescription practices.
Collapse
Affiliation(s)
- Mohamed Abouelhoda
- Department of Computational Sciences, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Noura Almuqati
- Department of Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmed Abogosh
- Department of Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Feras Alfraih
- Oncology Centre, Faisal Specialist Hospital and Research Centre, Riyadh, King, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
Ribeiro HP, Baraldi BM, Rodrigues-Soares F, Planello AC. Psychiatric Level 1A evidence pharmacogenomics in a Brazilian admixed cohort and global populations. Pharmacogenomics 2024; 25:69-78. [PMID: 38288577 DOI: 10.2217/pgs-2023-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Purpose: To compare minor allele frequencies (MAFs) of psychiatric drug response variants in a Brazilian admixed cohort with global populations and other Brazilian groups. Methods: PharmGKB MAFs were gathered from publicly available genetic datasets for Brazil and worldwide. Results: Among 146 variants in CYP2D6 and CYP2C19, 41 were present in Brazil, mostly rare (MAF <1%). 11 variants showed significant MAF differences with large effect sizes compared with global populations. CYP2C19*3 (rs4986893), CYP2C19*17 (rs12248560), CYP2D6*17 (rs28371706-A) and CYP2D6*29 (rs61736512) exhibited higher frequencies in Brazil, with the latter three also differing from other Brazilian groups. Conclusion: This study highlights significant pharmacogenomic diversity in Brazil and globally, underscoring the need for more research in personalized psychiatric drug therapy.
Collapse
Affiliation(s)
- Helena Pereira Ribeiro
- Department of Morphology & Basic Pathology - Medical School, Faculdade de Medicina de Jundiaí, Jundiaí, 13202-550, Brazil
| | - Beatriz Meza Baraldi
- Department of Morphology & Basic Pathology - Medical School, Faculdade de Medicina de Jundiaí, Jundiaí, 13202-550, Brazil
| | - Fernanda Rodrigues-Soares
- Department of Pathology, Genetics, & Evolution, Institute of Biological & Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, 38035-180, Brazil
| | - Aline Cristiane Planello
- Department of Morphology & Basic Pathology - Medical School, Faculdade de Medicina de Jundiaí, Jundiaí, 13202-550, Brazil
- Department of Bioscience, Faculdade de Odontologia de Piracicaba/Universidade de Campinas, 13414-903, Brazil
| |
Collapse
|
12
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
13
|
Chang YL, Hsiao TH, Wu MF, Chen CH. The Prevalence and Features of Medications With Actionable Pharmacogenomic Biomarkers Prescribed to Kidney Transplant Recipients. Transplant Proc 2023:S0041-1345(23)00222-1. [PMID: 37127518 DOI: 10.1016/j.transproceed.2023.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Genetic variants are associated with pharmacokinetic and pharmacodynamic changes, leading to variability in drug effects and safety profiles in the clinical response. The role of genetic variants in kidney transplant recipients (KTRs) has not been extensively studied. Here, we explored the potential of incorporating pharmacogenomic (PGx) gene biomarkers into prescription practices for KTRs. METHODS This study analyzed 490 KTRs participating in the Taiwan Precision Medicine Initiative program and used medications with actionable PGx biomarkers. The analysis included prescriptions issued between January 2000 and December 2021 with 206 CPIC-recommended level A or B gene-drug pairs, encompassing 363 single or combination drug products. RESULTS All KTRs had the potential to receive at least one prescription that could be adjusted based on their genetic profiles after the day of surgery. The top 5 medications prescribed within the first 3 months after transplantation were mycophenolic acid, tacrolimus, pantoprazole, labetalol, and tramadol. These findings highlight the significant potential of PGx-guided prescriptions for KTRs. Additionally, some drug-gene pairs, such as tramadol/CYP2D6, pantoprazole/CYP2C19, and atorvastatin/SLCO1B1, were considered high-quality evidence by the Clinical Pharmacogenetics Implementation Consortium and were included in the Food and Drug Administration's drug labels, indicating that they have the potential for clinical application. CONCLUSIONS Overall, this study demonstrated the potential of incorporating PGx gene biomarkers into prescribing practices for KTRs, which could improve personalized pharmacotherapy for these patients.
Collapse
Affiliation(s)
- Yen-Lin Chang
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Fen Wu
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung VeteransTaichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, NationalTaichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Nunez-Torres R, Pita G, Peña-Chilet M, López-López D, Zamora J, Roldán G, Herráez B, Álvarez N, Alonso MR, Dopazo J, Gonzalez-Neira A. A Comprehensive Analysis of 21 Actionable Pharmacogenes in the Spanish Population: From Genetic Characterisation to Clinical Impact. Pharmaceutics 2023; 15:pharmaceutics15041286. [PMID: 37111771 PMCID: PMC10140932 DOI: 10.3390/pharmaceutics15041286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The implementation of pharmacogenetics (PGx) is a main milestones of precision medicine nowadays in order to achieve safer and more effective therapies. Nevertheless, the implementation of PGx diagnostics is extremely slow and unequal worldwide, in part due to a lack of ethnic PGx information. We analysed genetic data from 3006 Spanish individuals obtained by different high-throughput (HT) techniques. Allele frequencies were determined in our population for the main 21 actionable PGx genes associated with therapeutical changes. We found that 98% of the Spanish population harbours at least one allele associated with a therapeutical change and, thus, there would be a need for a therapeutical change in a mean of 3.31 of the 64 associated drugs. We also identified 326 putative deleterious variants that were not previously related with PGx in 18 out of the 21 main PGx genes evaluated and a total of 7122 putative deleterious variants for the 1045 PGx genes described. Additionally, we performed a comparison of the main HT diagnostic techniques, revealing that after whole genome sequencing, genotyping with the PGx HT array is the most suitable solution for PGx diagnostics. Finally, all this information was integrated in the Collaborative Spanish Variant Server to be available to and updated by the scientific community.
Collapse
Affiliation(s)
- Rocio Nunez-Torres
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 41013 Sevilla, Spain
- Computational Systems Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Seville, Spain
| | - Daniel López-López
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 41013 Sevilla, Spain
- Computational Systems Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Seville, Spain
| | - Jorge Zamora
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Gema Roldán
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Belén Herráez
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Nuria Álvarez
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - María Rosario Alonso
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Joaquín Dopazo
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 41013 Sevilla, Spain
- Computational Systems Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Seville, Spain
- Functional Genomics Node, FPS/ELIXIR-ES, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Anna Gonzalez-Neira
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER-U706), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
15
|
Sarhan N, Essam Abou Warda A, Alsahali S, Alanazi AS. Impact of Vitamin D Supplementation on the Clinical Outcomes and Epigenetic Markers in Patients with Acute Coronary Syndrome. Pharmaceuticals (Basel) 2023; 16:262. [PMID: 37259407 PMCID: PMC9967129 DOI: 10.3390/ph16020262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/29/2024] Open
Abstract
Vitamin D has recently been found to influence the renin-angiotensin system (RAS); it can reduce the effects of renin-angiotensin system inhibitors (RASI) by decreasing plasma renin. This study examines the effect of vitamin D supplements on cardiac fibrosis markers, echocardiographic parameters, and epigenetic markers in patients with established acute coronary syndrome (ACS). It also looks at the incidence of vitamin D receptor (VDR) gene polymorphisms Apa I (rs7975232), Bsm I (rs1544410), Taq I (rs731236), and Fok I (rs2228570) and its association with the development of secondary major acute cardiovascular events (MACE) and heart failure (HF). A randomized controlled trial in which patients were divided into two groups was performed. Group 1 comprised of 125 ACS patients who received ACS standard therapy alone, while Group 2 consisted of 125 ACS patients who received ACS standard therapy plus vitamin D according to their vitamin D levels. Patients were monitored for 24 months to find subsequent MACE and HF. Vitamin D therapy for ACS patients resulted in a substantial decline in end systolic and end diastolic volumes (p = 0.0075 and 0.002, respectively), procollagen type III N-terminal peptide (PIIINP) and soluble ST2 levels (p = 0.007 and 0.001, respectively), as well as in ejection fraction and vitamin D level (p = 0.0001 and 0.008, respectively). In addition, vitamin D treatment was linked to a significant decline in the levels of noncoding RNA, such as mir361, lncRNA MEG3, and lncRNA Chaer (p = 2.9 × 10-4, 2.2 × 10-6, and 1.2 × 10-5, respectively). Furthermore, patients who suffered MACE had significantly higher levels of the Bsm I CC and Fok I GG genotypes (p = 4.8 × 10-4 and 0.003, respectively), while patients with HF had significantly higher levels of the Taq I AA genotype (p = 4.2 × 10-7). Supplementing ACS patients with vitamin D has been demonstrated to limit cardiac fibrosis and echocardiographic parameters, as well as epigenetic markers. Additionally, MACE and HF among ACS patients may be related to genetic variations among VDR gene polymorphisms.
Collapse
Affiliation(s)
- Neven Sarhan
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University, Cairo 11828, Egypt
| | - Ahmed Essam Abou Warda
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Saud Alsahali
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Qassim 6688, Saudi Arabia
| | - Abdalla Salah Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
16
|
Abstract
Inter-individual variability in drug response, be it efficacy or safety, is common and likely to become an increasing problem globally given the growing elderly population requiring treatment. Reasons for this inter-individual variability include genomic factors, an area of study called pharmacogenomics. With genotyping technologies now widely available and decreasing in cost, implementing pharmacogenomics into clinical practice - widely regarded as one of the initial steps in mainstreaming genomic medicine - is currently a focus in many countries worldwide. However, major challenges of implementation lie at the point of delivery into health-care systems, including the modification of current clinical pathways coupled with a massive knowledge gap in pharmacogenomics in the health-care workforce. Pharmacogenomics can also be used in a broader sense for drug discovery and development, with increasing evidence suggesting that genomically defined targets have an increased success rate during clinical development.
Collapse
|
17
|
Liu Y, Lin Z, Chen Q, Chen Q, Sang L, Wang Y, Shi L, Guo L, Yu Y. PAnno: A pharmacogenomics annotation tool for clinical genomic testing. Front Pharmacol 2023; 14:1008330. [PMID: 36778023 PMCID: PMC9909284 DOI: 10.3389/fphar.2023.1008330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: Next-generation sequencing (NGS) technologies have been widely used in clinical genomic testing for drug response phenotypes. However, the inherent limitations of short reads make accurate inference of diplotypes still challenging, which may reduce the effectiveness of genotype-guided drug therapy. Methods: An automated Pharmacogenomics Annotation tool (PAnno) was implemented, which reports prescribing recommendations and phenotypes by parsing the germline variant call format (VCF) file from NGS and the population to which the individual belongs. Results: A ranking model dedicated to inferring diplotypes, developed based on the allele (haplotype) definition and population allele frequency, was introduced in PAnno. The predictive performance was validated in comparison with four similar tools using the consensus diplotype data of the Genetic Testing Reference Materials Coordination Program (GeT-RM) as ground truth. An annotation method was proposed to summarize prescribing recommendations and classify drugs into avoid use, use with caution, and routine use, following the recommendations of the Clinical Pharmacogenetics Implementation Consortium (CPIC), etc. It further predicts phenotypes of specific drugs in terms of toxicity, dosage, efficacy, and metabolism by integrating the high-confidence clinical annotations in the Pharmacogenomics Knowledgebase (PharmGKB). PAnno is available at https://github.com/PreMedKB/PAnno. Discussion: PAnno provides an end-to-end clinical pharmacogenomics decision support solution by resolving, annotating, and reporting germline variants.
Collapse
Affiliation(s)
- Yaqing Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zipeng Lin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qiaochu Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Leqing Sang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yunjin Wang
- Department of Breast Surgery, Precision Cancer Medicine Center, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Li Guo
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Li Guo, ; Ying Yu,
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China,*Correspondence: Li Guo, ; Ying Yu,
| |
Collapse
|
18
|
Asiimwe IG, Pirmohamed M. Drug-Drug-Gene Interactions in Cardiovascular Medicine. Pharmgenomics Pers Med 2022; 15:879-911. [PMID: 36353710 PMCID: PMC9639705 DOI: 10.2147/pgpm.s338601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular disease remains a leading cause of both morbidity and mortality worldwide. It is widely accepted that both concomitant medications (drug-drug interactions, DDIs) and genomic factors (drug-gene interactions, DGIs) can influence cardiovascular drug-related efficacy and safety outcomes. Although thousands of DDI and DGI (aka pharmacogenomic) studies have been published to date, the literature on drug-drug-gene interactions (DDGIs, cumulative effects of DDIs and DGIs) remains scarce. Moreover, multimorbidity is common in cardiovascular disease patients and is often associated with polypharmacy, which increases the likelihood of clinically relevant drug-related interactions. These, in turn, can lead to reduced drug efficacy, medication-related harm (adverse drug reactions, longer hospitalizations, mortality) and increased healthcare costs. To examine the extent to which DDGIs and other interactions influence efficacy and safety outcomes in the field of cardiovascular medicine, we review current evidence in the field. We describe the different categories of DDIs and DGIs before illustrating how these two interact to produce DDGIs and other complex interactions. We provide examples of studies that have reported the prevalence of clinically relevant interactions and the most implicated cardiovascular medicines before outlining the challenges associated with dealing with these interactions in clinical practice. Finally, we provide recommendations on how to manage the challenges including but not limited to expanding the scope of drug information compendia, interaction databases and clinical implementation guidelines (to include clinically relevant DDGIs and other complex interactions) and work towards their harmonization; better use of electronic decision support tools; using big data and novel computational techniques; using clinically relevant endpoints, preemptive genotyping; ensuring ethnic diversity; and upskilling of clinicians in pharmacogenomics and personalized medicine.
Collapse
Affiliation(s)
- Innocent G Asiimwe
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Al-Mahayri ZN, Khasawneh LQ, Alqasrawi MN, Altoum SM, Jamil G, Badawi S, Hamza D, George L, AlZaabi A, Ouda H, Al-Maskari F, AlKaabi J, Patrinos GP, Ali BR. Pharmacogenomics implementation in cardiovascular disease in a highly diverse population: initial findings and lessons learned from a pilot study in United Arab Emirates. Hum Genomics 2022; 16:42. [PMID: 36154845 PMCID: PMC9509637 DOI: 10.1186/s40246-022-00417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background Pharmacogenomic (PGx) testing has proved its utility and cost-effectiveness for some commonly prescribed cardiovascular disease (CVD) medications. In addition, PGx-guided dosing guidelines are now available for multiple CVD drugs, including clopidogrel, warfarin, and statins. The United Arab Emirates (UAE) population is diverse and multiethnic, with over 150 nationalities residing in the country. PGx-testing is not part of the standard of care in most global healthcare settings, including the UAE healthcare system. The first pharmacogenomic implementation clinical study in CVD has been approved recently, but multiple considerations needed evaluation before commencing. The current report appraises the PGx-clinical implementation procedure and the potential benefits of pursuing PGx-implementation initiatives in the UAE with global implications. Methods Patients prescribed one or more of the following drugs: clopidogrel, atorvastatin, rosuvastatin, and warfarin, were recruited. Genotyping selected genetic variants at genes interacting with the study drugs was performed by real-time PCR. Results For the current pilot study, 160 patients were recruited. The genotypes and inferred haplotypes, diplotypes, and predicted phenotypes revealed that 11.9% of the participants were poor CYP2C19 metabolizers, 35% intermediate metabolizers, 28.1% normal metabolizers, and 25% rapid or ultrarapid metabolizers. Notably, 46.9% of our cohort should receive a recommendation to avoid using clopidogrel or consider an alternative medication. Regarding warfarin, only 20% of the participants exhibited reference alleles at VKORC1-1639G > A, CYP2C9*2, and CYP2C9*3, leaving 80% with alternative genotypes at any of the two genes that can be integrated into the warfarin dosing algorithms and can be used whenever the patient receives a warfarin prescription. For statins, 31.5% of patients carried at least one allele at the genotyped SLCO1B1 variant (rs4149056), increasing their risk of developing myopathy. 96% of our cohort received at least one PGx-generated clinical recommendation for the studied drugs. Conclusion The current pilot analysis verified the feasibility of PGx-testing and the unforeseen high frequencies of patients currently treated with suboptimal drug regimens, which may potentially benefit from PGx testing.
Collapse
|
20
|
Sridharan K, Shah S, Jassim A, Hammad M, Ebrahim Al Gadhban J, Al Segai O. Evaluation of Pharmacogenetics of Drug-Metabolizing Enzymes and Drug Efflux Transporter in Renal Transplants Receiving Immunosuppressants. J Pers Med 2022; 12:jpm12050823. [PMID: 35629245 PMCID: PMC9147030 DOI: 10.3390/jpm12050823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 (CYP) enzymes, such as CYP3A4, and CYP3A5, P450 oxidoreductase (POR), peroxisome proliferator activated receptor alpha (PPAR-alpha), and drug transporter (ABCB1) were observed to influence concentrations of immunosuppressants (cyclosporine, everolimus, sirolimus, and tacrolimus) and outcomes in renal transplants. We carried out the present study to evaluate the prevalence and impact of these single nucleotide polymorphisms (SNPs) in adult renal transplants. SNPs were evaluated using commercial TaqMan® assays. Serum drug concentrations were estimated using immunoassays. One hundred and forty-six patients were recruited. SNPs in CYP3A5*3 were significantly associated with greater dose-adjusted cyclosporine and tacrolimus concentrations. SNPs in POR*28 were observed with significantly lower dose-adjusted concentrations, particularly with cyclosporine and tacrolimus. ABCB1 homozygous polymorphisms were observed with significantly lower time spent in the therapeutic range with cyclosporine and everolimus/sirolimus. Cyclosporine was observed in a significantly greater proportion of patients with elevated GGT, and SNPs in PPAR-alpha were significantly associated with an increased risk of this adverse event. Hypertriglyceridemia with everolimus was significantly associated with POR*28 polymorphisms. There is a need to validate the influence of these SNPs in a prospective study and develop an algorithm predicting the achievement of target concentrations.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology & Therapeutics, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 328, Bahrain
- Correspondence: ; Tel.: +973-33453123
| | - Shamik Shah
- Department of Nephrology, Salmaniya Medical Complex, Manama 328, Bahrain; (S.S.); (J.E.A.G.)
- Department of Internal Medicine, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 328, Bahrain
| | - Anfal Jassim
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 328, Bahrain;
| | - Mona Hammad
- Salmaniya Medical Complex, Manama 328, Bahrain;
| | | | - Ola Al Segai
- Department of Biochemistry, Salmaniya Medical Complex, Manama 328, Bahrain;
| |
Collapse
|
21
|
Mbarek H, Devadoss Gandhi G, Selvaraj S, Al-Muftah W, Badji R, Al-Sarraj Y, Saad C, Darwish D, Alvi M, Fadl T, Yasin H, Alkuwari F, Razali R, Aamer W, Abbaszadeh F, Ahmed I, Mokrab Y, Suhre K, Albagha O, Fakhro K, Badii R, Ismail SI, Althani A. Qatar Genome: Insights on Genomics from the Middle East. Hum Mutat 2022; 43:499-510. [PMID: 35112413 DOI: 10.1002/humu.24336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/29/2022] [Indexed: 11/09/2022]
Abstract
Despite recent biomedical breakthroughs and large genomic studies growing momentum, the Middle Eastern population, home to over 400 million people, is under-represented in the human genome variation databases. Here we describe insights from phase 1 of the Qatar Genome Program with whole genome sequenced 6,047 individuals from Qatar. We identified more than 88 million variants of which 24 million are novel and 23 million are singletons. Consistent with the high consanguinity and founder effects in the region, we found that several rare deleterious variants were more common in the Qatari population while others seem to provide protection against diseases and have shaped the genetic architecture of adaptive phenotypes. These results highlight the value of our data as a resource to advance genetic studies in the Arab and neighbouring Middle Eastern populations and will significantly boost the current efforts to improve our understanding of global patterns of human variations, human history and genetic contributions to health and diseases in diverse populations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Geethanjali Devadoss Gandhi
- Department of Biomedical Sciences, College of Health Sciences, Qatar University.,College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Senthil Selvaraj
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Wadha Al-Muftah
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Radja Badji
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Yasser Al-Sarraj
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar.,Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Chadi Saad
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Dima Darwish
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Muhammad Alvi
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Tasnim Fadl
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Heba Yasin
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Fatima Alkuwari
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rozaimi Razali
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Waleed Aamer
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | | | - Ikhlak Ahmed
- Sidra Medicine, Biomedical Informatics - Research Branch, Doha, Qatar
| | - Younes Mokrab
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Omar Albagha
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.,Center of Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Khalid Fakhro
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Ramin Badii
- Molecular Genetics Laboratory, Hamad Medical Corporation, Doha, Qatar
| | | | - Asma Althani
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|