1
|
Grigorev K, Nelson TM, Overbey EG, Houerbi N, Kim J, Najjar D, Damle N, Afshin EE, Ryon KA, Thierry-Mieg J, Thierry-Mieg D, Melnick AM, Mateus J, Mason CE. Direct RNA sequencing of astronaut blood reveals spaceflight-associated m6A increases and hematopoietic transcriptional responses. Nat Commun 2024; 15:4950. [PMID: 38862496 PMCID: PMC11166648 DOI: 10.1038/s41467-024-48929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We perform long-read, direct RNA nanopore sequencing, as well as Ultima high-coverage RNA-sequencing, of whole blood sampled longitudinally from four SpaceX Inspiration4 astronauts at seven timepoints, spanning pre-flight, day of return, and post-flight recovery. We report key genetic pathways, including changes in erythrocyte regulation, stress induction, and immune changes affected by spaceflight. We also present the first m6A methylation profiles for a human space mission, suggesting a significant spike in m6A levels immediately post-flight. These data and results represent the first longitudinal long-read RNA profiles and RNA modification maps for each gene for astronauts, improving our understanding of the human transcriptome's dynamic response to spaceflight.
Collapse
Affiliation(s)
- Kirill Grigorev
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Theodore M Nelson
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Center for STEM, University of Austin, Austin, TX, USA
- BioAstra, Inc, New York, NY, USA
| | - Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information (NCBI), National Library of Medicine, NIH, Bethesda, MD, 20894, USA
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information (NCBI), National Library of Medicine, NIH, Bethesda, MD, 20894, USA
| | - Ari M Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- WorldQuant Initiative for Quantitative Prediction, New York, NY, USA.
| |
Collapse
|
2
|
Pouryosef M, Abedini-Nassab R, Akrami SMR. A Novel Framework for Epileptic Seizure Detection Using Electroencephalogram Signals Based on the Bat Feature Selection Algorithm. Neuroscience 2024; 541:35-49. [PMID: 38301741 DOI: 10.1016/j.neuroscience.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
The precise electroencephalogram (EEG) signal classification with the highest possible accuracy is a key goal in the brain-computer interface (BCI). Considering the complexity and nonstationary nature of the EEG signals, there is an urgent need for effective feature extraction and data mining techniques. Here, we introduce a novel pipeline based on Bat and genetic algorithms for feature construction and dimension reduction of EEG signals. After wavelet extraction and segmentation, the Bat algorithm identifies the most relevant features. We use these features and a genetic algorithm combined with a neural network method to automatically classify the segments of the epilepsy EEG signals. We also use available classification methods based on k-Nearest Neighbors or naïve Bayes for comparison purposes. The code distinguishes individual signals within various combinations of data obtained from healthy volunteers with open or closed eyes and patients suffering from epilepsy disorders during seizure-free periods or seizure activities. Compared to the previously introduced methods, our proposed framework demonstrates a superior balance of high accuracy and short runtime. The minimum achieved accuracies for balanced and unbalanced classes are 100% and 75.9%, respectively. This approach has the potential for direct applications in clinics, enabling accurate and rapid analysis of the epilepsy EEG signals obtained from patients.
Collapse
Affiliation(s)
- Mahrad Pouryosef
- Division of Mechatronics Engineering, Faculty of Mechanical Engineering, University of Tabriz, 29 Bahman Blvd, Tabriz 51666 14761, Iran
| | | | - Seyed Mohammad Reza Akrami
- Division of Mechatronics Engineering, Faculty of Mechanical Engineering, University of Tabriz, 29 Bahman Blvd, Tabriz 51666 14761, Iran
| |
Collapse
|
3
|
Binneboessel S, Masyuk M, Piayda K, Bruno RR, Wernly B, Jirak P, Wolff G, Gerdes N, Baldia PH, Kelm M, Nienhaus F, Lang A, Winkels H, Geerling G, Guthoff R, Kaya S, Flossmann G, Riemer T, Baertschi M, Jung C. Rational and design of the REMOTE trial: An exploratory, pilot study to analyze REtinal MicrOcirculaTion in wEightlessness. Clin Hemorheol Microcirc 2023; 84:449-457. [PMID: 36683506 DOI: 10.3233/ch-221691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND "Spaceflight associated neuro-ocular syndrome" (SANS) represents a challenging health condition in modern space medicine. Forty-eight percent of astronauts are diagnosed with SANS after long-term space missions. The pathophysiological mechanism seems to be multifactorial, and yet remains unknown. In this proof-of-concept study we plan to investigate retinal microcirculatory changes in weightlessness and aim to identify their role in the development of SANS. METHODS AND DESIGN Healthy individuals will take part in a parabolic flight campaign, which recreates fractioned total weightlessness periods. The airplane is specifically equipped, and designed for the execution of parabolic flight maneuvers and scientific research in microgravity. Retinal microcirculation will be assessed with a modified fundus camera, which allows dynamic vessel analysis. We will additionally measure intra-ocular pressure and hemodynamic changes during each phase of the flight. Blood samples will be analyzed at baseline, one hour and 24 hours after exposure to weightlessness. CONCLUSIONS This pilot study aims to investigate the feasibility of retinal microcirculation assessment during varying gravity. Results of this study may generate insights whether venous stasis in the eye, surrogated by the dilatation of retinal vessels and increase in intraocular pressure as signs of venous insufficiency, may potentially contribute to the development of SANS.
Collapse
Affiliation(s)
- Stephan Binneboessel
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Maryna Masyuk
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Kerstin Piayda
- Department of Cardiology and Vascular Medicine, Justus-Liebig-University Giessen, Medical Faculty, Giessen, Germany
| | - Raphael Romano Bruno
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Bernhard Wernly
- Department of Anaesthesiology, Paracelsus Medical University Salzburg, Perioperative Medicine and Intensive Care Medicine, Salzburg, Austria
| | - Peter Jirak
- Department of Anaesthesiology, Paracelsus Medical University Salzburg, Perioperative Medicine and Intensive Care Medicine, Salzburg, Austria
| | - Georg Wolff
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Norbert Gerdes
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Philipp Heinrich Baldia
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Fabian Nienhaus
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Alexander Lang
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for InternalMedicine, Cologne, Germany
| | - Gerd Geerling
- Department of Ophthalmology, Heinrich-Heine-University Duesseldorf, MedicalFaculty, Duesseldorf, Germany
| | - Rainer Guthoff
- Department of Ophthalmology, Heinrich-Heine-University Duesseldorf, MedicalFaculty, Duesseldorf, Germany
| | - Sema Kaya
- Department of Ophthalmology, Heinrich-Heine-University Duesseldorf, MedicalFaculty, Duesseldorf, Germany
| | | | | | | | - Christian Jung
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
4
|
El-Daly SM, Gouhar SA, Abd Elmageed ZY. Circulating microRNAs as Reliable Tumor Biomarkers: Opportunities and Challenges Facing Clinical Application. J Pharmacol Exp Ther 2023; 384:35-51. [PMID: 35809898 PMCID: PMC9827506 DOI: 10.1124/jpet.121.000896] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the development of human malignancies, and cells have the ability to secrete these molecules into extracellular compartments. Thus, cell-free miRNAs (circulating miRNAs) can potentially be used as biomarkers to evaluate pathophysiological changes. Although circulating miRNAs have been proposed as potential noninvasive tumor biomarkers for diagnosis, prognosis, and response to therapy, their routine application in the clinic is far from being achieved. This review focuses on the recent progress regarding the value of circulating miRNAs as noninvasive biomarkers, with specific consideration of their relevant clinical applications. In addition, we provide an in-depth analysis of the technical challenges that impact the assessment of circulating miRNAs. We also highlight the significance of integrating circulating miRNAs with the standard laboratory biomarkers to boost sensitivity and specificity. The current status of circulating miRNAs in clinical trials as tumor biomarkers is also covered. These insights and general guidelines will assist researchers in experimental practice to ensure quality standards and repeatability, thus improving future studies on circulating miRNAs. SIGNIFICANCE STATEMENT: Our review will boost the knowledge behind the inconsistencies and contradictory results observed among studies investigating circulating miRNAs. It will also provide a solid platform for better-planned strategies and standardized techniques to optimize the assessment of circulating cell-free miRNAs.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, Egypt (S.M.E-D., S.A.G.); Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt (S.M.E-D.); and Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana-Monroe, Monroe, Louisiana (Z.Y.A.)
| | - Shaimaa A Gouhar
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, Egypt (S.M.E-D., S.A.G.); Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt (S.M.E-D.); and Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana-Monroe, Monroe, Louisiana (Z.Y.A.)
| | - Zakaria Y Abd Elmageed
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, Egypt (S.M.E-D., S.A.G.); Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt (S.M.E-D.); and Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana-Monroe, Monroe, Louisiana (Z.Y.A.)
| |
Collapse
|
5
|
Jiang S, Chen J, Li X, Ren W, Li F, Wang T, Li C, Dong Z, Tian X, Zhang L, Wang L, Lu C, Chi J, Feng L, Yan M. Identification and integrated analysis of lncRNAs and miRNAs in IPEC-J2 cells provide novel insight into the regulation of the innate immune response by PDCoV infection. BMC Genomics 2022; 23:486. [PMID: 35787252 PMCID: PMC9251034 DOI: 10.1186/s12864-022-08722-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are pivotal regulators involved in the pathogenic mechanism of multiple coronaviruses. Porcine deltacoronavirus (PDCoV) has evolved multiple strategies to escape the innate immune response of host cells, but whether ncRNAs are involved in this process during PDCoV infection is still unknown. Results In this study, the expression profiles of miRNAs, lncRNAs and mRNAs in IPEC-J2 cells infected with PDCoV at 0, 12 and 24 hours postinfection (hpi) were identified through small RNA and RNA sequencing. The differentially expressed miRNAs (DEmiRNAs), lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were screened from the comparison group of IPEC-J2 cells at 0 and 12 hpi as well as the comparison group of IPEC-J2 cells at 12 and 24 hpi. The target genes of these DEncRNAs were predicted. The bioinformatics analysis of the target genes revealed multiple significantly enriched functions and pathways. Among them, the genes that were associated with innate immunity were specifically screened. The expression of innate immunity-related ncRNAs and mRNAs was validated by RT–qPCR. Competing endogenous RNA (ceRNA) regulatory networks among innate immunity-related ncRNAs and their target mRNAs were established. Moreover, we found that the replication of PDCoV was significantly inhibited by two innate immunity-related miRNAs, ssc-miR-30c-3p and ssc-miR-374b-3p, in IPEC-J2 cells. Conclusions This study provides a data platform to conduct studies of the pathogenic mechanism of PDCoV from a new perspective and will be helpful for further elucidation of the functional role of ncRNAs involved in PDCoV escaping the innate immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08722-2.
Collapse
Affiliation(s)
- Shan Jiang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiuli Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Weike Ren
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Fengxiang Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Cheng Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Zhimin Dong
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Xiangxue Tian
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Li Zhang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Lili Wang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Chao Lu
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Jingjing Chi
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Minghua Yan
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China. .,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China.
| |
Collapse
|
6
|
Jirak P, Mirna M, Rezar R, Motloch LJ, Lichtenauer M, Jordan J, Binneboessel S, Tank J, Limper U, Jung C. How spaceflight challenges human cardiovascular health. Eur J Prev Cardiol 2022; 29:1399-1411. [PMID: 35148376 DOI: 10.1093/eurjpc/zwac029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/08/2022] [Accepted: 02/06/2022] [Indexed: 11/14/2022]
Abstract
The harsh environmental conditions in space, particularly weightlessness and radiation exposure, can negatively affect cardiovascular function and structure. In the future, preventive cardiology will be crucial in enabling safe space travel. Indeed, future space missions destined to the Moon and from there to Mars will create new challenges to cardiovascular health while limiting medical management. Moreover, commercial spaceflight evolves rapidly such that older persons with cardiovascular risk factors will be exposed to space conditions. This review provides an overview on studies conducted in space and in terrestrial models, particularly head-down bedrest studies. These studies showed that weightlessness elicits a fluid shift towards the head, which likely predisposes to the spaceflight-associated neuro-ocular syndrome, neck vein thrombosis, and orthostatic intolerance after return to Earth. Moreover, cardiovascular unloading produces cardiopulmonary deconditioning which may be associated with cardiac atrophy. In addition to limiting physical performance, the mechanism further worsens orthostatic tolerance after return to Earth. Finally, space conditions may directly affect vascular health, however, the clinical relevance of these findings in terms of morbidity and mortality is unknown. Targeted preventive measures, which are referred to as countermeasures in aerospace medicine, and technologies to identify vascular risks early on will be required to maintain cardiovascular performance and health during future space missions.
Collapse
Affiliation(s)
- Peter Jirak
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Moritz Mirna
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Richard Rezar
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Lukas J Motloch
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Medical Faculty, University of Cologne, Germany
| | - Stephan Binneboessel
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Department of Anaesthesiology and Critical Care Medicine, Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Germany
| |
Collapse
|