1
|
Zhang D, Tong D, Wang Z, Wang S, Jia Y, Ning Y. Inactivation mechanism of phenyllactic acid against Bacillus cereus spores and its application in milk beverage. Food Chem 2024; 453:139601. [PMID: 38754350 DOI: 10.1016/j.foodchem.2024.139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Phenyllactic acid (PLA) as a natural phenolic acid exhibits antibacterial activity against non-spore-forming bacteria, while the inhibitory effect against bacterial spore remained unknown. Herein, this study investigated the inactivation effect of PLA against Bacillus cereus spores. The results revealed that the minimum inhibitory concentration of PLA was 1.25 mg/mL. PLA inhibited the outgrowth of germinated spores into vegetative cells rather than germination of spores. PLA disrupted the spore coat, and damaged the permeability and integrity of inner membrane. Moreover, PLA disturbed the establishment of membrane potential due to the inhibition of oxidative metabolism. SEM observations further visualized the morphological changes and structural disruption caused by PLA. Besides, PLA caused the degradation of DNA of germinated spores. Finally, PLA was applied in milk beverage, and showed promising inhibitory effect against B. cereus spores. This finding could provide scientific basis for the application of PLA against spore-forming bacteria in food industry.
Collapse
Affiliation(s)
- Dongchun Zhang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Danya Tong
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhixin Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shijie Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yingmin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yawei Ning
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
2
|
Trunet C, Vischer N, Coroller L, Brul S. Germination and outgrowth of Bacillus mycoides KBAB4 spores are impacted by environmental pH, quantitatively analyzed at single cell level with sporetracker. Food Microbiol 2024; 121:104509. [PMID: 38637073 DOI: 10.1016/j.fm.2024.104509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 04/20/2024]
Abstract
Quantifying spore germination and outgrowth heterogeneity is challenging. Single cell level analysis should provide supplementary knowledge regarding the impact of unfavorable conditions on germination and outgrowth dynamics. This work aimed to quantify the impact of pH on spore germination and outgrowth, investigating the behavior of individual spore crops, produced under optimal and suboptimal conditions. Bacillus mycoides (formerly B. weihenstephanensis) KBAB4 spores, produced at pH 7.4 and at pH 5.5 were incubated at different pH values, from pH 5.2 to 7.4. The spores were monitored by microscopy live imaging, in controlled conditions, at 30 °C. The images were analyzed using SporeTracker, to determine the state of single cells. The impact of pH on germination and outgrowth times and rates was estimated and the correlation between these parameters was quantified. The correlation between germination and outgrowth times was significantly higher at low pH. These results suggest that an environmental pressure highlights the heterogeneity of spore germination and outgrowth within a spore population. Results were consistent with previous observations at population level, now confirmed and extended to single cell level. Therefore, single cell level analyses can be used to quantify the heterogeneity of spore populations, which is of interest in order to control the development of spore-forming bacteria, responsible for food safety issues.
Collapse
Affiliation(s)
- C Trunet
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - N Vischer
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - L Coroller
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France
| | - S Brul
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Yang W, Yuan Y, He L, Fan H. Single-cell analysis reveals microbial spore responses to sodium hypochlorite. JOURNAL OF BIOPHOTONICS 2024; 17:e202400015. [PMID: 38613161 DOI: 10.1002/jbio.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Pollution from toxic spores has caused us a lot of problems because spores are extremely resistant and can survive most disinfectants. Therefore, the detection of spore response to disinfectant is of great significance for the development of effective decontamination strategies. In this work, we investigated the effect of 0.5% sodium hypochlorite on the molecular and morphological properties of single spores of Bacillus subtilis using single-cell techniques. Laser tweezers Raman spectroscopy showed that sodium hypochlorite resulted in Ca2+-dipicolinic acid release and nucleic acid denaturation. Atomic force microscopy showed that the surface of treated spores changed from rough to smooth, protein shells were degraded at 10 min, and the permeability barrier was destroyed at 15 min. The spore volume decreased gradually over time. Live-cell imaging showed that the germination and growth rates decreased with increasing treatment time. These results provide new insight into the response of spores to sodium hypochlorite.
Collapse
Affiliation(s)
- Weiming Yang
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong, China
| | - Yufeng Yuan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Lin He
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Haihua Fan
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Liu F, Li J, Zhang T, Chen J, Ho CL. Engineered Spore-Forming Bacillus as a Microbial Vessel for Long-Term DNA Data Storage. ACS Synth Biol 2022; 11:3583-3591. [PMID: 36150134 DOI: 10.1021/acssynbio.2c00291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA data storage technology may supersede conventional chip or magnetic data storage medium, providing long-term stability, high density, and sustainable storage. Due to its error-correcting capability, DNA data stored in living organisms exhibits high fidelity in information replication. Here we report the development of a Bacillus chassis integrated with an inducible artificially assembled bacterial chromosome to facilitate random data access. We generated three sets of data in the form of DNA sequences using a rudimentary coding system accessible by the regulatory promoter. Sporulated Bacillus harboring the genes were used for long-term storage, where viability assays of spores were subjected to harsh environmental stresses to evaluate the data storage stability. The data accuracy remained above 99% after high temperature and oxidative stress treatment, whereas UV irradiation treatment provided above 96% accuracy. The developed Bacillus chassis and artificial chromosome facilitate the long-term storage of larger datum volume by using other DNA digital encoding and decoding programs.
Collapse
Affiliation(s)
- Feng Liu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen518055, China
| | - Jiashu Li
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen518055, China
| | - Tongzhou Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen518055, China
| | - Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen518055, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen518055, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen518055, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
6
|
Cui L, Li HZ, Yang K, Zhu LJ, Xu F, Zhu YG. Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Mosca C, Fagliarone C, Napoli A, Rabbow E, Rettberg P, Billi D. Revival of Anhydrobiotic Cyanobacterium Biofilms Exposed to Space Vacuum and Prolonged Dryness: Implications for Future Missions beyond Low Earth Orbit. ASTROBIOLOGY 2021; 21:541-550. [PMID: 33956489 DOI: 10.1089/ast.2020.2359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dried biofilms of Chroococcidiopsis sp. CCMEE 029 were revived after a 672-day exposure to space vacuum outside the International Space Station during the EXPOSE-R2 space mission. After retrieval, they were air-dried stored for 3.5 years. Space vacuum reduced cell viability and increased DNA damage compared to air-dried storage for 6 years under laboratory conditions. Long exposure times to space vacuum and extreme dryness decrease the changes of survival that ultimately depend on DNA damage repair upon rehydration, and hence, an in silico analysis of Chroococcidiopsis sp. CCMEE 029's genome was performed with a focus on DNA repair pathways. The analysis identified a high number of genes that encode proteins of the homologous recombination RecF pathway and base excision repair that were over-expressed during 1 and 6 h rehydration of space-vacuum exposed biofilms. This suggests that Chroococcidiopsis developed a survival strategy against desiccation, with DNA repair playing a key role, which allowed the revival of biofilms exposed to space vacuum. Unravelling how long anhydrobiotic cyanobacteria can persist under space vacuum followed by prolonged air-dried storage is relevant to future astrobiological experiments that use space platforms and might require prolonged air-dried storage of the exposed samples before retrieval to Earth.
Collapse
Affiliation(s)
- Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Elke Rabbow
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Petra Rettberg
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Long Y, Huang W, Wang Q, Yang G. Green synthesis of garlic oil nanoemulsion using ultrasonication technique and its mechanism of antifungal action against Penicillium italicum. ULTRASONICS SONOCHEMISTRY 2020; 64:104970. [PMID: 32014757 DOI: 10.1016/j.ultsonch.2020.104970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 05/11/2023]
Abstract
Penicillium italicum (P. italicum) can cause significant economic loss of fruits and vegetables. Although garlic oil (GO) is an effective antimicrobial agent, the unstability and hydrophobicity limit its use as an environmentally friendly alternative to the conventional antibiotics against P. italicum. In this study, we focused on the fabrication and characterization of a functional GO nanoemulsion (NE) using ultrasonic technique and revealed the antifungal mechanism of the GO NE on P. italicum based on morphological, structural and molecular analyses. The optimal hydrophilic lipophilic balance (HLB) value determined for GO was 14 through the combination of Tween 80 and Span 80. Then the Box-Benhnken Design (BBD) was applied to produce the GO NE and the effects of different fabrication parameters on the particle size were evaluated. The optimal GO NE was selected with the GO concentration of 5.5%, the Smix concentration of 10%, the ultrasonic time of 5 min and the power of 50%. This GO NE had the smallest particle size of 52.27 nm, the best antifungal effect and the most stability. Furthermore, the antifungal mechanism of the GO NE on P. italicum was evaluated by extracellular conductivity, micro-Raman spectra, fluorescence imaging and scanning electron microscopy (SEM) imaging. The results presented that the GO NE retained the antifungal active ingredients. The fungal cell structure and morphology were malformed after treated with the GO NE and the lipids, nucleic acids and protein of P. italicum were destructed. Finally, the optimal GO NE was applied in vivo and P. italicum in citrus was successfully inhibited. It indicated that the optimal GO NE had the better antifungal activity against P. italicum than the pure GO. Besides, the minimum inhibitory concentration (MIC) of GO after preparing into the NE was changed from 3.7% to 0.01265% with about 300 times improvement of bioavailability. Therefore, the synthetic GO NE which promoted the bioavailability of GO was recommended as a promising alternative to inhibit P. italicum in vegetables and fruits.
Collapse
Affiliation(s)
- Yuan Long
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China
| | - Wenqian Huang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China.
| | - Qingyan Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China
| | - Guiyan Yang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China
| |
Collapse
|
9
|
Engineering Bacillus subtilis as a Versatile and Stable Platform for Production of Nanobodies. Appl Environ Microbiol 2020; 86:AEM.02938-19. [PMID: 32060024 DOI: 10.1128/aem.02938-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
There is a growing need for a highly stable system to allow the production of biologics for diagnoses and therapeutic interventions on demand that could be used in extreme environments. Among the variety of biologics, nanobodies (Nbs) derived from single-chain variable antibody fragments from camelids have attracted great attention in recent years due to their small size and great stability with translational potentials in whole-body imaging and the development of new drugs. Intracellular expression using the bacterium Escherichia coli has been the predominant system to produce Nbs, and this requires lengthy steps for releasing intracellular proteins for purification as well as removal of endotoxins. Lyophilized, translationally competent cell extracts have also been explored as offering portability and long shelf life, but such extracts may be difficult to scale up and suffer from batch-to-batch variability. To address these problems, we present a new system to do the following: (i) engineer the spore-forming bacterium Bacillus subtilis to secrete Nbs that can target small molecules or protein antigens on mammalian cells, (ii) immobilize Nbs containing a cellulose-binding domain on a cellulose matrix for long-term storage and small-molecule capturing, (iii) directly use Nb-containing bacterial supernatant fluid to perform protein detection on cell surfaces, and (iv) convert engineered B. subtilis to spores that are resistant to most environmental extremes. In summary, our work may open a new paradigm for using B. subtilis as an extremely stable microbial factory to produce Nbs with applications in extreme environments on demand.IMPORTANCE It is highly desirable to produce biologics for diagnoses and therapeutic interventions on demand that could be used in a variety of settings. Among the many biologics, Nbs have attracted attention due to their small size, thermal stability, and broad utility in diagnoses, therapies, and fundamental research. Nbs originate from antibodies found in camelids, and >10 companies have invested in Nbs as potential drugs. Here, we present a system using cells of the bacterium Bacillus subtilis as a versatile platform for production of Nbs and then antigen detection via customized affinity columns. Importantly, B. subtilis carrying engineered genes for Nbs can form spores, which survive for years in a desiccated state. However, upon rehydration and exposure to nutrients, spores rapidly transition to growing cells which secrete encoded Nbs, thus allowing their manufacture and purification.
Collapse
|
10
|
Miao Z, Zhang P, Zhang Y, Huang X, Liu J, Wang G. Single-cell analysis reveals the effects of glutaraldehyde and formaldehyde on individual Nosema bombycis spores. Analyst 2019; 144:3136-3143. [DOI: 10.1039/c8an02425a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-cell analysis based on optical techniques offers new understanding of the action underlying the use of aldehyde disinfectants against microsporidia spores.
Collapse
Affiliation(s)
- Zhenbin Miao
- College of Physics Science and Technology
- Guangxi Normal University
- Guilin
- China
- Guangxi Academy of Sciences
| | - Pengfei Zhang
- School of Precision Instruments and Optoelectronics Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Yu Zhang
- College of Physics Science and Technology
- Guangxi Normal University
- Guilin
- China
| | - Xuhua Huang
- Guangxi Academy of Sericultural Sciences
- Nanning
- China
| | - Junxian Liu
- College of Physics Science and Technology
- Guangxi Normal University
- Guilin
- China
| | | |
Collapse
|