1
|
D’Erminio DN, Adelzadeh KA, Rosenberg AM, Wiener RJ, Torre OM, Ferreri ED, Nasser P, Costa KD, Han WM, Huang AH, Iatridis JC. Regenerative potential of mouse neonatal intervertebral disc depends on collagen crosslink density. iScience 2024; 27:110883. [PMID: 39319260 PMCID: PMC11421255 DOI: 10.1016/j.isci.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Intervertebral disc (IVD) defects heal poorly and can cause back pain and disability. We identified that IVD herniation injury heals regeneratively in neonatal mice until postnatal day 14 (p14) and shifts to fibrotic healing by p28. This age coincides with the shift in expansive IVD growth from cell proliferation to matrix elaboration, implicating collagen crosslinking. β-aminopropionitrile treatment reduced IVD crosslinking and caused fibrotic healing without affecting cell proliferation. Bulk sequencing on naive IVDs was depleted for matrix structural organization from p14 to p28 to validate the importance of crosslinking in regenerative healing. We conclude that matrix changes are key drivers in the shift to fibrotic healing, and a stably crosslinked matrix is needed for IVD regeneration.
Collapse
Affiliation(s)
- Danielle N. D’Erminio
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering, The City College of New York at CUNY, New York, NY, USA
| | - Kaya A. Adelzadeh
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley M. Rosenberg
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert J. Wiener
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia M. Torre
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily D. Ferreri
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Nasser
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin D. Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Woojin M. Han
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - James C. Iatridis
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Sun Z, Chen Z, Yin M, Wu X, Guo B, Cheng X, Quan R, Sun Y, Zhang Q, Fan Y, Jin C, Yin Y, Hou X, Liu W, Shu M, Xue X, Shi Y, Chen B, Xiao Z, Dai J, Zhao Y. Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids. Cell Stem Cell 2024; 31:772-787.e11. [PMID: 38565140 DOI: 10.1016/j.stem.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord.
Collapse
Affiliation(s)
- Zheng Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenni Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaokang Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Quan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muya Shu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Peredo AP, Tsinman TK, Bonnevie ED, Jiang X, Smith HE, Gullbrand SE, Dyment NA, Mauck RL. Developmental morphogens direct human induced pluripotent stem cells toward an annulus fibrosus-like cell phenotype. JOR Spine 2024; 7:e1313. [PMID: 38283179 PMCID: PMC10810760 DOI: 10.1002/jsp2.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Therapeutic interventions for intervertebral disc herniation remain scarce due to the inability of endogenous annulus fibrosus (AF) cells to respond to injury and drive tissue regeneration. Unlike other orthopedic tissues, such as cartilage, delivery of exogenous cells to the site of annular injury remains underdeveloped, largely due to a lack of an ideal cell source and the invasive nature of cell isolation. Human induced pluripotent stem cells (iPSCs) can be differentiated to specific cell fates using biochemical factors and are, therefore, an invaluable tool for cell therapy approaches. While differentiation protocols have been developed for cartilage and fibrous connective tissues (e.g., tendon), the signals that regulate the induction and differentiation of human iPSCs toward the AF fate remain unknown. Methods iPSC-derived sclerotome cells were treated with various combinations of developmental signals including transforming growth factor beta 3 (TGF-β3), connective tissue growth factor (CTGF), platelet derived growth factor BB (PDGF-BB), insulin-like growth factor 1 (IGF-1), or the Hedgehog pathway activator, Purmorphamine, and gene expression changes in major AF-associated ECM genes were assessed. The top performing combination treatments were further validated by using three distinct iPSC lines and by assessing the production of upregulated ECM proteins of interest. To conduct a broader analysis of the transcriptomic shifts elicited by each factor combination, and to compare genetic profiles of treated cells to mature human AF cells, a 96.96 Fluidigm gene expression array was applied, and principal component analysis was employed to identify the transcriptional signatures of each cell population and treatment group in comparison to native AF cells. Results TGF-β3, in combination with PDGF-BB, CTGF, or IGF-1, induced an upregulation of key AF ECM genes in iPSC-derived sclerotome cells. In particular, treatment with a combination of TGF-β3 with PDGF-BB for 14 days significantly increased gene expression of collagen II and aggrecan and increased protein deposition of collagen I and elastin compared to other treatment groups. Assessment of genes uniquely highly expressed by AF cells or SCL cells, respectively, revealed a shift toward the genetic profile of AF cells with the addition of TGF-β3 and PDGF-BB for 14 days. Discussion These findings represent an initial approach to guide human induced pluripotent stem cells toward an AF-like fate for cellular delivery strategies.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Tonia K. Tsinman
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Edward D. Bonnevie
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Xi Jiang
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Nathaniel A. Dyment
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Tang S, Gantt C, Salazar Puerta A, Bodine L, Khan S, Higuita‐Castro N, Purmessur D. Nonviral overexpression of Scleraxis or Mohawk drives reprogramming of degenerate human annulus fibrosus cells from a diseased to a healthy phenotype. JOR Spine 2023; 6:e1270. [PMID: 37780832 PMCID: PMC10540831 DOI: 10.1002/jsp2.1270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 10/03/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is a major contributor to low back pain (LBP), yet there are no clinical therapies targeting the underlying pathology. The annulus fibrosus (AF) plays a critical role in maintaining IVD structure/function and undergoes degenerative changes such as matrix catabolism and inflammation. Thus, therapies targeting the AF are crucial to fully restore IVD function. Previously, we have shown nonviral delivery of transcription factors to push diseased nucleus pulposus cells to a healthy phenotype. As a next step in a proof-of-concept study, we report the use of Scleraxis (SCX) and Mohawk (MKX), which are critical for the development, maintenance, and regeneration of the AF and may have therapeutic potential to induce a healthy, pro-anabolic phenotype in diseased AF cells. Methods MKX and SCX plasmids were delivered via electroporation into diseased human AF cells from autopsy specimens and patients undergoing surgery for LBP. Transfected cells were cultured over 14 days and assessed for cell morphology, viability, density, gene expression of key phenotypic, inflammatory, matrix, pain markers, and collagen accumulation. Results AF cells demonstrated a fibroblastic phenotype posttreatment. Moreover, transfection of SCX and MKX resulted in significant upregulation of the respective genes, as well as SOX9. Transfected autopsy cells demonstrated upregulation of core extracellular matrix markers; however, this was observed to a lesser effect in surgical cells. Matrix-degrading enzymes and inflammatory cytokines were downregulated, suggesting a push toward a pro-anabolic, anti-inflammatory phenotype. Similarly, pain markers were downregulated over time in autopsy cells. At the protein level, collagen content was increased in both MKX and SCX transfected cells compared to controls. Conclusions This exploratory study demonstrates the potential of MKX or SCX to drive reprogramming in mild to moderately degenerate AF cells from autopsy and severely degenerate AF cells from surgical patients toward a healthy phenotype and may be a potential nonviral gene therapy for LBP.
Collapse
Affiliation(s)
- Shirley Tang
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Connor Gantt
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Ana Salazar Puerta
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Lucy Bodine
- Department of Mechanical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Safdar Khan
- Department of OrthopedicsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | | | - Devina Purmessur
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of OrthopedicsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
5
|
Zhang A, Cheng Z, Chen Y, Shi P, Gan W, Zhang Y. Emerging tissue engineering strategies for annulus fibrosus therapy. Acta Biomater 2023:S1742-7061(23)00337-9. [PMID: 37330029 DOI: 10.1016/j.actbio.2023.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Low back pain is a major public health concern experienced by 80% of the world's population during their lifetime, which is closely associated with intervertebral disc (IVD) herniation. IVD herniation manifests as the nucleus pulposus (NP) protruding beyond the boundaries of the intervertebral disc due to disruption of the annulus fibrosus (AF). With a deepening understanding of the importance of the AF structure in the pathogenesis of intervertebral disc degeneration, numerous advanced therapeutic strategies for AF based on tissue engineering, cellular regeneration, and gene therapy have emerged. However, there is still no consensus concerning the optimal approach for AF regeneration. In this review, we summarized strategies in the field of AF repair and highlighted ideal cell types and pro-differentiation targeting approaches for AF repair, and discussed the prospects and difficulties of implant systems combining cells and biomaterials to guide future research directions. STATEMENT OF SIGNIFICANCE: Low back pain is a major public health concern experienced by 80% of the world's population during their lifetime, which is closely associated with intervertebral disc (IVD) herniation. However, there is still no consensus concerning the optimal approach for annulus fibrosus (AF) regeneration. In this review, we summarized strategies in the field of AF repair and highlighted ideal cell types and pro-differentiation targeting approaches for AF repair, and discussed the prospects and difficulties of implant systems combining cells and biomaterials to guide future research directions.
Collapse
Affiliation(s)
- Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Injectable Cell-Laden Nanofibrous Matrix for Treating Annulus Fibrosus Defects in Porcine Model: An Organ Culture Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111866. [PMID: 36431001 PMCID: PMC9694927 DOI: 10.3390/life12111866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Lower back pain commonly arises from intervertebral disc (IVD) failure, often caused by deteriorating annulus fibrosus (AF) and/or nucleus pulposus (NP) tissue. High socioeconomic cost, quality of life issues, and unsatisfactory surgical options motivate the rapid development of non-invasive, regenerative repair strategies for lower back pain. This study aims to evaluate the AF regenerative capacity of injectable matrix repair strategy in ex vivo porcine organ culturing using collagen type-I and polycaprolactone nanofibers (PNCOL) with encapsulated fibroblast cells. Upon 14 days organ culturing, the porcine IVDs were assessed using gross optical imaging, magnetic resonance imaging (MRI), histological analysis, and Reverse Transcriptase quantitative PCR (RT-qPCR) to determine the regenerative capabilities of the PNCOL matrix at the AF injury. PNCOL-treated AF defects demonstrated a full recovery with increased gene expressions of AF extracellular matrix markers, including Collagen-I, Aggrecan, Scleraxis, and Tenascin, along with anti-inflammatory markers such as CD206 and IL10. The PNCOL treatment effectively regenerates the AF tissue at the injury site contributing to decreased herniation risk and improved surgical outcomes, thus providing effective non-invasive strategies for treating IVD injuries.
Collapse
|
7
|
Du J, Guo W, Häckel S, Hoppe S, Garcia JP, Alini M, Tryfonidou MA, Creemers LB, Grad S, Li Z. The function of CD146 in human annulus fibrosus cells and mechanism of the regulation by TGF-β. J Orthop Res 2022; 40:1661-1671. [PMID: 34662464 DOI: 10.1002/jor.25190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
The mouse outer annulus fibrosus (AF) was previously shown to contain CD146+ AF cells, while in vitro culture and exposure to transforming growth factor-beta (TGF-β) further increased the expression of CD146. However, neither the specific function of CD146 nor the underlying mechanism of TGF-β upregulation of CD146+ AF cells have been elucidated yet. In the current study, CD146 expression and its role in cultured human AF cells was investigated studying the cells' capacity for matrix contraction and gene expression of functional AF markers. In addition, TGF-β pathways were blocked by several pathway inhibitors and short hairpin RNAs (shRNAs) targeting SMAD and non-SMAD pathways to investigate their involvement in TGF-β-induced CD146 upregulation. Results showed that knockdown of CD146 led to reduction in AF cell-mediated collagen gel contraction, downregulation of versican and smooth muscle protein 22α (SM22α), and upregulation of scleraxis. TGF-β-induced CD146 upregulation was significantly blocked by inhibition of TGF-β receptor ALK5, and partially inhibited by shRNA against SMAD2 and SMAD4 and by an Protein Kinase B (AKT) inhibitor. Interestingly, the inhibition of extracellular signal-regulated kinases (ERK) pathway induced CD146 upregulation. In conclusion, CD146 was shown to be crucial to maintain the cell contractility of human AF cells in vitro. Furthermore, TGF-β upregulated CD146 via ALK5 signaling cascade, partially through SMAD2, SMAD4, and AKT pathway, whereas, ERK was shown to be a potential negative modulator. Our findings suggest that CD146 can potentially be used as a functional marker in AF repair strategies.
Collapse
Affiliation(s)
- Jie Du
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wei Guo
- AO Research Institute Davos, Davos, Switzerland.,Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Sonja Häckel
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sven Hoppe
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - João P Garcia
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Laura B Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
8
|
Abstract
It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.
Collapse
Affiliation(s)
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Xu M, Huang J, Jin M, Jiang W, Luo F, Tan Q, Zhang R, Luo X, Kuang L, Zhang D, Liang S, Qi H, Chen H, Ni Z, Su N, Yang J, Du X, Chen B, Deng C, Xie Y, Chen L. Expansion of FGFR3-positive nucleus pulposus cells plays important roles in postnatal nucleus pulposus growth and regeneration. Stem Cell Res Ther 2022; 13:227. [PMID: 35659742 PMCID: PMC9166488 DOI: 10.1186/s13287-022-02903-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) can cause low back pain, a major public health concern. IVDD is characterized with loss of cells especially those in nucleus pulposus (NP), due to the limited proliferative potential and regenerative ability. Few studies, however, have been carried out to investigate the in vivo proliferation events of NP cells and the cellular contribution of a specific subpopulation of NP during postnatal growth or regeneration. METHODS We generated FGFR3-3*Flag-IRES-GFP mice and crossed FGFR3-CreERT2 mice with Rosa26-mTmG, Rosa26-DTA and Rosa26-Confetti mice, respectively, to perform inducible genetic tracing studies. RESULTS Expression of FGFR3 was found in the outer region of NP with co-localized expressions of proliferating markers. By fate mapping studies, FGFR3-positive (FGFR3+) NP cells were found proliferate from outer region to inner region of NP during postnatal growth. Clonal lineage tracing by Confetti mice and ablation of FGFR3·+ NP cells by DTA mice further revealed that the expansion of the FGFR3+ cells was required for the morphogenesis and homeostasis of postnatal NP. Moreover, in degeneration and regeneration model of mouse intervertebral disc, FGFR3+ NP cells underwent extensive expansion during the recovery stage. CONCLUSION Our present work demonstrates that FGFR3+ NP cells are novel subpopulation of postnatal NP with long-existing proliferative capacity shaping the adult NP structure and participating in the homeostasis maintenance and intrinsic repair of NP. These findings may facilitate the development of new therapeutic approaches for IVD regeneration.
Collapse
Affiliation(s)
- Meng Xu
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.,Department of Rehabilitation Medicine, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China
| | - Junlan Huang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Min Jin
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wanling Jiang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fengtao Luo
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qiaoyan Tan
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ruobin Zhang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoqing Luo
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Kuang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dali Zhang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Sen Liang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huabing Qi
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hangang Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhenhong Ni
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Nan Su
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaolan Du
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Bo Chen
- Department of Spine Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yangli Xie
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Lin Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
10
|
Wang H, Wang D, Luo B, Wang D, Jia H, Peng P, Shang Q, Mao J, Gao C, Peng Y, Gan L, Du J, Luo Z, Yang L. Decoding the annulus fibrosus cell atlas by scRNA-seq to develop an inducible composite hydrogel: A novel strategy for disc reconstruction. Bioact Mater 2022; 14:350-363. [PMID: 35386822 PMCID: PMC8964821 DOI: 10.1016/j.bioactmat.2022.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
Low back pain is one of the most serious public health problems worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The key pathological change during IVDD is dysfunction of the annulus fibrosus (AF). However, due to the lack of an in-depth understanding of AF biology, the methods to reconstruct the AF are very limited. In this study, the mice AF cell atlas were decoded by single-cell RNA sequencing to provide a guide for AF reconstruction. The results first identify a new population of AF cells, fibrochondrocyte-like AF cells, which synthesize both collagen I and collagen II and are potential functional cells for AF reconstruction. According to the dual features of the AF extracellular matrix, a composite hydrogel based on the acylation of methacrylated silk fibroin with methacrylated hyaluronic acid was produced. To obtain the ability to stimulate differentiation, the composite hydrogels were combined with a fibrochondrocyte-inducing supplement. Finally, reconstruction of the AF defects, by the novel AF stem cell-loaded composite hydrogel, could be observed, its amount of chondroid matrices recovered to 31.7% of AF aera which is significantly higher than that in other control groups. In summary, this study decodes the AF cell atlas, based on which a novel strategy for AF reconstruction is proposed. There are 10 populations of cells in the annulus fibrosus (AF), as decoded by single cell RNA sequencing. Lineage tracing shows the route of migration and differentiation of annulus fibrosus-derived stem cells (AFSCs). A new population of AF cells, fibrochondrocyte-like AF cells, was identified. Both the fibrinoid and chondroid matrices of AF are reconstructed by the novel AFSCs-loaded composite hydrogel.
Collapse
|
11
|
Peredo AP, Gullbrand SE, Smith HE, Mauck RL. Putting the Pieces in Place: Mobilizing Cellular Players to Improve Annulus Fibrosus Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:295-312. [PMID: 32907498 PMCID: PMC10799291 DOI: 10.1089/ten.teb.2020.0196] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intervertebral disc (IVD) is an integral load-bearing tissue that derives its function from its composite structure and extracellular matrix composition. IVD herniations involve the failure of the annulus fibrosus (AF) and the extrusion of the nucleus pulposus beyond the disc boundary. Disc herniations can impinge the neural elements and cause debilitating pain and loss of function, posing a significant burden on individual patients and society as a whole. Patients with persistent symptoms may require surgery; however, surgical intervention fails to repair the ruptured AF and is associated with the risk for reherniation and further disc degeneration. Given the limitations of AF endogenous repair, many attempts have been made toward the development of effective repair approaches that reestablish IVD function. These methods, however, fail to recapitulate the composition and organization of the native AF, ultimately resulting in inferior tissue mechanics and function over time and high rates of reherniation. Harnessing the cellular function of cells (endogenous or exogenous) at the repair site through the provision of cell-instructive cues could enhance AF tissue regeneration and, ultimately, improve healing outcomes. In this study, we review the diverse approaches that have been developed for AF repair and emphasize the potential for mobilizing the appropriate cellular players at the site of injury to improve AF healing. Impact statement Conventional treatments for intervertebral disc herniation fail to repair the annulus fibrosus (AF), increasing the risk for recurrent herniation. The lack of repair devices in the market has spurred the development of regenerative approaches, yet most of these rely on a scarce endogenous cell population to repair large injuries, resulting in inadequate regeneration. This review identifies current and developing strategies for AF repair and highlights the potential for harnessing cellular function to improve AF regeneration. Ideal cell sources, differentiation strategies, and delivery methods are discussed to guide the design of repair systems that leverage specialized cells to achieve superior outcomes.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021. [DOI: 10.3390/ijms22094917
expr 996488947 + 961598850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
|
13
|
Calió M, Gantenbein B, Egli M, Poveda L, Ille F. The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021; 22:ijms22094917. [PMID: 34066404 PMCID: PMC8124861 DOI: 10.3390/ijms22094917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
Affiliation(s)
- Martina Calió
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Lucy Poveda
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland;
| | - Fabian Ille
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
- Correspondence: ; Tel.: +41-41-349-36-15
| |
Collapse
|
14
|
Peredo AP, Gullbrand SE, Mauck RL, Smith HE. A challenging playing field: Identifying the endogenous impediments to annulus fibrosus repair. JOR Spine 2021; 4:e1133. [PMID: 33778407 PMCID: PMC7984000 DOI: 10.1002/jsp2.1133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc (IVD) herniations, caused by annulus fibrosus (AF) tears that enable disc tissue extrusion beyond the disc space, are very prevalent, especially among adults in the third to fifth decade of life. Symptomatic herniations, in which the extruded tissue compresses surrounding nerves, are characterized by back pain, numbness, and tingling and can cause extreme physical disability. Patients whose symptoms persist after nonoperative intervention may undergo surgical removal of the herniated tissue via microdiscectomy surgery. The AF, however, which has a poor endogenous healing ability, is left unrepaired increasing the risk for re-herniation and pre-disposing the IVD to degenerative disc disease. The lack of understanding of the mechanisms involved in native AF repair limits the design of repair systems that overcome the impediments to successful AF restoration. Moreover, the complexity of the AF structure and the challenging anatomy of the repair environment represents a significant challenge for the design of new repair devices. While progress has been made towards the development of an effective AF repair technique, these methods have yet to demonstrate long-term repair and recovery of IVD biomechanics. In this review, the limitations of endogenous AF healing are discussed and key cellular events and factors involved are highlighted to identify potential therapeutic targets that can be integrated into AF repair methods. Clinical repair strategies and their limitations are described to further guide the design of repair approaches that effectively restore native tissue structure and function.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
15
|
Leucht P, Einhorn TA. What's New in Musculoskeletal Basic Science. J Bone Joint Surg Am 2020; 102:2017-2021. [PMID: 33079894 DOI: 10.2106/jbjs.20.01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Philipp Leucht
- Departments of Orthopaedic Surgery (P.L. and T.A.E.) and Cell Biology (P.L.), NYU Grossman School of Medicine, New York, NY
| | | |
Collapse
|
16
|
Tessier S, Risbud MV. Understanding embryonic development for cell-based therapies of intervertebral disc degeneration: Toward an effort to treat disc degeneration subphenotypes. Dev Dyn 2020; 250:302-317. [PMID: 32564440 DOI: 10.1002/dvdy.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic low back and neck pain are associated with intervertebral disc degeneration and are major contributors to the global burden of disability. New evidence now suggests that disc degeneration comprises a spectrum of subphenotypes influenced by genetic background, age, and environmental factors, which may be contributing to the mixed outcomes seen in clinical trials of cell-based therapies that aim to treat disc degeneration. This problem is further compounded by the fact that disc degeneration and aging coincide with an exhaustion of endogenous progenitor cells, imposing limitations on the regenerative capacity of the disc. At the bench-side, current work is focused on applying our knowledge of embryonic disc development to direct and refine differentiation of adult and human-induced pluripotent stem cells into notochord-like and nucleus pulposus-like cells for use in novel cell-based therapies. Accordingly, this review presents the salient features of intervertebral disc development, post-natal maintenance, and regeneration, with emphasis on recent advancements. We also discuss how a stratified approach can be undertaken for the development of future cell-based therapies to bring emerging subphenotypes into consideration.
Collapse
Affiliation(s)
- Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|