1
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
2
|
Castillo-Ribelles L, Arranz-Amo JA, Hernández-Vara J, Samaniego-Toro D, Enriquez-Calzada S, Pozo SLD, Camprodon-Gomez M, Laguna A, Gonzalo MA, Ferrer R, Martinez-Vicente M, Carnicer-Caceres C. Evaluation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Analysis of Glucosylceramide and Galactosylceramide Isoforms in Cerebrospinal Fluid of Parkinson's Disease Patients. Anal Chem 2024; 96:12875-12882. [PMID: 39047057 PMCID: PMC11308999 DOI: 10.1021/acs.analchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Mutations in GBA1, encoding glucocerebrosidase beta 1 (GCase), are the most common genetic risk factor for Parkinson's disease (PD). GCase dysfunction leads to an accumulation of glucosylceramide (GluCer) substrates in different organs and fluids. Despite the challenges in quantifying GluCer isoforms in biological samples, their potential clinical interest as PD biomarkers justifies the development of robust assays. An extensively evaluated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for quantifying 14 GluCer and galactosylceramide (GalCer) isoforms in human cerebrospinal fluid (CSF) samples is presented. Sample pretreatment, HPLC, and MS/MS parameters were optimized. Evaluation was performed according to the recommendations of the Clinical and Laboratory Standards Institute and European Medicines Agency guidelines. Four 7-point calibration curves were generated, with a linearity interval from 2.5 to 200 nM (R2 ≥ 0.995). The limit of quantification was set at 5 nM. Between-run precision and accuracy were up to 12.5 and 9%, respectively. After method validation, we measured the levels of GluCer and GalCer isoforms in CSF human samples, including 6 healthy controls (HC), 22 idiopathic GBA1 wild-type PD (iPD) patients, and 5 GBA1-associated PD (PD-GBA) patients. GluCer/GalCer median ratios were found to be higher in the CSF of PD-GBA patients, particularly in severe GBA1 mutations, than those in iPD and HC. The observed trends in GluCer/GalCer ratios among groups provide novel information for the comprehensive analysis of sphingolipids as potential biomarkers of PD.
Collapse
Affiliation(s)
- Laura Castillo-Ribelles
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jose Antonio Arranz-Amo
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Jorge Hernández-Vara
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Neurology
Department, Vall d’Hebron University
Hospital, Barcelona 08035, Spain
| | | | - Silvia Enriquez-Calzada
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Sara Lucas-Del Pozo
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Neurology
Department, Vall d’Hebron University
Hospital, Barcelona 08035, Spain
- Department
of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London WC1N 3BG, U.K.
| | - Maria Camprodon-Gomez
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Unit
of Hereditary Metabolic Disorders, Internal Medicine Department, Vall d’Hebron University Hospital, Barcelona 08035, Spain
| | - Ariadna Laguna
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Mercedes Arrúe Gonzalo
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Roser Ferrer
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marta Martinez-Vicente
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Clara Carnicer-Caceres
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| |
Collapse
|
3
|
Russo T, Riessland M. Lipid accumulation drives cellular senescence in dopaminergic neurons. Aging (Albany NY) 2024; 16:11128-11133. [PMID: 39033779 PMCID: PMC11315398 DOI: 10.18632/aging.206030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Parkinson's disease (PD) is an age-related movement disorder caused by the loss of dopaminergic (DA) neurons of the substantia nigra pars compacta (SNpc) of the midbrain, however, the underlying cause(s) of this DA neuron loss in PD is unknown and there are currently no effective treatment options to prevent or slow neuronal loss or the progression of related symptoms. It has been shown that both environmental factors as well as genetic predispositions underpin PD development and recent research has revealed that lysosomal dysfunction and lipid accumulation are contributors to disease progression, where an age-related aggregation of alpha-synuclein as well as lipids have been found in PD patients. Interestingly, the most common genetic risk factor for PD is Glucosylceramidase Beta 1 (GBA), which encodes a lysosomal glucocerebrosidase (GCase) that cleaves the beta-glucosidic linkage of lipids known as glucocerebrosides (GluCer). We have recently discovered that artificial induction of GluCer accumulation leads to cellular senescence of DA neurons, suggesting that lipid aggregation plays a crucial role in the pathology of PD by driving senescence in these vulnerable DA neurons. Here, we discuss the relevance of the age-related aggregation of lipids as well as the direct functional link between general lipid aggregation, cellular senescence, and inflammaging of DA neurons. We propose that the expression of a cellular senescence phenotype in the most vulnerable neurons in PD can be triggered by lysosomal impairment and lipid aggregation. Importantly, we highlight additional data that perilipin (PLIN2) is significantly upregulated in senescent DA neurons, suggesting an overall enrichment of lipid droplets (LDs) in these cells. These findings align with our previous results in dopaminergic neurons in highlighting a central role for lipid accumulation in the senescence of DA neurons. Importantly, general lipid droplet aggregation and global lysosomal impairment have been implicated in many neurodegenerative diseases including PD. Taken together, our data suggest a connection between age-related lysosomal impairment, lipid accumulation, and cellular senescence in DA neurons that in turn drives inflammaging in the midbrain and ultimately leads to neurodegeneration and PD.
Collapse
Affiliation(s)
- Taylor Russo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Palmer N, Agnew C, Benn C, Buffham WJ, Castro JN, Chessari G, Clark M, Cons BD, Coyle JE, Dawson LA, Hamlett CCF, Hodson C, Holding F, Johnson CN, Liebeschuetz JW, Mahajan P, McCarthy JM, Murray CW, O'Reilly M, Peakman T, Price A, Rapti M, Reeks J, Schöpf P, St-Denis JD, Valenzano C, Wallis NG, Walser R, Weir H, Wilsher NE, Woodhead A, Bento CF, Tisi D. Fragment-Based Discovery of a Series of Allosteric-Binding Site Modulators of β-Glucocerebrosidase. J Med Chem 2024; 67:11168-11181. [PMID: 38932616 DOI: 10.1021/acs.jmedchem.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
β-Glucocerebrosidase (GBA/GCase) mutations leading to misfolded protein cause Gaucher's disease and are a major genetic risk factor for Parkinson's disease and dementia with Lewy bodies. The identification of small molecule pharmacological chaperones that can stabilize the misfolded protein and increase delivery of degradation-prone mutant GCase to the lysosome is a strategy under active investigation. Here, we describe the first use of fragment-based drug discovery (FBDD) to identify pharmacological chaperones of GCase. The fragment hits were identified by using X-ray crystallography and biophysical techniques. This work led to the discovery of a series of compounds that bind GCase with nM potency and positively modulate GCase activity in cells.
Collapse
Affiliation(s)
- Nick Palmer
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher Agnew
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Caroline Benn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - William J Buffham
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joan N Castro
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Gianni Chessari
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Mellissa Clark
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Benjamin D Cons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joseph E Coyle
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Lee A Dawson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | | | - Charlotte Hodson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Finn Holding
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - John W Liebeschuetz
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Pravin Mahajan
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - James M McCarthy
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher W Murray
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Marc O'Reilly
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Torren Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Amanda Price
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Magdalini Rapti
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Judith Reeks
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Patrick Schöpf
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Jeffrey D St-Denis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Chiara Valenzano
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola G Wallis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Reto Walser
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Heather Weir
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola E Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Andrew Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Carla F Bento
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Dominic Tisi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| |
Collapse
|
5
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
6
|
Cheslow L, Snook AE, Waldman SA. Biomarkers for Managing Neurodegenerative Diseases. Biomolecules 2024; 14:398. [PMID: 38672416 PMCID: PMC11048498 DOI: 10.3390/biom14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Neurological disorders are the leading cause of cognitive and physical disability worldwide, affecting 15% of the global population. Due to the demographics of aging, the prevalence of neurological disorders, including neurodegenerative diseases, will double over the next two decades. Unfortunately, while available therapies provide symptomatic relief for cognitive and motor impairment, there is an urgent unmet need to develop disease-modifying therapies that slow the rate of pathological progression. In that context, biomarkers could identify at-risk and prodromal patients, monitor disease progression, track responses to therapy, and parse the causality of molecular events to identify novel targets for further clinical investigation. Thus, identifying biomarkers that discriminate between diseases and reflect specific stages of pathology would catalyze the discovery and development of therapeutic targets. This review will describe the prevalence, known mechanisms, ongoing or recently concluded therapeutic clinical trials, and biomarkers of three of the most prevalent neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.C.); (A.E.S.)
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E. Snook
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.C.); (A.E.S.)
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A. Waldman
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.C.); (A.E.S.)
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Rus CM, Polla DL, Di Bucchianico S, Fischer S, Hartkamp J, Hartmann G, Alpagu Y, Cozma C, Zimmermann R, Bauer P. Neuronal progenitor cells-based metabolomics study reveals dysregulated lipid metabolism and identifies putative biomarkers for CLN6 disease. Sci Rep 2023; 13:18550. [PMID: 37899458 PMCID: PMC10613621 DOI: 10.1038/s41598-023-45789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
Neuronal ceroid lipofuscinosis 6 (CLN6) is a rare and fatal autosomal recessive disease primarily affecting the nervous system in children. It is caused by a pathogenic mutation in the CLN6 gene for which no therapy is available. Employing an untargeted metabolomics approach, we analyzed the metabolic changes in CLN6 subjects to see if this system could potentially yield biomarkers for diagnosis and monitoring disease progression. Neuronal-like cells were derived from human fibroblast lines from CLN6-affected subjects (n = 3) and controls (wild type, n = 3). These were used to assess the potential of a neuronal-like cell-based metabolomics approach to identify CLN6 distinctive and specific biomarkers. The most impacted metabolic profile is associated with sphingolipids, glycerophospholipids metabolism, and calcium signaling. Over 2700 spectral features were screened, and fifteen metabolites were identified that differed significantly between both groups, including the sphingolipids C16 GlcCer, C24 GlcCer, C24:1 GlcCer and glycerophospholipids PG 40:6 and PG 40:7. Of note, these fifteen metabolites were downregulated in the CLN6 disease group. This study is the first to analyze the metabolome of neuronal-like cells with a pathogenic mutation in the CLN6 gene and to provide insights into their metabolomic alterations. This could allow for the development of novel biomarkers for monitoring CLN6 disease.
Collapse
Affiliation(s)
- Corina-Marcela Rus
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany.
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany.
| | | | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein Straße 25, 18059, Rostock, Germany
| | | | - Jörg Hartkamp
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | | | - Yunus Alpagu
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Claudia Cozma
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein Straße 25, 18059, Rostock, Germany
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| |
Collapse
|
8
|
Yang D, Xie H, Wu S, Ying C, Chen Y, Ge Y, Yao R, Li K, Jiang Z, Chen G. Neurofilament light chain as a mediator between LRRK2 mutation and dementia in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:132. [PMID: 37699957 PMCID: PMC10497522 DOI: 10.1038/s41531-023-00572-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Elevated neurofilament light chain (NfL) levels have been associated with dementia in idiopathic Parkinson's disease (iPD). To examine the baseline and longitudinal changes in NfL levels in GBA-PD, SNCA-PD, and LRRK2-PD and further investigate the association between these genetic mutations, NfL, and dementia in PD. We analyzed data from the Parkinson's Progression Markers Initiative (PPMI), including 184 healthy controls (HC) and 617 PD categorized as iPD (n = 381), LRRK2-PD (n = 142), GBA-PD (n = 76) and SNCA-PD (n = 18). Analysis of covariance (ANCOVA) or linear mixed-effect models were used to compare the baseline or dynamic NfL levels between groups. We then explored the relationship between genetic mutations, serum NfL levels, and conversion to dementia using mediation analysis. After adjusting for confounding factors, SNCA-PD exhibited higher baseline serum NfL levels than iPD. Regarding longitudinal changes, SNCA-PD showed the highest increase rate in estimated NfL levels (2.43 pg/mL per year), while LRRK2-PD experienced the slowest increase rate (0.52 pg/mL per year). Mediation analysis indicated that higher estimated NfL level changes were associated with faster cognitive decline (β = 0.591, p = 0.026). Specifically, the relationship between LRRK2 and dementia was mediated by the estimated NfL level change (β = -0.717, p < 0.05). Longitudinal changes in serum NfL levels may serve as a biomarker for cognitive decline in Parkinson's disease. Moreover, compared to iPD, the slower progression of dementia in LRRK2-PD may be partially attributed to a slower increase in NfL levels.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Haobo Xie
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Sheng Wu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenxin Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yaoying Ge
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Ruotong Yao
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Kun Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zihan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
9
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
10
|
Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. J Mov Disord 2023; 16:261-278. [PMID: 37302978 PMCID: PMC10548077 DOI: 10.14802/jmd.23023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Glucosylceramidase beta 1 (GBA1) variants have attracted enormous attention as the most promising and important genetic candidates for precision medicine in Parkinson's disease (PD). A substantial correlation between GBA1 genotypes and PD phenotypes could inform the prediction of disease progression and promote the development of a preventive intervention for individuals at a higher risk of a worse disease prognosis. Moreover, the GBA1-regulated pathway provides new perspectives on the pathogenesis of PD, such as dysregulated sphingolipid metabolism, impaired protein quality control, and disrupted endoplasmic reticulum-Golgi trafficking. These perspectives have led to the development of novel disease-modifying therapies for PD targeting the GBA1-regulated pathway by repositioning treatment strategies for Gaucher's disease. This review summarizes the current hypotheses on a mechanistic link between GBA1 variants and PD and possible therapeutic options for modulating GBA1-regulated pathways in PD patients.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Clemens R. Scherzer
- Advanced Center for Parkinson’s Disease Research, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Couto B, Sousa M, Gonzalez-Latapi P, McArthur E, Lang A, Chen-Plotkin A, Marras C. Disease Progression and Sphingolipids and Neurofilament Light Chain in Early Idiopathic Parkinson's Disease. Can J Neurol Sci 2023:1-4. [PMID: 37641969 DOI: 10.1017/cjn.2023.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Parkinson's disease(PD) lacks a biomarker for disease progression. To analyze how cerebrospinal fluid (CSF), glucosylceramide (GlcCer), sphingomyelin (SM), or serum neurofilament light chain (NfL) associate with progression of PD in a retrospective cohort, we used linear mixed-model regressions between baseline biomarkers and change in dopamine transporter brain-imaging (DaTscan©), Montreal cognitive assesment (MoCA), or global composite outcome (GCO) score. In 191 PD patients, biomarkers were not associated with DaTscan or MoCA change over 2.1 years. Higher baseline GlcCer/SM ratio and serum-NfL nonsignificantly associated with increase in GCO score. Results do not support a role for CSF-sphingolipid/serum-NfL to predict cognitive and DaTscan progression in early-PD. Potential prediction of global clinical change warrants further study.
Collapse
Affiliation(s)
- Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Institute of Cognitive and Traslational Neuroscience (INCyT), at the INECO-CONICET-Favaloro University Hospital, Buenos Aires, Argentina
| | - Mario Sousa
- Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | - Anthony Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
12
|
Giladi N, Alcalay RN, Cutter G, Gasser T, Gurevich T, Höglinger GU, Marek K, Pacchetti C, Schapira AHV, Scherzer CR, Simuni T, Minini P, Sardi SP, Peterschmitt MJ. Safety and efficacy of venglustat in GBA1-associated Parkinson's disease: an international, multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2023; 22:661-671. [PMID: 37479372 DOI: 10.1016/s1474-4422(23)00205-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Variants in the GBA1 gene, which encodes lysosomal acid glucocerebrosidase, are among the most common genetic risk factors for Parkinson's disease and are associated with faster disease progression. The mechanisms involved are unresolved but might include accumulation of glucosylceramide. Venglustat is a brain-penetrant glucosylceramide synthase inhibitor that, in previous studies, reduced amounts of the glycosphingolipid. We aimed to assess the safety, efficacy, and target engagement of venglustat in people with early-stage Parkinson's disease carrying pathogenic GBA1 variants. METHODS MOVES-PD part 2 was a randomised, double-blinded, placebo-controlled phase 2 study done at 52 centres (academic sites, specialty clinics, and general neurology centres) in 16 countries. Eligible adults aged 18-80 years with Parkinson's disease (Hoehn and Yahr stage ≤2) and one or more GBA1 variants were randomly assigned using an interactive voice-response system (1:1) to 52 weeks of treatment with oral venglustat (15 mg/day) or matching placebo. Investigators, site personnel, participants, and their caregivers were masked to treatment allocation. The primary outcome measure was the change from baseline to 52 weeks in the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III combined score (a higher score indicates greater impairment), and it was analysed in a modified intention-to-treat population (ie, all randomly assigned participants with a baseline and at least one post-baseline measurement during the treatment period). This study was registered with ClinicalTrials.gov (NCT02906020) and is closed to recruitment. FINDINGS Between Dec 15, 2016, and May 27, 2021, 221 participants were randomly assigned to venglustat (n=110) or placebo (n=111). The least squares mean change in MDS-UPDRS parts II and III combined score was 7·29 (SE 1·36) for venglustat (n=96) and 4·71 (SE 1·27) for placebo (n=105); the absolute difference between groups was 2·58 (95% CI -1·10 to 6·27; p=0·17). The most common treatment-emergent adverse events (TEAEs) were constipation and nausea (both were reported by 23 [21%] of 110 participants in the venglustat group and eight [7%] of 111 participants in the placebo group). Serious TEAEs were reported for 12 (11%) participants in each group. There was one death in the venglustat group owing to an unrelated cardiopulmonary arrest and there were no deaths in the placebo group. INTERPRETATION In people with GBA1-associated Parkinson's disease in our study, venglustat had a satisfactory safety profile but showed no beneficial treatment effect compared with placebo. These findings indicate that glucosylceramide synthase inhibition with venglustat might not be a viable therapeutic approach for GBA1-associated Parkinson's disease. FUNDING Sanofi.
Collapse
Affiliation(s)
- Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Roy N Alcalay
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel; Department of Neurology and the Taub Institute, Columbia University Medical Center, New York, NY, USA
| | - Gary Cutter
- University of Alabama at Birmingham, School of Public Health, Birmingham, AL, USA
| | - Thomas Gasser
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Günter U Höglinger
- Department of Neurology, Ludwig Maximilian University, Munich, Germany; German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clemens R Scherzer
- Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Tanya Simuni
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
13
|
Russo T, Kolisnyk B, Aswathy BS, Wan Kim T, Martin J, Plessis-Belair J, Ni J, Pearson JA, Park EJ, Sher RB, Studer L, Riessland M. The SATB1-MIR22-GBA axis mediates glucocerebroside accumulation inducing a cellular senescence-like phenotype in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549710. [PMID: 37503189 PMCID: PMC10370136 DOI: 10.1101/2023.07.19.549710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Idiopathic Parkinson's Disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, which is associated with neuroinflammation and reactive gliosis. The underlying cause of PD and the concurrent neuroinflammation are not well understood. In this study, we utilized human and murine neuronal lines, stem cell-derived dopaminergic neurons, and mice to demonstrate that three previously identified genetic risk factors for PD, namely SATB1, MIR22HG, and GBA, are components of a single gene regulatory pathway. Our findings indicate that dysregulation of this pathway leads to the upregulation of glucocerebrosides (GluCer), which triggers a cellular senescence-like phenotype in dopaminergic neurons. Specifically, we discovered that downregulation of the transcriptional repressor SATB1 results in the derepression of the microRNA miR-22-3p, leading to decreased GBA expression and subsequent accumulation of GluCer. Furthermore, our results demonstrate that an increase in GluCer alone is sufficient to impair lysosomal and mitochondrial function, thereby inducing cellular senescence dependent on S100A9 and stress factors. Dysregulation of the SATB1-MIR22-GBA pathway, observed in both PD patients and normal aging, leads to lysosomal and mitochondrial dysfunction due to the GluCer accumulation, ultimately resulting in a cellular senescence-like phenotype in dopaminergic neurons. Therefore, our study highlights a novel pathway involving three genetic risk factors for PD and provides a potential mechanism for the senescence-induced neuroinflammation and reactive gliosis observed in both PD and normal aging.
Collapse
Affiliation(s)
- Taylor Russo
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Benjamin Kolisnyk
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - BS Aswathy
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Tae Wan Kim
- Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Jacqueline Martin
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan Plessis-Belair
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason Ni
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Jordan A. Pearson
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Emily J. Park
- Stem Cells and Regenerative Medicine, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Roger B. Sher
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Leyns CEG, Prigent A, Beezhold B, Yao L, Hatcher NG, Tao P, Kang J, Suh E, Van Deerlin VM, Trojanowski JQ, Lee VMY, Kennedy ME, Fell MJ, Henderson MX. Glucocerebrosidase activity and lipid levels are related to protein pathologies in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:74. [PMID: 37169750 PMCID: PMC10175254 DOI: 10.1038/s41531-023-00517-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are progressive neurodegenerative diseases characterized by the accumulation of misfolded α-synuclein in the form of Lewy pathology. While most cases are sporadic, there are rare genetic mutations that cause disease and more common variants that increase incidence of disease. The most prominent genetic mutations for PD and DLB are in the GBA1 and LRRK2 genes. GBA1 mutations are associated with decreased glucocerebrosidase activity and lysosomal accumulation of its lipid substrates, glucosylceramide and glucosylsphingosine. Previous studies have shown a link between this enzyme and lipids even in sporadic PD. However, it is unclear how the protein pathologies of disease are related to enzyme activity and glycosphingolipid levels. To address this gap in knowledge, we examined quantitative protein pathology, glucocerebrosidase activity and lipid substrates in parallel from 4 regions of 91 brains with no neurological disease, idiopathic, GBA1-linked, or LRRK2-linked PD and DLB. We find that several biomarkers are altered with respect to mutation and progression to dementia. We found mild association of glucocerebrosidase activity with disease, but a strong association of glucosylsphingosine with α-synuclein pathology, irrespective of genetic mutation. This association suggests that Lewy pathology precipitates changes in lipid levels related to progression to dementia.
Collapse
Affiliation(s)
- Cheryl E G Leyns
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Alice Prigent
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Brenna Beezhold
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Lihang Yao
- Merck & Co., Inc., 770 Sumneytown Pk, West Point, PA, 19486, USA
| | - Nathan G Hatcher
- Merck & Co., Inc., 770 Sumneytown Pk, West Point, PA, 19486, USA
| | - Peining Tao
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - John Kang
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - EunRan Suh
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna M Van Deerlin
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
15
|
Lin R, Yang Y, Wu E, Zhou M, Wang S, Zhang Q. SIRT2 promotes cell proliferation and migration through mediating ERK1/2 activation and lactosylceramide accumulation in prostate cancer. Prostate 2023; 83:71-81. [PMID: 36082450 DOI: 10.1002/pros.24437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/31/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is an age-related malignancy with a high incidence and mortality rate due to lack of efficacy drugs for its therapy in late castration-resistant stage. Sirtuin 2 (SIRT2), a NAD+ -dependent protein deacetylase, is associated with age-related diseases. However, SIRT2 roles in PCa are unclear yet. METHODS Data of SIRT2 expression were extracted from TCGA cohort and GSE54460 cohort. Realtime quantitative PCR and immunohistochemistry were employed to analyze the expression of SIRT2 in PCa tissues. Cell counting Kit-8 assay, lentiviral transduction, flow cytometry, transwell experiments, western blot and metabolomic analysis were performed to explore the functions of SIRT2. RESULTS SIRT2 exhibited increased expression in castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC). Overexpression of SIRT2 promoted cell proliferation, the proportion of S phase, migration and invasion, and reduced apoptosis rate. The increased phosphorylated ERK1/2 indicated the regulation of SIRT2 to cell proliferation, migration and invasion through activation of ERK1/2 pathway. Furthermore, SIRT2 affected cell metabolic profile and induces lactosylceramide production through upregulation of B4GALT5, which further contributes cell migration and invasion. CONCLUSIONS Our data suggested that SIRT2 is overexpressed in CRPC and NEPC and could promote cell growth and migration through activating ERK1/2 pathway and inducing lactosylceramide production, indicating that SIRT2 has the potential to be a new target for the treatment of PCa.
Collapse
Affiliation(s)
- Rui Lin
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yiping Yang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Eran Wu
- Department of Urology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Menghan Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qingyun Zhang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
16
|
Oizumi H, Sugimura Y, Totsune T, Kawasaki I, Ohshiro S, Baba T, Kimpara T, Sakuma H, Hasegawa T, Kawahata I, Fukunaga K, Takeda A. Plasma sphingolipid abnormalities in neurodegenerative diseases. PLoS One 2022; 17:e0279315. [PMID: 36525454 PMCID: PMC9757566 DOI: 10.1371/journal.pone.0279315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In recent years, there has been increasing evidence that several lipid metabolism abnormalities play an important role in the pathogenesis of neurodegenerative diseases. However, it is still unclear which lipid metabolism abnormalities play the most important role in neurodegenerative diseases. Plasma lipid metabolomics (lipidomics) has been shown to be an unbiased method that can be used to explore lipid metabolism abnormalities in neurodegenerative diseases. Plasma lipidomics in neurodegenerative diseases has been performed only in idiopathic Parkinson's disease (IPD) and Alzheimer's disease (AD), and comprehensive studies are needed to clarify the pathogenesis. METHODS In this study, we investigated plasma lipids using lipidomics in individuals with neurodegenerative diseases and healthy controls (CNs). Plasma lipidomics was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in those with IPD, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), AD, and progressive supranuclear palsy (PSP) and CNs. RESULTS The results showed that (1) plasma sphingosine-1-phosphate (S1P) was significantly lower in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (2) Plasma monohexylceramide (MonCer) and lactosylceramide (LacCer) were significantly higher in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (3) Plasma MonCer levels were significantly positively correlated with plasma LacCer levels in all enrolled groups. CONCLUSION S1P, Glucosylceramide (GlcCer), the main component of MonCer, and LacCer are sphingolipids that are biosynthesized from ceramide. Recent studies have suggested that elevated GlcCer and decreased S1P levels in neurons are related to neuronal cell death and that elevated LacCer levels induce neurodegeneration by neuroinflammation. In the present study, we found decreased plasma S1P levels and elevated plasma MonCer and LacCer levels in those with neurodegenerative diseases, which is a new finding indicating the importance of abnormal sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Yoko Sugimura
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Tomoko Totsune
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Iori Kawasaki
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Saki Ohshiro
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Teiko Kimpara
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Hiroaki Sakuma
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
- Department of Cognitive and Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
17
|
Te Vruchte D, Sturchio A, Priestman DA, Tsitsi P, Hertz E, Andréasson M, Markaki I, Wallom KL, Platt F, Svenningsson P. Glycosphingolipid Changes in Plasma in Parkinson's Disease Independent of Glucosylceramide Levels. Mov Disord 2022; 37:2129-2134. [PMID: 35876461 DOI: 10.1002/mds.29163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Alteration in glycosphingolipids (GSLs) in Parkinson's disease (PD) still needs to be determined. OBJECTIVES We evaluated if PD subjects show abnormal GSLs levels compared to healthy controls (HC) and if GSLs correlate with clinical features. METHODS We analyzed GSLs and glucosylceramide (GlcCer) in plasma using two normal-phase high-performance liquid chromatography assays; clinico-demographic data were extracted. RESULTS Eighty PD subjects and 25 HCs were analyzed. Levels of GlcCer, GD1b, Gb4, GalNAcGA1, and b-series were higher in PD patients than in HCs; total GSLs, GT1b, GM1a, GM3, GM2, and a-series levels were lower in PD patients than in HCs. Changes in GSLs were present in PD subjects, with GlcCer levels similar to those in HCs. The results were similar after excluding certain GBA1 mutation carriers. Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III, correlated with Gb4 and Montreal Cognitive Assessment with GD1b levels. CONCLUSIONS Multiple GSL abnormalities in plasma were detected in patients with and without GlcCer changes, indicating a broader shift in lipid homeostasis. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden.,James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Panagiota Tsitsi
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden
| | - Ellen Hertz
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden
| | - Mattias Andréasson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden
| | - Kerri-Lee Wallom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Frances Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Per Svenningsson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden.,Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Lipidomics of Bioactive Lipids in Alzheimer's and Parkinson's Diseases: Where Are We? Int J Mol Sci 2022; 23:ijms23116235. [PMID: 35682914 PMCID: PMC9181703 DOI: 10.3390/ijms23116235] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Lipids are not only constituents of cellular membranes, but they are also key signaling mediators, thus acting as “bioactive lipids”. Among the prominent roles exerted by bioactive lipids are immune regulation, inflammation, and maintenance of homeostasis. Accumulated evidence indicates the existence of a bidirectional relationship between the immune and nervous systems, and lipids can interact particularly with the aggregation and propagation of many pathogenic proteins that are well-renowned hallmarks of several neurodegenerative disorders, including Alzheimer’s (AD) and Parkinson’s (PD) diseases. In this review, we summarize the current knowledge about the presence and quantification of the main classes of endogenous bioactive lipids, namely glycerophospholipids/sphingolipids, classical eicosanoids, pro-resolving lipid mediators, and endocannabinoids, in AD and PD patients, as well as their most-used animal models, by means of lipidomic analyses, advocating for these lipid mediators as powerful biomarkers of pathology, diagnosis, and progression, as well as predictors of response or activity to different current therapies for these neurodegenerative diseases.
Collapse
|
19
|
Glucocerebrosidase-associated Parkinson disease: Pathogenic mechanisms and potential drug treatments. Neurobiol Dis 2022; 166:105663. [DOI: 10.1016/j.nbd.2022.105663] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
|
20
|
Esfandiary A, Finkelstein DI, Voelcker NH, Rudd D. Clinical Sphingolipids Pathway in Parkinson’s Disease: From GCase to Integrated-Biomarker Discovery. Cells 2022; 11:cells11081353. [PMID: 35456032 PMCID: PMC9028315 DOI: 10.3390/cells11081353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Alterations in the sphingolipid metabolism of Parkinson’s Disease (PD) could be a potential diagnostic feature. Only around 10–15% of PD cases can be diagnosed through genetic alterations, while the remaining population, idiopathic PD (iPD), manifest without validated and specific biomarkers either before or after motor symptoms appear. Therefore, clinical diagnosis is reliant on the skills of the clinician, which can lead to misdiagnosis. IPD cases present with a spectrum of non-specific symptoms (e.g., constipation and loss of the sense of smell) that can occur up to 20 years before motor function loss (prodromal stage) and formal clinical diagnosis. Prodromal alterations in metabolites and proteins from the pathways underlying these symptoms could act as biomarkers if they could be differentiated from the broad values seen in a healthy age-matched control population. Additionally, these shifts in metabolites could be integrated with other emerging biomarkers/diagnostic tests to give a PD-specific signature. Here we provide an up-to-date review of the diagnostic value of the alterations in sphingolipids pathway in PD by focusing on the changes in definitive PD (postmortem confirmed brain data) and their representation in “probable PD” cerebrospinal fluid (CSF) and blood. We conclude that the trend of holistic changes in the sphingolipid pathway in the PD brain seems partly consistent in CSF and blood, and could be one of the most promising pathways in differentiating PD cases from healthy controls, with the potential to improve early-stage iPD diagnosis and distinguish iPD from other Parkinsonism when combined with other pathological markers.
Collapse
Affiliation(s)
- Ali Esfandiary
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| | | | - Nicolas Hans Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3168, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-3-9903-9581
| |
Collapse
|
21
|
Kwon EH, Tennagels S, Gold R, Gerwert K, Beyer L, Tönges L. Update on CSF Biomarkers in Parkinson's Disease. Biomolecules 2022; 12:biom12020329. [PMID: 35204829 PMCID: PMC8869235 DOI: 10.3390/biom12020329] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Progress in developing disease-modifying therapies in Parkinson’s disease (PD) can only be achieved through reliable objective markers that help to identify subjects at risk. This includes an early and accurate diagnosis as well as continuous monitoring of disease progression and therapy response. Although PD diagnosis still relies mainly on clinical features, encouragingly, advances in biomarker discovery have been made. The cerebrospinal fluid (CSF) is a biofluid of particular interest to study biomarkers since it is closest to the brain structures and therefore could serve as an ideal source to reflect ongoing pathologic processes. According to the key pathophysiological mechanisms, the CSF status of α-synuclein species, markers of amyloid and tau pathology, neurofilament light chain, lysosomal enzymes and markers of neuroinflammation provide promising preliminary results as candidate biomarkers. Untargeted approaches in the field of metabolomics provide insights into novel and interconnected biological pathways. Markers based on genetic forms of PD can contribute to identifying subgroups suitable for gene-targeted treatment strategies that might also be transferable to sporadic PD. Further validation analyses in large PD cohort studies will identify the CSF biomarker or biomarker combinations with the best value for clinical and research purposes.
Collapse
Affiliation(s)
- Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
| | - Sabrina Tennagels
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
| | - Klaus Gerwert
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Léon Beyer
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Correspondence: ; Tel.: +49-234-509-2420; Fax: +49-234-509-2439
| |
Collapse
|
22
|
Sepúlveda D, Cisternas-Olmedo M, Arcos J, Nassif M, Vidal RL. Contribution of Autophagy-Lysosomal Pathway in the Exosomal Secretion of Alpha-Synuclein and Its Impact in the Progression of Parkinson’s Disease. Front Mol Neurosci 2022; 15:805087. [PMID: 35250476 PMCID: PMC8891570 DOI: 10.3389/fnmol.2022.805087] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is caused by the degeneration of dopaminergic neurons due to an accumulation of intraneuronal abnormal alpha-synuclein (α-syn) protein aggregates. It has been reported that the levels of exosomal α-syn of neuronal origin in plasma correlate significantly with motor dysfunction, highlighting the exosomes containing α-syn as a potential biomarker of PD. In addition, it has been found that the selective autophagy-lysosomal pathway (ALP) contributes to the secretion of misfolded proteins involved in neurodegenerative diseases. In this review, we describe the evidence that supports the relationship between the ALP and α-syn exosomal secretion on the PD progression and its implications in the diagnosis and progression of this pathology.
Collapse
Affiliation(s)
- Denisse Sepúlveda
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Marisol Cisternas-Olmedo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Javiera Arcos
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Melissa Nassif
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - René L. Vidal
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- *Correspondence: René L. Vidal,
| |
Collapse
|