1
|
Park J, Kim J, Choe G, Jung Y, Lee JY. Conductive hydrogel luminal filler for peripheral nerve regeneration. Biomaterials 2025; 317:123103. [PMID: 39827510 DOI: 10.1016/j.biomaterials.2025.123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 12/06/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Peripheral nerve injuries impair quality of life due to pain and loss of sensory and motor functions. Current treatments like autografts and nerve guidance conduits (NGCs) have limitations in functional restoration. Luminal fillers can enhance the effectiveness of NGCs by providing beneficial intraneural environments. In this study, we devised a novel injectable conductive luminal filler that allows for electrically active environments and efficient electrical stimulation of nerves. We developed injectable conductive hydrogel as a luminal filler for NGCs, composed of pluronic-coated reduced graphene oxide (rGO) and gelatin-based polymers, that gels spontaneously under physiological conditions. This filler combines nerve-like softness (0.31 ± 0.02 kPa), appropriate conductivity (2.7 ± 0.3 mS/cm), quick gelation (<5 min), and in vivo degradability. In a rat peripheral nerve defect model, the conductive hydrogel filler with electrical stimulation showed promising results in nerve regrowth, myelination, and functional recovery, performing comparably to autografts. This study underscores the potential of conductive fillers in enhancing nerve regeneration therapies.
Collapse
Affiliation(s)
- Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Junghyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Goeun Choe
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Dinescu VC, Martin L, Bica M, Vasile RC, Gresita A, Bunescu M, Ruscu MA, Aldea M, Rotaru-Zavaleanu AD. Hydrogel-Based Innovations in Carpal Tunnel Syndrome: Bridging Pathophysiological Complexities and Translational Therapeutic Gaps. Gels 2025; 11:52. [PMID: 39852023 PMCID: PMC11764971 DOI: 10.3390/gels11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Carpal Tunnel Syndrome (CTS) is a prevalent neuropathic disorder caused by chronic compression of the median nerve, leading to sensory and motor impairments. Conventional treatments, such as corticosteroid injections, wrist splinting, and surgical decompression, often fail to provide adequate outcomes for chronic or recurrent cases, emphasizing the need for innovative therapies. Hydrogels, highly biocompatible three-dimensional biomaterials with customizable properties, hold significant potential for CTS management. Their ability to mimic the extracellular matrix facilitates localized drug delivery, anti-adhesion barrier formation, and tissue regeneration. Advances in hydrogel engineering have introduced stimuli-responsive systems tailored to the biomechanical environment of the carpal tunnel, enabling sustained therapeutic release and improved tissue integration. Despite these promising developments, hydrogel applications for CTS remain underexplored. Key challenges include the absence of CTS-specific preclinical models and the need for rigorous clinical validation. Addressing these gaps could unlock the full potential of hydrogel-based interventions, which offer minimally invasive, customizable solutions that could improve long-term outcomes and reduce recurrence rates. This review highlights hydrogels as a transformative approach to CTS therapy, advocating for continued research to address translational barriers. These innovations have the potential to redefine the treatment landscape, significantly enhancing patient care and quality of life.
Collapse
Affiliation(s)
- Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania;
| | - Liviu Martin
- Faculty of Medical Care, Titu Maiorescu University, Văcărești Road, no 187, 040051 Bucharest, Romania;
| | - Marius Bica
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania;
| | - Ramona Constantina Vasile
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania; (M.A.R.); (A.D.R.-Z.)
| | - Andrei Gresita
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania
| | - Marius Bunescu
- Department of Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania;
| | - Mihai Andrei Ruscu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania; (M.A.R.); (A.D.R.-Z.)
| | - Madalina Aldea
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania;
| | - Alexandra Daniela Rotaru-Zavaleanu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania; (M.A.R.); (A.D.R.-Z.)
| |
Collapse
|
3
|
Omidian H, Chowdhury SD, Cubeddu LX. Hydrogels for Neural Regeneration: Exploring New Horizons. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3472. [PMID: 39063768 PMCID: PMC11278084 DOI: 10.3390/ma17143472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Nerve injury can significantly impair motor, sensory, and autonomic functions. Understanding nerve degeneration, particularly Wallerian degeneration, and the mechanisms of nerve regeneration is crucial for developing effective treatments. This manuscript reviews the use of advanced hydrogels that have been researched to enhance nerve regeneration. Hydrogels, due to their biocompatibility, tunable properties, and ability to create a supportive microenvironment, are being explored for their effectiveness in nerve repair. Various types of hydrogels, such as chitosan-, alginate-, collagen-, hyaluronic acid-, and peptide-based hydrogels, are discussed for their roles in promoting axonal growth, functional recovery, and myelination. Advanced formulations incorporating growth factors, bioactive molecules, and stem cells show significant promise in overcoming the limitations of traditional therapies. Despite these advancements, challenges in achieving robust and reliable nerve regeneration remain, necessitating ongoing research to optimize hydrogel-based interventions for neural regeneration.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.C.); (L.X.C.)
| | | | | |
Collapse
|
4
|
Testa L, Dotta S, Vercelli A, Marvaldi L. Communicating pain: emerging axonal signaling in peripheral neuropathic pain. Front Neuroanat 2024; 18:1398400. [PMID: 39045347 PMCID: PMC11265228 DOI: 10.3389/fnana.2024.1398400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.
Collapse
Affiliation(s)
- Livia Testa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Sofia Dotta
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Letizia Marvaldi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| |
Collapse
|
5
|
Agarwal G, Shumard S, McCrary MW, Osborne O, Santiago JM, Ausec B, Schmidt CE. Decellularized porcine peripheral nerve based injectable hydrogels as a Schwann cell carrier for injured spinal cord regeneration. J Neural Eng 2024; 21:046002. [PMID: 38885674 DOI: 10.1088/1741-2552/ad5939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective.To develop a clinically relevant injectable hydrogel derived from decellularized porcine peripheral nerves and with mechanical properties comparable to native central nervous system (CNS) tissue to be used as a delivery vehicle for Schwann cell transplantation to treat spinal cord injury (SCI).Approach.Porcine peripheral nerves (sciatic and peroneal) were decellularized by chemical decellularization using a sodium deoxycholate and DNase (SDD) method previously developed by our group. The decellularized nerves were delipidated using dichloromethane and ethanol solvent and then digested using pepsin enzyme to form injectable hydrogel formulations. Genipin was used as a crosslinker to enhance mechanical properties. The injectability, mechanical properties, and gelation kinetics of the hydrogels were further analyzed using rheology. Schwann cells encapsulated within the injectable hydrogel formulations were passed through a 25-gauge needle and cell viability was assessed using live/dead staining. The ability of the hydrogel to maintain Schwann cell viability against an inflammatory milieu was assessedin vitrousing inflamed astrocytes co-cultured with Schwann cells.Mainresults. The SDD method effectively removes cells and retains extracellular matrix in decellularized tissues. Using rheological studies, we found that delipidation of decellularized porcine peripheral nerves using dichloromethane and ethanol solvent improves gelation kinetics and mechanical strength of hydrogels. The delipidated and decellularized hydrogels crosslinked using genipin mimicked the mechanical strength of CNS tissue. The hydrogels were found to have shear thinning properties desirable for injectable formulations and they also maintained higher Schwann cell viability during injection compared to saline controls. Usingin vitroco-culture experiments, we found that the genipin-crosslinked hydrogels also protected Schwann cells from astrocyte-mediated inflammation.Significance. Injectable hydrogels developed using delipidated and decellularized porcine peripheral nerves are a potential clinically relevant solution to deliver Schwann cells, and possibly other therapeutic cells, at the SCI site by maintaining higher cellular viability and increasing therapeutic efficacy for SCI treatment.
Collapse
Affiliation(s)
- Gopal Agarwal
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Samantha Shumard
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Olivia Osborne
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Jorge Mojica Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Breanna Ausec
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
6
|
Kong J, Teng C, Liu F, Wang X, Zhou Y, Zong Y, Wan Z, Qin J, Yu B, Mi D, Wang Y. Enhancing regeneration and repair of long-distance peripheral nerve defect injuries with continuous microcurrent electrical nerve stimulation. Front Neurosci 2024; 18:1361590. [PMID: 38406586 PMCID: PMC10885699 DOI: 10.3389/fnins.2024.1361590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Peripheral nerve injuries, especially those involving long-distance deficits, pose significant challenges in clinical repair. This study explores the potential of continuous microcurrent electrical nerve stimulation (cMENS) as an adjunctive strategy to promote regeneration and repair in such cases. Methods The study initially optimized cMENS parameters and assessed its impact on Schwann cell activity, neurotrophic factor secretion, and the nerve regeneration microenvironment. Subsequently, a rat sciatic nerve defect-bridge repair model was employed to evaluate the reparative effects of cMENS as an adjuvant treatment. Functional recovery was assessed through gait analysis, motor function tests, and nerve conduction assessments. Additionally, nerve regeneration and denervated muscle atrophy were observed through histological examination. Results The study identified a 10-day regimen of 100uA microcurrent stimulation as optimal. Evaluation focused on Schwann cell activity and the microenvironment, revealing the positive impact of cMENS on maintaining denervated Schwann cell proliferation and enhancing neurotrophic factor secretion. In the rat model of sciatic nerve defect-bridge repair, cMENS demonstrated superior effects compared to control groups, promoting motor function recovery, nerve conduction, and sensory and motor neuron regeneration. Histological examinations revealed enhanced maturation of regenerated nerve fibers and reduced denervated muscle atrophy. Discussion While cMENS shows promise as an adjuvant treatment for long-distance nerve defects, future research should explore extended stimulation durations and potential synergies with tissue engineering grafts to improve outcomes. This study contributes comprehensive evidence supporting the efficacy of cMENS in enhancing peripheral nerve regeneration.
Collapse
Affiliation(s)
- Junjie Kong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng Teng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fenglan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuzhaoyu Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yi Zhou
- Department of Orthopedics, Nantong City Hospital of Traditional Chinese Medicine, Nantong, China
| | - Ying Zong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zixin Wan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jun Qin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Daguo Mi
- Department of Orthopedics, Nantong City Hospital of Traditional Chinese Medicine, Nantong, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
7
|
Ding Z, Jiang M, Qian J, Gu D, Bai H, Cai M, Yao D. Role of transforming growth factor-β in peripheral nerve regeneration. Neural Regen Res 2024; 19:380-386. [PMID: 37488894 PMCID: PMC10503632 DOI: 10.4103/1673-5374.377588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits. Unlike in the central nervous system, damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells. However, axon regeneration and repair do not automatically result in the restoration of function, which is the ultimate therapeutic goal but also a major clinical challenge. Transforming growth factor (TGF) is a multifunctional cytokine that regulates various biological processes including tissue repair, embryo development, and cell growth and differentiation. There is accumulating evidence that TGF-β family proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells; recruiting specific immune cells; controlling the permeability of the blood-nerve barrier, thereby stimulating axon growth; and inhibiting remyelination of regenerated axons. TGF-β has been applied to the treatment of peripheral nerve injury in animal models. In this context, we review the functions of TGF-β in peripheral nerve regeneration and potential clinical applications.
Collapse
Affiliation(s)
- Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
8
|
Behun MN, Kulkarni M, Nolfi AL, France CT, Skillen CD, Mahan MA, Soletti L, Brown BN. Porcine Acellular Nerve-Derived Hydrogel Improves Outcomes of Direct Muscle Neurotization in Rats. Tissue Eng Part A 2024; 30:84-93. [PMID: 37917102 PMCID: PMC11074398 DOI: 10.1089/ten.tea.2023.0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Background: The ability to reinnervate a muscle in the absence of a viable nerve stump is a challenging clinical scenario. Direct muscle neurotization (DMN) is an approach to overcome this obstacle; however, success depends on the formation of new muscle endplates, a process, which is often limited due to lack of appropriate axonal pathfinding cues. Objective: This study explored the use of a porcine nerve extracellular matrix hydrogel as a neuroinductive interface between nerve and muscle in a rat DMN model. The goal of the study was to establish whether such hydrogel can be used to improve neuromuscular function in this model. Materials and Methods: A common peroneal nerve-to-gastrocnemius model of DMN was developed. Animals were survived for 2 or 8 weeks following DMN with or without the addition of the hydrogel at the site of neurotization. Longitudinal postural thrust, terminal electrophysiology, and muscle weight assessments were performed to qualify and quantify neuromuscular function. Histological assessments were made to qualify the host response at the DMN site, and to quantify neuromuscular junctions (NMJs) and muscle fiber diameter. Results: The hydrogel-treated group showed a 132% increase in postural thrust at 8 weeks compared with that of the DMN alone group. This was accompanied by an 80% increase in the number of NMJs at 2 weeks, and 26% increase in mean muscle fiber diameter at 8 weeks. Conclusions: These results suggest that a nerve-derived hydrogel may improve the neuromuscular outcome following DNM.
Collapse
Affiliation(s)
- Marissa N. Behun
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mangesh Kulkarni
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexis L. Nolfi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cambell T. France
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clint D. Skillen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark A. Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | | | - Bryan N. Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Renerva, LLC, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Rahman M, Mahady Dip T, Padhye R, Houshyar S. Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration. J Biomed Mater Res A 2023; 111:1916-1950. [PMID: 37555548 DOI: 10.1002/jbm.a.37595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
At present, peripheral nerve injuries (PNIs) are one of the leading causes of substantial impairment around the globe. Complete recovery of nerve function after an injury is challenging. Currently, autologous nerve grafts are being used as a treatment; however, this has several downsides, for example, donor site morbidity, shortage of donor sites, loss of sensation, inflammation, and neuroma development. The most promising alternative is the development of a nerve guide conduit (NGC) to direct the restoration and renewal of neuronal axons from the proximal to the distal end to facilitate nerve regeneration and maximize sensory and functional recovery. Alternatively, the response of nerve cells to electrical stimulation (ES) has a substantial regenerative effect. The incorporation of electrically conductive biomaterials in the fabrication of smart NGCs facilitates the function of ES throughout the active proliferation state. This article overviews the potency of the various categories of electroactive smart biomaterials, including conductive and piezoelectric nanomaterials, piezoelectric polymers, and organic conductive polymers that researchers have employed latterly to fabricate smart NGCs and their potentiality in future clinical application. It also summarizes a comprehensive analysis of the recent research and advancements in the application of ES in the field of NGC.
Collapse
Affiliation(s)
- Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Wu S, Shen W, Ge X, Ao F, Zheng Y, Wang Y, Jia X, Mao Y, Luo Y. Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits. Macromol Biosci 2023; 23:e2300078. [PMID: 37235853 DOI: 10.1002/mabi.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.
Collapse
Affiliation(s)
- Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Zheng
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yigang Wang
- Department of Pharmacy, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, P. R. China
| | - Xiaoni Jia
- Central Laboratory, Xi'an Mental Health Center, Xi'an, 710061, P. R. China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yali Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
11
|
Zhang M, An H, Gu Z, Huang Z, Zhang F, Jiang BG, Wen Y, Zhang P. Mimosa-Inspired Stimuli-Responsive Curling Bioadhesive Tape Promotes Peripheral Nerve Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212015. [PMID: 37205796 DOI: 10.1002/adma.202212015] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Trauma often results in peripheral nerve injuries (PNIs). These injuries are particularly challenging therapeutically because of variable nerve diameters, slow axonal regeneration, infection of severed ends, fragility of the nerve tissue, and the intricacy of surgical intervention. Surgical suturing is likely to cause additional damage to peripheral nerves. Therefore, an ideal nerve scaffold should possess good biocompatibility, diameter adaptability, and a stable biological interface for seamless biointegration with tissues. Inspired by the curl of Mimosa pudica, this study aimed to design and develop a diameter-adaptable, suture-free, stimulated curling bioadhesive tape (SCT) hydrogel for repairing PNI. The hydrogel is fabricated from chitosan and acrylic acid-N-hydroxysuccinimide lipid via gradient crosslinking using glutaraldehyde. It closely matches the nerves of different individuals and regions, thereby providing a bionic scaffold for axonal regeneration. In addition, this hydrogel rapidly absorbs tissue fluid from the nerve surface achieving durable wet-interface adhesion. Furthermore, the chitosan-based SCT hydrogel loaded with insulin-like growth factor-I effectively promotes peripheral nerve regeneration with excellent bioactivity. This procedure for peripheral nerve injury repair using the SCT hydrogel is simple and reduces the difficulty and duration of surgery, thereby advancing adaptive biointerfaces and reliable materials for nerve repair.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, China
| | - Bao-Guo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, China
| |
Collapse
|
12
|
Cai D, Weng W. Development potential of extracellular matrix hydrogels as hemostatic materials. Front Bioeng Biotechnol 2023; 11:1187474. [PMID: 37383519 PMCID: PMC10294235 DOI: 10.3389/fbioe.2023.1187474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
The entry of subcutaneous extracellular matrix proteins into the circulation is a key step in hemostasis initiation after vascular injury. However, in cases of severe trauma, extracellular matrix proteins are unable to cover the wound, making it difficult to effectively initiate hemostasis and resulting in a series of bleeding events. Acellular-treated extracellular matrix (ECM) hydrogels are widely used in regenerative medicine and can effectively promote tissue repair due to their high mimic nature and excellent biocompatibility. ECM hydrogels contain high concentrations of extracellular matrix proteins, including collagen, fibronectin, and laminin, which can simulate subcutaneous extracellular matrix components and participate in the hemostatic process. Therefore, it has unique advantages as a hemostatic material. This paper first reviewed the preparation, composition and structure of extracellular hydrogels, as well as their mechanical properties and safety, and then analyzed the hemostatic mechanism of the hydrogels to provide a reference for the application and research, and development of ECM hydrogels in the field of hemostasis.
Collapse
|
13
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
14
|
3D culture of the spinal cord with roots as an ex vivo model for comparative studies of motor and sensory nerve regeneration. Exp Neurol 2023; 362:114322. [PMID: 36652972 DOI: 10.1016/j.expneurol.2023.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Motor and sensory nerves exhibit tissue-specific structural and functional features. However, in vitro models designed to reflect tissue-specific differences between motor and sensory nerve regeneration have rarely been reported. Here, by embedding the spinal cord with roots (SCWR) in a 3D hydrogel environment, we compared the nerve regeneration processes between the ventral and dorsal roots. The 3D hydrogel environment induced an outward migration of neurons in the gray matter of the spinal cord, which allowed the long-term survival of motor neurons. Tuj1 immunofluorescence labeling confirmed the regeneration of neurites from both the ventral and dorsal roots. Next, we detected asymmetric ventral and dorsal root regeneration in response to nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF), and we observed motor and sensory Schwann cell phenotypes in the regenerated ventral and dorsal roots, respectively. Moreover, based on the SCWR model, we identified a targeted effect of collagen VI on sensory nerve fasciculation and characterized the protein expression profiles correlating to motor/sensory-specific nerve regeneration. These results suggest that the SCWR model can serve as a valuable ex vivo model for comparative study of motor and sensory nerve regeneration and for pharmacodynamic evaluations.
Collapse
|
15
|
Design of Functional RGD Peptide-Based Biomaterials for Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020345. [PMID: 36839667 PMCID: PMC9967156 DOI: 10.3390/pharmaceutics15020345] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Tissue engineering (TE) is a rapidly expanding field aimed at restoring or replacing damaged tissues. In spite of significant advancements, the implementation of TE technologies requires the development of novel, highly biocompatible three-dimensional tissue structures. In this regard, the use of peptide self-assembly is an effective method for developing various tissue structures and surface functionalities. Specifically, the arginine-glycine-aspartic acid (RGD) family of peptides is known to be the most prominent ligand for extracellular integrin receptors. Due to their specific expression patterns in various human tissues and their tight association with various pathophysiological conditions, RGD peptides are suitable targets for tissue regeneration and treatment as well as organ replacement. Therefore, RGD-based ligands have been widely used in biomedical research. This review article summarizes the progress made in the application of RGD for tissue and organ development. Furthermore, we examine the effect of RGD peptide structure and sequence on the efficacy of TE in clinical and preclinical studies. Additionally, we outline the recent advancement in the use of RGD functionalized biomaterials for the regeneration of various tissues, including corneal repair, artificial neovascularization, and bone TE.
Collapse
|
16
|
Ye H, Chen J, Li YQ, Yang J, Hsu CC, Cao TT. A hyaluronic acid granular hydrogel nerve guidance conduit promotes regeneration and functional recovery of injured sciatic nerves in rats. Neural Regen Res 2023; 18:657-663. [DOI: 10.4103/1673-5374.350212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
18
|
Faust AE, Soletti L, Cwalina NA, Miller AD, Wood MD, Mahan MA, Cheetham J, Brown BN. Development of an acellular nerve cap xenograft for neuroma prevention. J Biomed Mater Res A 2022; 110:1738-1748. [DOI: 10.1002/jbm.a.37437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Andrew D. Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology College of Veterinary Medicine, Cornell University Ithaca New York USA
| | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery Washington University, St. Louis School of Medicine St. Louis Missouri USA
| | - Mark A. Mahan
- Department of Neurosurgery, Clinical Neurosciences Center University of Utah Salt Lake City Utah USA
| | - Jonathan Cheetham
- Renerva, LLC Pittsburgh Pennsylvania USA
- Department of Clinical Sciences, Cornell College of Veterinary Medicine Cornell University Ithaca New York USA
- McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Bryan N. Brown
- Renerva, LLC Pittsburgh Pennsylvania USA
- McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh Pennsylvania USA
- Department of Bioengineering, Swanson School of Engineering University of Pittsburgh Pittsburgh Pennsylvania USA
| |
Collapse
|
19
|
Efficacy of Nerve-Derived Hydrogels to Promote Axon Regeneration Is Influenced by the Method of Tissue Decellularization. Int J Mol Sci 2022; 23:ijms23158746. [PMID: 35955880 PMCID: PMC9369339 DOI: 10.3390/ijms23158746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Injuries to large peripheral nerves are often associated with tissue defects and require reconstruction using autologous nerve grafts, which have limited availability and result in donor site morbidity. Peripheral nerve-derived hydrogels could potentially supplement or even replace these grafts. In this study, three decellularization protocols based on the ionic detergents sodium dodecyl sulfate (P1) and sodium deoxycholate (P2), or the organic solvent tri-n-butyl phosphate (P3), were used to prepare hydrogels. All protocols resulted in significantly decreased amounts of genomic DNA, but the P2 hydrogel showed the best preservation of extracellular matrix proteins, cytokines, and chemokines, and reduced levels of sulfated glycosaminoglycans. In vitro P1 and P2 hydrogels supported Schwann cell viability, secretion of VEGF, and neurite outgrowth. Surgical repair of a 10 mm-long rat sciatic nerve gap was performed by implantation of tubular polycaprolactone conduits filled with hydrogels followed by analyses using diffusion tensor imaging and immunostaining for neuronal and glial markers. The results demonstrated that the P2 hydrogel considerably increased the number of axons and the distance of regeneration into the distal nerve stump. In summary, the method used to decellularize nerve tissue affects the efficacy of the resulting hydrogels to support regeneration after nerve injury.
Collapse
|
20
|
Xia B, Chen G. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction. Int J Biol Macromol 2022; 214:480-491. [PMID: 35753517 DOI: 10.1016/j.ijbiomac.2022.06.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
There are many different grafts to repair damaged tissue. Various types of biological scaffolds, including films, fibers, microspheres, and hydrogels, can be used for tissue repair. A hydrogel, which is composed a natural or synthetic polymer network with high water absorption capacity, can provide a microenvironment closely resembling the extracellular matrix (ECM) of natural tissues to stimulate cell adhesion, proliferation, and differentiation. It has been shown to have great application potential in the field of tissue repair and regeneration. Hydrogels derived from natural tissues retain a variety of proteins and growth factors in optimal proportions, which is beneficial for the regeneration of specific tissues. This article reviews the latest research advances in the field of hydrogels from a variety of natural tissue sources, including bone tissue, blood vessels, nerve tissue, adipose tissue, skin tissue, and muscle tissue, including preparation methods, advantages, and applications in tissue engineering and regenerative medicine. Finally, it summarizes and discusses the challenges faced by natural tissue-derived hydrogels used in tissue repair, as well as future research and application directions.
Collapse
Affiliation(s)
- Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
21
|
Gregory E, Baek IH, Ala-Kokko N, Dugan R, Pinzon-Herrera L, Almodóvar J, Song YH. Peripheral Nerve Decellularization for In Vitro Extracellular Matrix Hydrogel Use: A Comparative Study. ACS Biomater Sci Eng 2022; 8:2574-2588. [PMID: 35649243 PMCID: PMC9983633 DOI: 10.1021/acsbiomaterials.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rise of tissue-engineered biomaterials has introduced more clinically translatable models of disease, including three-dimensional (3D) decellularized extracellular matrix (dECM) hydrogels. Specifically, decellularized nerve hydrogels have been utilized to model peripheral nerve injuries and disorders in vitro; however, there lacks standardization in decellularization methods. Here, rat sciatic nerves of varying preparations were decellularized using previously established methods: sodium deoxycholate (SD)-based, 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS)-based, and apoptosis-mediated. These nerves were characterized for cellular debris removal, ECM retention, and low cytotoxicity with cultured Schwann cells. The best preparations of each decellularization method were digested into dECM hydrogels, and rheological characterization, gelation kinetics, and confocal reflectance imaging of collagen fibril assembly were performed. It was determined that the SD-based method with nerve epineurial removal best maintained the overall ECM composition and mechanical properties of physiological peripheral nerves while efficiently stripping the scaffolds of tissue-specific cells and debris. This method was then utilized as a culture platform for quiescent Schwann cells and cancer-nerve crosstalk. Hydrogel-embedded Schwann cells were found to have high viability and act in a more physiologically relevant manner than those cultured in monolayers, and the hydrogel platform allowed for the activation of Schwann cells following treatment with cancer secreted factors. These findings establish a standard for peripheral nerve decellularization for usage as a dECM hydrogel testbed for in vitro peripheral nerve disease modeling and may facilitate the development of treatments for peripheral nerve disease and injury.
Collapse
|
22
|
Advances in the application of regenerative medicine in prevention of post-endoscopic submucosal dissection for esophageal stenosis. J Transl Int Med 2022; 10:28-35. [PMID: 35702182 PMCID: PMC8997800 DOI: 10.2478/jtim-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Endoscopic submucosal dissection (ESD) is a curative treatment for superficial esophageal cancer with distinct advantages. However, esophageal stenosis after ESD remains a tough problem, especially after large circumferential proportion of esophageal mucosa is removed, which limits the wide use of ESD, especially in circumferential lesions. In this scenario, preventive procedures are highly recommended against post-ESD esophageal stenosis. However, the efficacy and safety of traditional prophylactic methods (steroids, metal and biodegradable stents, balloon dilation, radial incision, etc.) are not satisfactory and novel strategies need to be developed. Regenerative medicine has been showing enormous potential in the reconstruction of organs including the esophagus. In this review, we aimed to describe the current status of regenerative medicine in prevention of post-ESD esophageal stenosis. Cell injection, cell sheet transplantation, and extracellular matrix implantation have been proved effective. However, numerous obstacles still exist and further studies are necessary.
Collapse
|
23
|
Zhang F, Zhang M, Liu S, Li C, Ding Z, Wan T, Zhang P. Application of Hybrid Electrically Conductive Hydrogels Promotes Peripheral Nerve Regeneration. Gels 2022; 8:41. [PMID: 35049576 PMCID: PMC8775167 DOI: 10.3390/gels8010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury (PNI) occurs frequently, and the prognosis is unsatisfactory. As the gold standard of treatment, autologous nerve grafting has several disadvantages, such as lack of donors and complications. The use of functional biomaterials to simulate the natural microenvironment of the nervous system and the combination of different biomaterials are considered to be encouraging alternative methods for effective tissue regeneration and functional restoration of injured nerves. Considering the inherent presence of an electric field in the nervous system, electrically conductive biomaterials have been used to promote nerve regeneration. Due to their singular physical properties, hydrogels can provide a three-dimensional hydrated network that can be integrated into diverse sizes and shapes and stimulate the natural functions of nerve tissue. Therefore, conductive hydrogels have become the most effective biological material to simulate human nervous tissue's biological and electrical characteristics. The principal merits of conductive hydrogels include their physical properties and their electrical peculiarities sufficient to effectively transmit electrical signals to cells. This review summarizes the recent applications of conductive hydrogels to enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Songyang Liu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Ci Li
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Zhentao Ding
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
24
|
Prest TA, Meder TJ, Skillen CD, Marchal L, Soletti L, Gardner PA, Cheetham J, Brown BN. Safety and efficacy of an injectable nerve-specific hydrogel in a rodent crush injury model. Muscle Nerve 2021; 65:247-255. [PMID: 34738250 DOI: 10.1002/mus.27455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS While the peripheral nervous system has the inherent ability to recover following injury, results are often unsatisfactory, resulting in permanent functional deficits and disability. Therefore, methods that enhance regeneration are of significant interest. The present study investigates an injectable nerve-tissue-specific hydrogel as a biomaterial for nerve regeneration in a rat nerve crush model. METHODS Nerve-specific hydrogels were injected into the subepineurial space in both uninjured and crushed sciatic nerves of rats to assess safety and efficacy, respectively. The animals were followed longitudinally for 12 wk using sciatic functional index and kinematic measures. At 12 wk, electrophysiologic examination was also performed, followed by nerve and muscle histologic assessment. RESULTS When the hydrogel was injected into an uninjured nerve, no differences in sciatic functional index, kinematic function, or axon counts were observed. A slight reduction in muscle fiber diameter was observed in the hydrogel-injected animals, but overall muscle area and kinematic function were not affected. Hydrogel injection following nerve crush injury resulted in multiple modest improvements in sciatic functional index and kinematic function with an earlier return to normal function observed in the hydrogel treated animals as compared to untreated controls. While no improvements in supramaximal compound motor action potential were observed in hydrogel treated animals, increased axon counts were observed on histologic assessment. DISCUSSION These improvements in functional and histologic outcomes in a rapidly and fully recovering model suggest that injection of a nerve-specific hydrogel is safe and has the potential to improve outcomes following nerve injury.
Collapse
Affiliation(s)
- Travis A Prest
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tyler J Meder
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clint D Skillen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lucile Marchal
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Paul A Gardner
- Renerva, LLC, Pittsburgh, Pennsylvania, USA.,Department of Neurological Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan Cheetham
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Renerva, LLC, Pittsburgh, Pennsylvania, USA.,Department of Clinical Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Renerva, LLC, Pittsburgh, Pennsylvania, USA
| |
Collapse
|