1
|
Dwyer BJ, Tirnitz-Parker JEE. Patient-derived organoid models to decode liver pathophysiology. Trends Endocrinol Metab 2024:S1043-2760(24)00200-5. [PMID: 39191607 DOI: 10.1016/j.tem.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.
Collapse
Affiliation(s)
- Benjamin J Dwyer
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| | - Janina E E Tirnitz-Parker
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| |
Collapse
|
2
|
Jantawong C, Chamgramol Y, Intuyod K, Priprem A, Pairojkul C, Klungsaeng S, Dangtakot R, Pongking T, Sitthirach C, Pinlaor P, Waraasawapati S, Pinlaor S. Curcumin-loaded nanocomplexes alleviate the progression of fluke-related cholangiocarcinoma in hamsters. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Curcumin-loaded nanocomplexes (CNCs) previously demonstrated lower toxicity and extended release better than is the case for free curcumin. Here, we evaluated the efficacy of CNCs against opisthorchiasis-associated cholangiocarcinoma (CCA) in hamsters.
Method
Dose optimization (dose and frequency) was performed over a 1-month period using hamsters, a model that is widely used for study of opisthorchiasis-associated cholangiocarcinoma. In the main experimental study, CCA was induced by a combination of fluke, Opisthorchis viverrini (OV), infection and N-nitrosodimethylamine (NDMA) treatment. Either blank (empty) nanocomplexes (BNCs) or different concentrations of CNCs (equivalent to 10 and 20 mg cur/kg bw) were given to hamsters thrice a week for 5 months. The histopathological changes, biochemical parameters, and the expression of inflammatory/oncogenic transcription factors were investigated. In addition, the role of CNCs in attenuating CCA genesis, as seen in an animal model, was also confirmed in vitro using CCA cell lines.
Results
The optimization study revealed that treatment with CNCs at a dose equivalent to 10 mg cur/kg bw, thrice a week for 1 month, led to a greater reduction of inflammation and liver injury induced in hamsters by OV + NDMA than did treatments at other dose rates. Oral administration with CNCs (10 mg cur/kg bw), thrice a week for 5 months, significantly increased survival rate, reduced CCA incidence, extent of tumor development, cholangitis, bile duct injury and cholangiofibroma. In addition, this treatment decreased serum ALP and ALT activities and suppressed expression of NF-κB, FOXM1, HMGB1, PCNA and formation of 8-nitroguanine. Treatment of CCA cell lines with CNCs also reduced cell proliferation and colony formation, similar to those treated with NF-κB and/or FOXM1 inhibitors.
Conclusion
CNCs (10 mg cur/kg bw) attenuate the progression of fluke-related CCA in hamsters partly via a NF-κB and FOXM1-mediated pathway.
Collapse
|
3
|
Iakovleva V, Wuestefeld A, Ong ABL, Gao R, Kaya NA, Lee MY, Zhai W, Tam WL, Dan YY, Wuestefeld T. Mfap4: a promising target for enhanced liver regeneration and chronic liver disease treatment. NPJ Regen Med 2023; 8:63. [PMID: 37935709 PMCID: PMC10630300 DOI: 10.1038/s41536-023-00337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
The liver has a remarkable regenerative capacity. Nevertheless, under chronic liver-damaging conditions, this capacity becomes exhausted, allowing the accumulation of fibrotic tissue and leading to end-stage liver disease. Enhancing the endogenous regenerative capacity by targeting regeneration breaks is an innovative therapeutic approach. We set up an in vivo functional genetic screen to identify such regeneration breaks. As the top hit, we identified Microfibril associated protein 4 (Mfap4). Knockdown of Mfap4 in hepatocytes enhances cell proliferation, accelerates liver regeneration, and attenuates chronic liver disease by reducing liver fibrosis. Targeting Mfap4 modulates several liver regeneration-related pathways including mTOR. Our research opens the way to siRNA-based therapeutics to enhance hepatocyte-based liver regeneration.
Collapse
Affiliation(s)
- Viktoriia Iakovleva
- Laboratory of In Vivo Genetics and Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Anna Wuestefeld
- Laboratory of In Vivo Genetics and Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - Agnes Bee Leng Ong
- Laboratory of In Vivo Genetics and Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - Rong Gao
- Laboratory of In Vivo Genetics and Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - Neslihan Arife Kaya
- Laboratory of Translational Cancer Biology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - May Yin Lee
- Laboratory of Translational Cancer Biology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Wai Leong Tam
- Laboratory of Translational Cancer Biology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Republic of Singapore
- Division of Gastroenterology and Hepatology, National University Health System, Singapore, 119074, Republic of Singapore
| | - Torsten Wuestefeld
- Laboratory of In Vivo Genetics and Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.
- School of Biological Science, Nanyang University of Singapore, Singapore, 637551, Republic of Singapore.
- National Cancer Centre, Singapore, 169610, Republic of Singapore.
| |
Collapse
|
4
|
Lepore A, Choy PM, Lee NCW, Carella MA, Favicchio R, Briones-Orta MA, Glaser SS, Alpini G, D'Santos C, Tooze RM, Lorger M, Syn WK, Papakyriakou A, Giamas G, Bubici C, Papa S. Phosphorylation and Stabilization of PIN1 by JNK Promote Intrahepatic Cholangiocarcinoma Growth. Hepatology 2021; 74:2561-2579. [PMID: 34048060 DOI: 10.1002/hep.31983] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive type of liver cancer in urgent need of treatment options. Aberrant activation of the c-Jun N-terminal kinase (JNK) pathway is a key feature in ICC and an attractive candidate target for its treatment. However, the mechanisms by which constitutive JNK activation promotes ICC growth, and therefore the key downstream effectors of this pathway, remain unknown for their applicability as therapeutic targets. Our aim was to obtain a better mechanistic understanding of the role of JNK signaling in ICC that could open up therapeutic opportunities. APPROACH AND RESULTS Using loss-of-function and gain-of-function studies in vitro and in vivo, we show that activation of the JNK pathway promotes ICC cell proliferation by affecting the protein stability of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), a key driver of tumorigenesis. PIN1 is highly expressed in ICC primary tumors, and its expression positively correlates with active JNK. Mechanistically, the JNK kinases directly bind to and phosphorylate PIN1 at Ser115, and this phosphorylation prevents PIN1 mono-ubiquitination at Lys117 and its proteasomal degradation. Moreover, pharmacological inhibition of PIN1 through all-trans retinoic acid, a Food and Drug Administration-approved drug, impairs the growth of both cultured and xenografted ICC cells. CONCLUSIONS Our findings implicate the JNK-PIN1 regulatory axis as a functionally important determinant for ICC growth, and provide a rationale for therapeutic targeting of JNK activation through PIN1 inhibition.
Collapse
Affiliation(s)
- Alessio Lepore
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Pui Man Choy
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
| | - Nathan C W Lee
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Maria Annunziata Carella
- Center for Genome Engineering and Maintenance, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rosy Favicchio
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Marco A Briones-Orta
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Shannon S Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Gianfranco Alpini
- Division of Gastroenterology, Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN
| | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Reuben M Tooze
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Mihaela Lorger
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Wing-Kin Syn
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Center for Scientific Research, Athens, Greece
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Concetta Bubici
- Center for Genome Engineering and Maintenance, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Salvatore Papa
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
| |
Collapse
|
5
|
Asnaashari S, Amjad E, Sokouti B. A comprehensive investigation on liver regeneration: a meta-analysis and systems biology approach. Clin Exp Hepatol 2021; 7:183-190. [PMID: 34295986 PMCID: PMC8284170 DOI: 10.5114/ceh.2021.107564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
AIM OF THE STUDY Liver regeneration is one of the essential fields of regenerative medicine as a branch of tissue engineering and molecular biology that draws global researchers' attention. This study aims to conduct a systematic review and meta-analysis on the high-throughput gene expression microarray dataset of liver regeneration on the NCBI-GEO database to identify the significant genes and signaling pathways and confirm the genes from literature studies on associated diseases. MATERIAL AND METHODS We thoroughly searched the NCBI-GEO database to retrieve and screen the GEO microarray datasets' contents. Due to the inclusion of different species in eligible GEO datasets in the meta-analysis, the list of significant genes for the random-effects model were identified. Moreover, we carried out detailed gene analyses for three main gene ontology components and the KEGG signaling pathway. Furthermore, we investigated the possibility of genes' association with liver cancer through the Kaplan-Meier plot. RESULTS The random-effects model from six eligible GEO datasets identified 71 genes with eight down-regulated and 63 up-regulated genes. The target genes are involved in various cellular functions such as cell proliferation, cell death, and cell cycle control. Finally, we noted that 58 out of 71 genes are associated with different types of diseases related explicitly to other liver and inflammation diseases. CONCLUSIONS The current study assessed various GEO datasets at the early stages of liver regeneration with promising results. The present systematic review and meta-analysis results are beneficial for future novel drug design and discovery specifically for patients in the liver transplantation process.
Collapse
Affiliation(s)
| | | | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Dwyer BJ, Jarman EJ, Gogoi-Tiwari J, Ferreira-Gonzalez S, Boulter L, Guest RV, Kendall TJ, Kurian D, Kilpatrick AM, Robson AJ, O'Duibhir E, Man TY, Campana L, Starkey Lewis PJ, Wigmore SJ, Olynyk JK, Ramm GA, Tirnitz-Parker JEE, Forbes SJ. TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression. J Hepatol 2021; 74:860-872. [PMID: 33221352 DOI: 10.1016/j.jhep.2020.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a cancer of the hepatic bile ducts that is rarely resectable and is associated with poor prognosis. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is known to signal via its receptor fibroblast growth factor-inducible 14 (Fn14) and induce cholangiocyte and myofibroblast proliferation in liver injury. We aimed to characterise its role in CCA. METHODS The expression of the TWEAK ligand and Fn14 receptor was assessed immunohistochemically and by bulk RNA and single cell transcriptomics of human liver tissue. Spatiotemporal dynamics of pathway regulation were comprehensively analysed in rat and mouse models of thioacetamide (TAA)-mediated CCA. Flow cytometry, qPCR and proteomic analyses of CCA cell lines and conditioned medium experiments with primary macrophages were performed to evaluate the downstream functions of TWEAK/Fn14. In vivo pathway manipulation was assessed via TWEAK overexpression in NICD/AKT-induced CCA or genetic Fn14 knockout during TAA-mediated carcinogenesis. RESULTS Our data reveal TWEAK and Fn14 overexpression in multiple human CCA cohorts, and Fn14 upregulation in early TAA-induced carcinogenesis. TWEAK regulated the secretion of factors from CC-SW-1 and SNU-1079 CCA cells, inducing polarisation of proinflammatory CD206+ macrophages. Pharmacological blocking of the TWEAK downstream target chemokine monocyte chemoattractant protein 1 (MCP-1 or CCL2) significantly reduced CCA xenograft growth, while TWEAK overexpression drove cancer-associated fibroblast proliferation and collagen deposition in the tumour niche. Genetic Fn14 ablation significantly reduced inflammatory, fibrogenic and ductular responses during carcinogenic TAA-mediated injury. CONCLUSION These novel data provide evidence for the action of TWEAK/Fn14 on macrophage recruitment and phenotype, and cancer-associated fibroblast proliferation in CCA. Targeting TWEAK/Fn14 and its downstream signals may provide a means to inhibit CCA niche development and tumour growth. LAY SUMMARY Cholangiocarcinoma is an aggressive, chemotherapy-resistant liver cancer. Interactions between tumour cells and cells that form a supportive environment for the tumour to grow are a source of this aggressiveness and resistance to chemotherapy. Herein, we describe interactions between tumour cells and their supportive environment via a chemical messenger, TWEAK and its receptor Fn14. TWEAK/Fn14 alters the recruitment and type of immune cells in tumours, increases the growth of cancer-associated fibroblasts in the tumour environment, and is a potential target to reduce tumour formation.
Collapse
Affiliation(s)
- Benjamin J Dwyer
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Edward J Jarman
- MRC Human Genetics Unit, Western General Hospital Campus, Edinburgh, UK
| | - Jully Gogoi-Tiwari
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Sofia Ferreira-Gonzalez
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Luke Boulter
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Western General Hospital Campus, Edinburgh, UK
| | - Rachel V Guest
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Department of Clinical Surgery, University of Edinburgh, Edinburgh, EH16 4SA, UK
| | - Timothy J Kendall
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Dominic Kurian
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew J Robson
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Eoghan O'Duibhir
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Tak Yung Man
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Lara Campana
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Philip J Starkey Lewis
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Stephen J Wigmore
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom; Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, United Kingdom
| | - John K Olynyk
- Department of Gastroenterology, Fiona Stanley Fremantle Hospital Group, Murdoch, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Grant A Ramm
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Janina E E Tirnitz-Parker
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, and School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Cubero FJ, Mohamed MR, Woitok MM, Zhao G, Hatting M, Nevzorova YA, Chen C, Haybaeck J, de Bruin A, Avila MA, Boekschoten MV, Davis RJ, Trautwein C. Loss of c-Jun N-terminal Kinase 1 and 2 Function in Liver Epithelial Cells Triggers Biliary Hyperproliferation Resembling Cholangiocarcinoma. Hepatol Commun 2020; 4:834-851. [PMID: 32490320 PMCID: PMC7262317 DOI: 10.1002/hep4.1495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Targeted inhibition of the c‐Jun N‐terminal kinases (JNKs) has shown therapeutic potential in intrahepatic cholangiocarcinoma (CCA)‐related tumorigenesis. However, the cell‐type‐specific role and mechanisms triggered by JNK in liver parenchymal cells during CCA remain largely unknown. Here, we aimed to investigate the relevance of JNK1 and JNK2 function in hepatocytes in two different models of experimental carcinogenesis, the dethylnitrosamine (DEN) model and in nuclear factor kappa B essential modulator (NEMO)hepatocyte‐specific knockout (Δhepa) mice, focusing on liver damage, cell death, compensatory proliferation, fibrogenesis, and tumor development. Moreover, regulation of essential genes was assessed by reverse transcription polymerase chain reaction, immunoblottings, and immunostainings. Additionally, specific Jnk2 inhibition in hepatocytes of NEMOΔhepa/JNK1Δhepa mice was performed using small interfering (si) RNA (siJnk2) nanodelivery. Finally, active signaling pathways were blocked using specific inhibitors. Compound deletion of Jnk1 and Jnk2 in hepatocytes diminished hepatocellular carcinoma (HCC) in both the DEN model and in NEMOΔhepa mice but in contrast caused massive proliferation of the biliary ducts. Indeed, Jnk1/2 deficiency in hepatocytes of NEMOΔhepa (NEMOΔhepa/JNKΔhepa) animals caused elevated fibrosis, increased apoptosis, increased compensatory proliferation, and elevated inflammatory cytokines expression but reduced HCC. Furthermore, siJnk2 treatment in NEMOΔhepa/JNK1Δhepa mice recapitulated the phenotype of NEMOΔhepa/JNKΔhepa mice. Next, we sought to investigate the impact of molecular pathways in response to compound JNK deficiency in NEMOΔhepa mice. We found that NEMOΔhepa/JNKΔhepa livers exhibited overexpression of the interleukin‐6/signal transducer and activator of transcription 3 pathway in addition to epidermal growth factor receptor (EGFR)‐rapidly accelerated fibrosarcoma (Raf)‐mitogen‐activated protein kinase kinase (MEK)‐extracellular signal‐regulated kinase (ERK) cascade. The functional relevance was tested by administering lapatinib, which is a dual tyrosine kinase inhibitor of erythroblastic oncogene B‐2 (ErbB2) and EGFR signaling, to NEMOΔhepa/JNKΔhepa mice. Lapatinib effectively inhibited cystogenesis, improved transaminases, and effectively blocked EGFR‐Raf‐MEK‐ERK signaling. Conclusion: We define a novel function of JNK1/2 in cholangiocyte hyperproliferation. This opens new therapeutic avenues devised to inhibit pathways of cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Francisco Javier Cubero
- Department of Internal Medicine III University Hospital RWTH Aachen Aachen Germany.,Department of Immunology, Ophthalmology, and ENT Complutense University School of Medicine Madrid Spain.,12 de Octubre Health Research Institute Madrid Spain
| | - Mohamed Ramadan Mohamed
- Department of Internal Medicine III University Hospital RWTH Aachen Aachen Germany.,Department of Therapeutic Chemistry National Research Center Giza Egypt
| | - Marius M Woitok
- Department of Internal Medicine III University Hospital RWTH Aachen Aachen Germany
| | - Gang Zhao
- Department of Internal Medicine III University Hospital RWTH Aachen Aachen Germany
| | - Maximilian Hatting
- Department of Internal Medicine III University Hospital RWTH Aachen Aachen Germany
| | - Yulia A Nevzorova
- Department of Internal Medicine III University Hospital RWTH Aachen Aachen Germany.,Department of Genetics, Physiology, and Microbiology Faculty of Biology Complutense University Madrid Spain
| | - Chaobo Chen
- Department of Immunology, Ophthalmology, and ENT Complutense University School of Medicine Madrid Spain
| | - Johannes Haybaeck
- Department of Pathology Otto-von-Guericke University Magdeburg Germany.,Diagnostic and Research Center for Molecular BioMedicine Institute of Pathology Medical University of Graz Graz Austria.,Department of Pathology, Neuropathology, and Molecular Pathology Medical University of Innsbruck Innsbruck Austria
| | - Alain de Bruin
- Department of Pathobiology Faculty of Veterinary Medicine Dutch Molecular Pathology Center Utrecht University Utrecht the Netherlands.,Department of Pediatrics University Medical Center Groningen University of Groningen Groningen the Netherlands
| | - Matias A Avila
- Instituto de Investigación Sanitaria de Navarra Pamplona Spain.,Hepatology Program Center for Applied Medical Research University of Navarra Pamplona Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Instituto de Salud Carlos III Madrid Spain
| | - Mark V Boekschoten
- Nutrition, Metabolism, and Genomics Group Division of Human Nutrition Wageningen University Wageningen the Netherlands
| | - Roger J Davis
- Howard Hughes Medical Institute University of Massachusetts Medical School Worcester MA
| | - Christian Trautwein
- Department of Internal Medicine III University Hospital RWTH Aachen Aachen Germany
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Biliary tract cancers which include intrahepatic and extrahepatic cholangiocarcinomas and gallbladder cancer, are characterized by poor outcome. Therefore, identifying the molecular mechanisms of the disease has become a priority. However, such identification has to cope with extreme heterogeneity of the disease, which results from the variable anatomical location, the numerous cell types of origin and the high number of known genetic alterations. RECENT FINDINGS Animal models can develop invasive and metastatic tumours that recapitulate as faithfully as possible the molecular features of the human tumours. To generate animal models of cholangiocarcinoma, investigators resorted to the administration of carcinogens, induction of cholestasis, grafting of tumour cells and induction of genetic modifications. SUMMARY Here, we summarize the currently available genetically engineered animal models, and focus on mice and zebrafish. The experimental strategies that were selected to induce cholangiocarcinoma in a time-controlled and cell-type-specific manner are critically examined. We discuss their strengths and limitations while considering their relevance to human pathophysiology.
Collapse
|
9
|
Kitchen P, Lee KY, Clark D, Lau N, Lertsuwan J, Sawasdichai A, Satayavivad J, Oltean S, Afford S, Gaston K, Jayaraman PS. A Runaway PRH/HHEX-Notch3-Positive Feedback Loop Drives Cholangiocarcinoma and Determines Response to CDK4/6 Inhibition. Cancer Res 2019; 80:757-770. [PMID: 31843982 DOI: 10.1158/0008-5472.can-19-0942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/16/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Aberrant Notch and Wnt signaling are known drivers of cholangiocarcinoma (CCA), but the underlying factors that initiate and maintain these pathways are not known. Here, we show that the proline-rich homeodomain protein/hematopoietically expressed homeobox (PRH/HHEX) transcription factor forms a positive transcriptional feedback loop with Notch3 that is critical in CCA. PRH/HHEX expression is elevated in CCA, and depletion of PRH reduces CCA tumor growth in a xenograft model. Overexpression of PRH in primary human biliary epithelial cells is sufficient to increase cell proliferation and produce an invasive phenotype. Interrogation of the gene networks regulated by PRH and Notch3 reveals that unlike Notch3, PRH directly activates canonical Wnt signaling. These data indicate that hyperactivation of Notch and Wnt signaling is independent of the underlying mutational landscape and has a common origin in dysregulation of PRH. Moreover, they suggest new therapeutic options based on the dependence of specific Wnt, Notch, and CDK4/6 inhibitors on PRH activity. SIGNIFICANCE: The PRH/HHEX transcription factor is an oncogenic driver in cholangiocarcinoma that confers sensitivity to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Philip Kitchen
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ka Ying Lee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Danielle Clark
- Department of Biochemistry, Medical School, University of Bristol, Bristol, United Kingdom
| | - Nikki Lau
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jomnarong Lertsuwan
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | - Anyaporn Sawasdichai
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Simon Afford
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Padma-Sheela Jayaraman
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
10
|
Chen C, Nelson LJ, Ávila MA, Cubero FJ. Mitogen-Activated Protein Kinases (MAPKs) and Cholangiocarcinoma: The Missing Link. Cells 2019; 8:cells8101172. [PMID: 31569444 PMCID: PMC6829385 DOI: 10.3390/cells8101172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, the incidence of both liver and biliary tract cancer has increased. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common types of hepatic malignancies. Whereas HCC is the fifth most common malignant tumor in Western countries, the prevalence of CCA has taken an alarming increase from 0.3 to 2.1 cases per 100,000 people. The lack of specific biomarkers makes diagnosis very difficult in the early stages of this fatal cancer. Thus, the prognosis of CCA is dismal and surgery is the only effective treatment, whilst recurrence after resection is common. Even though chemotherapy and radiotherapy may prolong survival in patients with CCA, the 5-year survival rate is still very low—a significant global problem in clinical diagnosis and therapy. The mitogen-activated protein kinase (MAPK) pathway plays an important role in signal transduction by converting extracellular stimuli into a wide range of cellular responses including inflammatory response, stress response, differentiation, survival, and tumorigenesis. Dysregulation of the MAPK cascade involves key signaling components and phosphorylation events that play an important role in tumorigenesis. In this review, we discuss the pathophysiological role of MAPK, current therapeutic options, and the current situation of MAPK-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chaobo Chen
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi 214000, China.
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, Scotland, UK.
| | - Matías A Ávila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
| |
Collapse
|