1
|
Justice I, Kiesel P, Safronova N, von Appen A, Saenz JP. A tuneable minimal cell membrane reveals that two lipid species suffice for life. Nat Commun 2024; 15:9679. [PMID: 39516463 PMCID: PMC11549477 DOI: 10.1038/s41467-024-53975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
All cells are encapsulated by a lipid membrane that facilitates their interactions with the environment. How cells manage diverse mixtures of lipids, which dictate membrane property and function, is experimentally challenging to address. Here, we present an approach to tune and minimize membrane lipid composition in the bacterium Mycoplasma mycoides and its derived 'minimal cell' (JCVI-Syn3A), revealing that a two-component lipidome can support life. Systematic reintroduction of phospholipids with different features demonstrates that acyl chain diversity is more important for growth than head group diversity. By tuning lipid chirality, we explore the lipid divide between Archaea and the rest of life, showing that ancestral lipidomes could have been heterochiral. However, in these simple organisms, heterochirality leads to impaired cellular fitness. Thus, our approach offers a tunable minimal membrane system to explore the fundamental lipidomic requirements for life, thereby extending the concept of minimal life from the genome to the lipidome.
Collapse
Affiliation(s)
- Isaac Justice
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, Dresden, Germany
| | - Nataliya Safronova
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Alexander von Appen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, Dresden, Germany
| | - James P Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany.
- Technische Universität Dresden, Faculty of Medicine, Dresden, Germany.
| |
Collapse
|
2
|
Rowlands RS, Sauteur PMM, Beeton ML. Mycoplasma pneumoniae: not a typical respiratory pathogen. J Med Microbiol 2024; 73:001910. [PMID: 39475213 PMCID: PMC11523975 DOI: 10.1099/jmm.0.001910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Mycoplasma pneumoniae is a leading cause of community-acquired pneumonia among school-aged children and young adults. Infections occur throughout the year but tend to surge during winter months across Europe. A characteristic epidemic cycle, where a substantial surge in the number of infections occurs, is seen approximately every 1-4 years and hypothesized to be driven by changes in immunity and a shift in circulating variants. Once thought to be an organism of low virulence, it has now been found to possess several virulence factors, including toxin production, biofilm formation and evasion of antibody-mediated immunity. The lack of a cell wall and reduced metabolic pathways limit the options for antibiotic treatment. Acquired macrolide resistance is a growing concern, with >80% of cases in China being macrolide-resistant. Although efforts have been made to develop a vaccine, there are still substantial hurdles to overcome in relation to vaccine-enhanced disease, which results from an inappropriate immune response among vaccinated individuals.
Collapse
Affiliation(s)
- Richard S. Rowlands
- Microbiology and Infection Research Group, Department of Biomedical Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff. CF5 2YB, UK
| | - Patrick M. Meyer Sauteur
- Division of Infectious Diseases and Hospital Epidemiology, Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael L. Beeton
- Microbiology and Infection Research Group, Department of Biomedical Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff. CF5 2YB, UK
| | - On behalf of the ESCMID Study Group for Mycoplasma and Chlamydia Infections (ESGMAC)
- Microbiology and Infection Research Group, Department of Biomedical Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff. CF5 2YB, UK
- Division of Infectious Diseases and Hospital Epidemiology, Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Zhang H, Zhang Y, Lu D, Chen X, Chen Y, Hu C, Guo A. MbovP0725, a secreted serine/threonine phosphatase, inhibits the host inflammatory response and affects metabolism in Mycoplasma bovis. mSystems 2024; 9:e0089123. [PMID: 38440990 PMCID: PMC11019793 DOI: 10.1128/msystems.00891-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
Mycoplasma species are able to produce and release secreted proteins, such as toxins, adhesins, and virulence-related enzymes, involved in bacteria adhesion, invasion, and immune evasion between the pathogen and host. Here, we investigated a novel secreted protein, MbovP0725, from Mycoplasma bovis encoding a putative haloacid dehalogenase (HAD) hydrolase function of a key serine/threonine phosphatase depending on Mg2+ for the dephosphorylation of its substrate pNPP, and it was most active at pH 8 to 9 and temperatures around 40°C. A transposon insertion mutant strain of M. bovis HB0801 that lacked the protein MbovP0725 induced a stronger inflammatory response but with a partial reduction of adhesion ability. Using transcriptome sequencing and quantitative reverse transcription polymerase chain reaction analysis, we found that the mutant was upregulated by the mRNA expression of genes from the glycolysis pathway, while downregulated by the genes enriched in ABC transporters and acetate kinase-phosphate acetyltransferase pathway. Untargeted metabolomics showed that the disruption of the Mbov_0725 gene caused the accumulation of 9-hydroxyoctadecadienoic acids and the consumption of cytidine 5'-monophosphate, uridine monophosphate, and adenosine monophosphate. Both the exogenous and endogenous MbvoP0725 protein created by purification and transfection inhibited lipopolysaccharide (LPS)-induced IL-1β, IL-6, and TNF-α mRNA production and could also attenuate the activation of MAPK-associated pathways after LPS treatment. A pull-down assay identified MAPK p38 and ERK as potential substrates for MbovP0725. These findings define metabolism- and virulence-related roles for a HAD family phosphatase and reveal its ability to inhibit the host pro-inflammatory response. IMPORTANCE Mycoplasma bovis (M. bovis) infection is characterized by chronic pneumonia, otitis, arthritis, and mastitis, among others, and tends to involve the suppression of the immune response via multiple strategies to avoid host cell immune clearance. This study found that MbovP0725, a haloacid dehalogenase (HAD) family phosphatase secreted by M. bovis, had the ability to inhibit the host pro-inflammatory response induced by lipopolysaccharide. Transcriptomic and metabolomic analyses were used to identify MbovP0725 as an important phosphatase involved in glycolysis and nucleotide metabolism. The M. bovis transposon mutant strain T8.66 lacking MbovP0725 induced a higher inflammatory response and exhibited weaker adhesion to host cells. Additionally, T8.66 attenuated the phosphorylation of MAPK P38 and ERK and interacted with the two targets. These results suggested that MbovP0725 had the virulence- and metabolism-related role of a HAD family phosphatase, performing an anti-inflammatory response during M. bovis infection.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal & Veterinary Sciences, Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yiqiu Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Mazzolini R, Rodríguez-Arce I, Fernández-Barat L, Piñero-Lambea C, Garrido V, Rebollada-Merino A, Motos A, Torres A, Grilló MJ, Serrano L, Lluch-Senar M. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat Biotechnol 2023; 41:1089-1098. [PMID: 36658340 PMCID: PMC10421741 DOI: 10.1038/s41587-022-01584-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Engineered live bacteria could provide a new modality for treating lung infections, a major cause of mortality worldwide. In the present study, we engineered a genome-reduced human lung bacterium, Mycoplasma pneumoniae, to treat ventilator-associated pneumonia, a disease with high hospital mortality when associated with Pseudomonas aeruginosa biofilms. After validating the biosafety of an attenuated M. pneumoniae chassis in mice, we introduced four transgenes into the chromosome by transposition to implement bactericidal and biofilm degradation activities. We show that this engineered strain has high efficacy against an acute P. aeruginosa lung infection in a mouse model. In addition, we demonstrated that the engineered strain could dissolve biofilms formed in endotracheal tubes of patients with ventilator-associated pneumonia and be combined with antibiotics targeting the peptidoglycan layer to increase efficacy against Gram-positive and Gram-negative bacteria. We expect our M. pneumoniae-engineered strain to be able to treat biofilm-associated infections in the respiratory tract.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd, Barcelona, Spain
| | - Irene Rodríguez-Arce
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Agrobiotechnology, CSIC-Navarra Government, Navarra, Spain
| | - Laia Fernández-Barat
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | - Carlos Piñero-Lambea
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd, Barcelona, Spain
| | - Victoria Garrido
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Agrobiotechnology, CSIC-Navarra Government, Navarra, Spain
| | - Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Anna Motos
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | | | - Luis Serrano
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Maria Lluch-Senar
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Pulmobiotics Ltd, Barcelona, Spain.
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| |
Collapse
|
5
|
Burgos R, Garcia-Ramallo E, Shaw D, Lluch-Senar M, Serrano L. Development of a Serum-Free Medium To Aid Large-Scale Production of Mycoplasma-Based Therapies. Microbiol Spectr 2023; 11:e0485922. [PMID: 37097155 PMCID: PMC10269708 DOI: 10.1128/spectrum.04859-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
To assist in the advancement of the large-scale production of safe Mycoplasma vaccines and other Mycoplasma-based therapies, we developed a culture medium free of animal serum and other animal components for Mycoplasma pneumoniae growth. By establishing a workflow method to systematically test different compounds and concentrations, we provide optimized formulations capable of supporting serial passaging and robust growth reaching 60 to 70% of the biomass obtained in rich medium. Global transcriptomic and proteomic analysis showed minor physiological changes upon cell culture in the animal component-free medium, supporting its suitability for the production of M. pneumoniae-based therapies. The major contributors to growth performance were found to be glucose as a carbon source, glycerol, cholesterol, and phospholipids as a source of fatty acids. Bovine serum albumin or cyclodextrin (in the animal component-free medium) were required as lipid carriers to prevent lipid toxicity. Connaught Medical Research Laboratories medium (CMRL) used to simplify medium preparation as a source of amino acids, nucleotide precursors, vitamins, and other cofactors could be substituted by cysteine. In fact, the presence of protein hydrolysates such as yeastolate or peptones was found to be essential and preferred over free amino acids, except for the cysteine. Supplementation of nucleotide precursors and vitamins is not strictly necessary in the presence of yeastolate, suggesting that this animal origin-free hydrolysate serves as an efficient source for these compounds. Finally, we adapted the serum-free medium formulation to support growth of Mycoplasma hyopneumoniae, a swine pathogen for which inactivated whole-cell vaccines are available. IMPORTANCE Mycoplasma infections have a significant negative impact on both livestock production and human health. Vaccination is often the first option to control disease and alleviate the economic impact that some Mycoplasma infections cause on milk production, weight gain, and animal health. The fastidious nutrient requirements of these bacteria, however, challenges the industrial production of attenuated or inactivated whole-cell vaccines, which depends on the use of animal serum and other animal raw materials. Apart from their clinical relevance, some Mycoplasma species have become cellular models for systems and synthetic biology, owing to the small size of their genomes and the absence of a cell wall, which offers unique opportunities for the secretion and delivery of biotherapeutics. This study proposes medium formulations free of serum and animal components with the potential of supporting large-scale production upon industrial optimization, thus contributing to the development of safe vaccines and other Mycoplasma-based therapies.
Collapse
Affiliation(s)
- Raul Burgos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Garcia-Ramallo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Shaw
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd., Barcelona, Spain
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
6
|
Sprankel L, Vizarraga D, Martín J, Manger S, Meier-Credo J, Marcos M, Julve J, Rotllan N, Scheffer MP, Escolà-Gil JC, Langer JD, Piñol J, Fita I, Frangakis AS. Essential protein P116 extracts cholesterol and other indispensable lipids for Mycoplasmas. Nat Struct Mol Biol 2023; 30:321-329. [PMID: 36782049 PMCID: PMC10023570 DOI: 10.1038/s41594-023-00922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
Mycoplasma pneumoniae, responsible for approximately 30% of community-acquired human pneumonia, needs to extract lipids from the host environment for survival and proliferation. Here, we report a comprehensive structural and functional analysis of the previously uncharacterized protein P116 (MPN_213). Single-particle cryo-electron microscopy of P116 reveals a homodimer presenting a previously unseen fold, forming a huge hydrophobic cavity, which is fully accessible to solvent. Lipidomics analysis shows that P116 specifically extracts lipids such as phosphatidylcholine, sphingomyelin and cholesterol. Structures of different conformational states reveal the mechanism by which lipids are extracted. This finding immediately suggests a way to control Mycoplasma infection by interfering with lipid uptake.
Collapse
Affiliation(s)
- Lasse Sprankel
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - David Vizarraga
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Jesús Martín
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Sina Manger
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Marina Marcos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Noemi Rotllan
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt, Germany
- Proteomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain.
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
7
|
Korenskaia AE, Matushkin YG, Lashin SA, Klimenko AI. Bioinformatic Assessment of Factors Affecting the Correlation between Protein Abundance and Elongation Efficiency in Prokaryotes. Int J Mol Sci 2022; 23:11996. [PMID: 36233299 PMCID: PMC9570070 DOI: 10.3390/ijms231911996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Protein abundance is crucial for the majority of genetically regulated cell functions to act properly in prokaryotic organisms. Therefore, developing bioinformatic methods for assessing the efficiency of different stages of gene expression is of great importance for predicting the actual protein abundance. One of these steps is the evaluation of translation elongation efficiency based on mRNA sequence features, such as codon usage bias and mRNA secondary structure properties. In this study, we have evaluated correlation coefficients between experimentally measured protein abundance and predicted elongation efficiency characteristics for 26 prokaryotes, including non-model organisms, belonging to diverse taxonomic groups The algorithm for assessing elongation efficiency takes into account not only codon bias, but also number and energy of secondary structures in mRNA if those demonstrate an impact on predicted elongation efficiency of the ribosomal protein genes. The results show that, for a number of organisms, secondary structures are a better predictor of protein abundance than codon usage bias. The bioinformatic analysis has revealed several factors associated with the value of the correlation coefficient. The first factor is the elongation efficiency optimization type-the organisms whose genomes are optimized for codon usage only have significantly higher correlation coefficients. The second factor is taxonomical identity-bacteria that belong to the class Bacilli tend to have higher correlation coefficients among the analyzed set. The third is growth rate, which is shown to be higher for the organisms with higher correlation coefficients between protein abundance and predicted translation elongation efficiency. The obtained results can be useful for further improvement of methods for protein abundance prediction.
Collapse
Affiliation(s)
- Aleksandra E. Korenskaia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Yury G. Matushkin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Sergey A. Lashin
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Alexandra I. Klimenko
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Broto A, Gaspari E, Miravet-Verde S, Dos Santos VAPM, Isalan M. A genetic toolkit and gene switches to limit Mycoplasma growth for biosafety applications. Nat Commun 2022; 13:1910. [PMID: 35393441 PMCID: PMC8991246 DOI: 10.1038/s41467-022-29574-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Mycoplasmas have exceptionally streamlined genomes and are strongly adapted to their many hosts, which provide them with essential nutrients. Owing to their relative genomic simplicity, Mycoplasmas have been used to develop chassis for biotechnological applications. However, the dearth of robust and precise toolkits for genomic manipulation and tight regulation has hindered any substantial advance. Herein we describe the construction of a robust genetic toolkit for M. pneumoniae, and its successful deployment to engineer synthetic gene switches that control and limit Mycoplasma growth, for biosafety containment applications. We found these synthetic gene circuits to be stable and robust in the long-term, in the context of a minimal cell. With this work, we lay a foundation to develop viable and robust biosafety systems to exploit a synthetic Mycoplasma chassis for live attenuated vectors for therapeutic applications.
Collapse
Affiliation(s)
- Alicia Broto
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Erika Gaspari
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- European & Developing Countries Clinical Trials Partnership (EDCTP), The Hague, The Netherlands
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Thornburg ZR, Bianchi DM, Brier TA, Gilbert BR, Earnest TM, Melo MC, Safronova N, Sáenz JP, Cook AT, Wise KS, Hutchison CA, Smith HO, Glass JI, Luthey-Schulten Z. Fundamental behaviors emerge from simulations of a living minimal cell. Cell 2022; 185:345-360.e28. [PMID: 35063075 PMCID: PMC9985924 DOI: 10.1016/j.cell.2021.12.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
We present a whole-cell fully dynamical kinetic model (WCM) of JCVI-syn3A, a minimal cell with a reduced genome of 493 genes that has retained few regulatory proteins or small RNAs. Cryo-electron tomograms provide the cell geometry and ribosome distributions. Time-dependent behaviors of concentrations and reaction fluxes from stochastic-deterministic simulations over a cell cycle reveal how the cell balances demands of its metabolism, genetic information processes, and growth, and offer insight into the principles of life for this minimal cell. The energy economy of each process including active transport of amino acids, nucleosides, and ions is analyzed. WCM reveals how emergent imbalances lead to slowdowns in the rates of transcription and translation. Integration of experimental data is critical in building a kinetic model from which emerges a genome-wide distribution of mRNA half-lives, multiple DNA replication events that can be compared to qPCR results, and the experimentally observed doubling behavior.
Collapse
Affiliation(s)
- Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David M. Bianchi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tyler M. Earnest
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marcelo C.R. Melo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nataliya Safronova
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | - James P. Sáenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | | | - Kim S. Wise
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | | | | | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; NSF Center for the Physics of Living Cells, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Landon S, Chalkley O, Breese G, Grierson C, Marucci L. Understanding Metabolic Flux Behaviour in Whole-Cell Model Output. Front Mol Biosci 2021; 8:732079. [PMID: 34977150 PMCID: PMC8718694 DOI: 10.3389/fmolb.2021.732079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022] Open
Abstract
Whole-cell modelling is a newly expanding field that has many applications in lab experiment design and predictive drug testing. Although whole-cell model output contains a wealth of information, it is complex and high dimensional and thus hard to interpret. Here, we present an analysis pipeline that combines machine learning, dimensionality reduction, and network analysis to interpret and visualise metabolic reaction fluxes from a set of single gene knockouts simulated in the Mycoplasma genitalium whole-cell model. We found that the reaction behaviours show trends that correlate with phenotypic classes of the simulation output, highlighting particular cellular subsystems that malfunction after gene knockouts. From a graphical representation of the metabolic network, we saw that there is a set of reactions that can be used as markers of a phenotypic class, showing their importance within the network. Our analysis pipeline can support the understanding of the complexity of in silico cells without detailed knowledge of the constituent parts, which can help to understand the effects of gene knockouts and, as whole-cell models become more widely built and used, aid genome design.
Collapse
Affiliation(s)
- Sophie Landon
- BrisSynBio, University of Bristol, Bristol, United Kingdom
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Oliver Chalkley
- BrisSynBio, University of Bristol, Bristol, United Kingdom
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
- Bristol Centre for Complexity Science, Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Gus Breese
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Claire Grierson
- BrisSynBio, University of Bristol, Bristol, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Lucia Marucci
- BrisSynBio, University of Bristol, Bristol, United Kingdom
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Kandi V, Suvvari TK, Vadakedath S, Godishala V. Microbes, Clinical trials, Drug Discovery, and Vaccine Development: The Current Perspectives. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i4.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Because of the frequent emergence of novel microbial species and the re-emergence of genetic variants of hitherto known microbes, the global healthcare system, and human health has been thrown into jeopardy. Also, certain microbes that possess the ability to develop multi-drug resistance (MDR) have limited the treatment options in cases of serious infections, and increased hospital and treatment costs, and associated morbidity and mortality. The recent discovery of the novel Coronavirus (n-CoV), the Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) that is causing the CoV Disease-19 (COVID-19) has resulted in severe morbidity and mortality throughout the world affecting normal human lives. The major concern with the current pandemic is the non-availability of specific drugs and an incomplete understanding of the pathobiology of the virus. It is therefore important for pharmaceutical establishments to envisage the discovery of therapeutic interventions and potential vaccines against the novel and MDR microbes. Therefore, this review is attempted to update and explore the current perspectives in microbes, clinical research, drug discovery, and vaccine development to effectively combat the emerging novel and re-emerging genetic variants of microbes.
Collapse
|
12
|
Gaspari E, Koehorst JJ, Frey J, Martins dos Santos VA, Suarez‐Diez M. Galactocerebroside biosynthesis pathways of Mycoplasma species: an antigen triggering Guillain-Barré-Stohl syndrome. Microb Biotechnol 2021; 14:1201-1211. [PMID: 33773097 PMCID: PMC8085918 DOI: 10.1111/1751-7915.13794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Infection by Mycoplasma pneumoniae has been identified as a preceding factor of Guillain-Barré-Stohl syndrome. The Guillain-Barré-Stohl syndrome is triggered by an immune reaction against the major glycolipids and it has been postulated that M. pneumoniae infection triggers this syndrome due to bacterial production of galactocerebroside. Here, we present an extensive comparison of 224 genome sequences from 104 Mycoplasma species to characterize the genetic determinants of galactocerebroside biosynthesis. Hidden Markov models were used to analyse glycosil transferases, leading to identification of a functional protein domain, termed M2000535 that appears in about a third of the studied genomes. This domain appears to be associated with a potential UDP-glucose epimerase, which converts UDP-glucose into UDP-galactose, a main substrate for the biosynthesis of galactocerebroside. These findings clarify the pathogenic mechanisms underlining the triggering of Guillain-Barré-Stohl syndrome by M. pneumoniae infections.
Collapse
Affiliation(s)
- Erika Gaspari
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
| | - Jasper J. Koehorst
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
| | | | - Vitor A.P. Martins dos Santos
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
- LifeGlimmer GmbHBerlinGermany
| | - Maria Suarez‐Diez
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
13
|
News & Views. Altern Lab Anim 2021. [DOI: 10.1177/0261192920979998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|