1
|
Lensch V, Johnson JA, Kiessling LL. Glycoconjugate vaccines: platforms and adjuvants for directed immunity. Glycobiology 2024; 34:cwae092. [PMID: 39593193 PMCID: PMC11604072 DOI: 10.1093/glycob/cwae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/03/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024] Open
Abstract
Central to immune recognition is the glycocalyx, a glycan-rich coat on all cells that plays a crucial role in interactions that enable pathogen detection and activation of immune defenses. Pathogens and cancerous cells often display distinct glycans on their surfaces, making these saccharide antigens prime targets for vaccine development. However, carbohydrates alone generally serve as poor immunogens due to their often weak binding affinities, inability to effectively recruit T cell help, and reliance on adjuvants to iboost immune activation. The introduction of glycoconjugate vaccines, initially involving the covalent coupling of carbohydrate antigens to carrier proteins, marked a pivotal advancement by facilitating neutralizing antibody production against carbohydrate targets. Despite successes in generating glycoconjugate vaccines against certain bacterial diseases, challenges persist in creating effective vaccines against numerous intracellular pathogens and non-communicable diseases such as cancer. In this review, we highlight new developments in conjugate vaccine platforms aim to overcome these limitations by optimizing the display of glycan and T cell epitopes as well as incorporating defined carbohydrate adjuvants to direct tailored immune responses. These advancements promise to improve the effectiveness of carbohydrate-based vaccines and broaden their coverage against a wide range of diseases.
Collapse
Affiliation(s)
- Valerie Lensch
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research,Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research,Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| |
Collapse
|
2
|
Shetty S, Alvarado PC, Pettie D, Collier JH. Next-Generation Vaccine Development with Nanomaterials: Recent Advances, Possibilities, and Challenges. Annu Rev Biomed Eng 2024; 26:273-306. [PMID: 38959389 DOI: 10.1146/annurev-bioeng-110122-124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.
Collapse
Affiliation(s)
- Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Pablo Cordero Alvarado
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Deleah Pettie
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| |
Collapse
|
3
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Khakhum N, Baruch-Torres N, Stockton JL, Chapartegui-González I, Badten AJ, Adam A, Wang T, Huerta-Saquero A, Yin YW, Torres AG. Decoration of Burkholderia Hcp1 protein to virus-like particles as a vaccine delivery platform. Infect Immun 2024; 92:e0001924. [PMID: 38353543 PMCID: PMC10929448 DOI: 10.1128/iai.00019-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024] Open
Abstract
Virus-like particles (VLPs) are protein-based nanoparticles frequently used as carriers in conjugate vaccine platforms. VLPs have been used to display foreign antigens for vaccination and to deliver immunotherapy against diseases. Hemolysin-coregulated proteins 1 (Hcp1) is a protein component of the Burkholderia type 6 secretion system, which participates in intracellular invasion and dissemination. This protein has been reported as a protective antigen and is used in multiple vaccine candidates with various platforms against melioidosis, a severe infectious disease caused by the intracellular pathogen Burkholderia pseudomallei. In this study, we used P22 VLPs as a surface platform for decoration with Hcp1 using chemical conjugation. C57BL/6 mice were intranasally immunized with three doses of either PBS, VLPs, or conjugated Hcp1-VLPs. Immunization with Hcp1-VLPs formulation induced Hcp1-specific IgG, IgG1, IgG2c, and IgA antibody responses. Furthermore, the serum from Hcp1-VLPs immunized mice enhanced the bacterial uptake and opsonophagocytosis by macrophages in the presence of complement. This study demonstrated an alternative strategy to develop a VLPs-based vaccine platform against Burkholderia species.
Collapse
Affiliation(s)
- Nittaya Khakhum
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Noe Baruch-Torres
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, Galveston, Texas, USA
| | - Jacob L. Stockton
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, Galveston, Texas, USA
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alejandro Huerta-Saquero
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Gaspar EB, dos Santos LR, do Egito AA, dos Santos MG, Mantovani C, Rieger JDSG, Abrantes GADS, Suniga PAP, Favacho JDM, Pinto IB, Nassar AFDC, dos Santos FL, de Araújo FR. Assessment of the Virulence of the Burkholderia mallei Strain BAC 86/19 in BALB/c Mice. Microorganisms 2023; 11:2597. [PMID: 37894255 PMCID: PMC10609534 DOI: 10.3390/microorganisms11102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Burkholderia mallei is an aerobic, Gram-negative, non-motile bacillus. As an obligate mammalian pathogen, it primarily affects solipeds. Although rarely transmitted to humans, the disease it causes, glanders, is classified as a zoonosis. The bacterium was officially eradicated in Brazil in 1969; however, it reemerged after three decades. This study aims to assess the virulence of a specific B. mallei strain, isolated in Brazil, in BALB/c mice through intranasal infection. The strain, B. mallei BAC 86/19, was obtained from the tracheal secretion of a young mare displaying positive serology but no clinical signs of glanders. Post-mortem examinations revealed macroscopic lesions consistent with the disease, however. In mice, the LD50 was determined to be approximately 1.59 × 105 colony-forming units (CFU)/animal. Mice exposed to either 0.1 × LD50 or 1 × LD50 displayed transient weight loss, which resolved after three or five days, respectively. B. mallei persisted within the liver and lung for five days post-infection and in the spleen for seven days. These findings underscore the detectable virulence of the Brazilian B. mallei BAC 86/19 strain in mice, which are relatively resilient hosts. This research points to the importance of the continued investigation of the virulence mechanisms and potential countermeasures associated with B. mallei infections, including their Brazilian isolates.
Collapse
Affiliation(s)
- Emanuelle Baldo Gaspar
- Embrapa South Livestock, BR-153, Km 632, 9 Vila Industrial, Rural Area, Mailbox 242, Bagé 96401-970, RS, Brazil
| | - Lenita Ramires dos Santos
- Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (L.R.d.S.); (A.A.d.E.); (M.G.d.S.); (F.R.d.A.)
| | - Andréa Alves do Egito
- Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (L.R.d.S.); (A.A.d.E.); (M.G.d.S.); (F.R.d.A.)
| | - Maria Goretti dos Santos
- Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (L.R.d.S.); (A.A.d.E.); (M.G.d.S.); (F.R.d.A.)
| | - Cynthia Mantovani
- Embrapa Beef Cattle/Ministry of Agriculture, Livestock and Food Supply Scholarship, Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (C.M.); (J.d.S.G.R.); (G.A.d.S.A.); (I.B.P.)
| | - Juliana da Silva Gomes Rieger
- Embrapa Beef Cattle/Ministry of Agriculture, Livestock and Food Supply Scholarship, Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (C.M.); (J.d.S.G.R.); (G.A.d.S.A.); (I.B.P.)
| | - Guilherme Augusto de Sousa Abrantes
- Embrapa Beef Cattle/Ministry of Agriculture, Livestock and Food Supply Scholarship, Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (C.M.); (J.d.S.G.R.); (G.A.d.S.A.); (I.B.P.)
| | - Paula Adas Pereira Suniga
- MAI/DAI Scholarship, Federal University of Mato Grosso do Sul, Cidade Universitária, Costa e Silva Ave., Campo Grande 79070-900, MS, Brazil;
- Postgraduate Program in Animal Science, Faculty of Veterinary Medicine and Animal Science-FAMEZ/UFMS, Federal University of Mato Grosso do Sul, Senador Filinto Muller Ave., 2443, Campo Grande 79074-460, MS, Brazil
| | | | - Ingrid Batista Pinto
- Embrapa Beef Cattle/Ministry of Agriculture, Livestock and Food Supply Scholarship, Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (C.M.); (J.d.S.G.R.); (G.A.d.S.A.); (I.B.P.)
| | | | - Fernando Leandro dos Santos
- UFPE Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil;
| | - Flábio Ribeiro de Araújo
- Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (L.R.d.S.); (A.A.d.E.); (M.G.d.S.); (F.R.d.A.)
| |
Collapse
|
6
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Development of Melioidosis Subunit Vaccines Using an Enzymatically Inactive Burkholderia pseudomallei AhpC. Infect Immun 2022; 90:e0022222. [PMID: 35862715 PMCID: PMC9387246 DOI: 10.1128/iai.00222-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is a facultative intracellular, Gram-negative pathogen that is highly infectious via the respiratory route and can cause severe, debilitating, and often fatal diseases in humans and animals. At present, no licensed vaccines for immunization against this CDC Tier 1 select agent exist. Studies in our lab have previously demonstrated that subunit vaccine formulations consisting of a B. pseudomallei capsular polysaccharide (CPS)-based glycoconjugate (CPS-CRM197) combined with hemolysin-coregulated protein (Hcp1) provided C57BL/6 mice with high-level protection against an acute inhalational challenge of B. pseudomallei. In this study, we evaluated the immunogenicity and protective capacity of B. pseudomallei alkyl hydroperoxide reductase subunit C (AhpC) in combination with CPS-CRM197. AhpC is a peroxiredoxin involved in oxidative stress reduction and is a potential protective antigen. To facilitate our studies and maximize safety in animals, recombinant B. pseudomallei AhpC harboring an active site mutation (AhpCC57G) was expressed in Escherichia coli and purified using tandem nickel-cobalt affinity chromatography. Immunization of C57BL/6 mice with CPS-CRM197 combined with AhpCC57G stimulated high-titer IgG responses against the CPS component of the glycoconjugate as well as stimulated high-titer IgG and robust interferon gamma (IFN-γ)-, interleukin-5 (IL-5)-, and IL-17-secreting T cell responses against AhpCC57G. When challenged via an inhalational route with a high dose (~27 50% lethal doses [LD50s]) of B. pseudomallei, 70% of the immunized mice survived 35 days postchallenge. Collectively, our findings demonstrate that AhpCC57G is a potent activator of cellular and humoral immune responses and may be a promising candidate to include in future melioidosis subunit vaccines.
Collapse
|
8
|
Optimization of Multivalent Gold Nanoparticle Vaccines Eliciting Humoral and Cellular Immunity in an In Vivo Model of Enterohemorrhagic Escherichia coli O157:H7 Colonization. mSphere 2022; 7:e0093421. [PMID: 35044806 PMCID: PMC8769200 DOI: 10.1128/msphere.00934-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 remains a pathogen of significance and high consequence around the world. This outcome is due in part to the high economic impact associated with massive, contaminated product recalls, prevalence of the pathogen in carrier reservoirs, disease sequelae, and mortality associated with several outbreaks worldwide. Furthermore, the contraindication of antibiotic use for the treatment of EHEC-related infections makes this pathogen a primary candidate for the development of effective prophylactic vaccines. However, no vaccines are approved for human use, and many have failed to provide a high degree of efficacy or broad protection, thereby opening an avenue for the use of new technologies to produce a safe, effective, and protective vaccine. Building on our previous studies using reverse vaccinology-predicted antigens, we refine a formulation, evaluate new immunogenic antigens, and further expand our understanding about the mechanism of EHEC vaccine-mediated protection. In the current study, we exploit the use of the nanotechnology platform based on gold nanoparticles (AuNP), which can act as a scaffold for the delivery of various antigens. Our results demonstrate that a refined vaccine formulation incorporating EHEC antigen LomW, EscC, LpfA1, or LpfA2 and delivered using AuNPs can elicit robust antigen-specific cellular and humoral responses associated with reduced EHEC colonization in vivo. Furthermore, our in vitro mechanistic studies further support that antibody-mediated protection is primarily driven by inhibition of bacterial adherence onto intestinal epithelial cells and by promotion of macrophage uptake and killing. IMPORTANCE Enterohemorrhagic E. coli O157:H7 remains an important human pathogen that does not have an effective and safe vaccine available. We have made outstanding progress in the identification of novel protective antigens that have been incorporated into the gold nanoparticle platform and used as vaccines. In this study, we have refined our vaccine formulations to incorporate multiple antigens and further define the mechanism of antibody-mediated protection, including one vaccine that promotes macrophage uptake. We further define the cell-mediated responses elicited at the mucosal surface by our nanovaccine formulations, another key immune mechanism linked to protection.
Collapse
|
9
|
Li L, Yan X, Xia M, Shen B, Cao Y, Wu X, Sun J, Zhang Y, Zhang M. Nanoparticle/Nanocarrier Formulation as an Antigen: The Immunogenicity and Antigenicity of Itself. Mol Pharm 2022; 19:148-159. [PMID: 34886673 DOI: 10.1021/acs.molpharmaceut.1c00704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In antibody preparation, the immunogenicity of small molecules is limited due to the instability of adjuvant/hapten emulsions. Nanoparticle-based adjuvants overcome instability and effectively improve immune responses. Immunogenicity and antigenicity are fundamentally important, yet understudied, facets of nanoparticle formulations themselves. Herein, we studied the immunogenicity and antigenicity of nanoparticle formulations. In experiments in a rabbit model, simple inorganic nanoparticle (e.g., gold nanoparticle (AuNP) and silver nanoparticle (AgNP)) immunogens induced higher titers of antiserum. Moreover, several promising nanoparticle drug carrier immunogens (e.g., SiO2, oleylamine graft polysuccinimide (PSIOAm), oleylamine and N-(3-aminopropyl)imidazole cograft polysuccinimide (PSIOAm-NAPI), Fe3O4@O-dextran, etc.) showed excellent immunogenicity. Cross-reactivity calculations revealed that the antigenicity properties of AgNP and AuNP antigens are highly size-dependent. Meanwhile, four nanoparticle drug carriers generate antibody-specific immune responses to their antigens. The reactivity of the anti-NP antibodies with nanoparticle antigens was confirmed using immunoassays. This study systematically identified the immunogenicity and antigenicity of the nanoparticle formulation itself. These findings provide insights into the immunological properties of the nanoparticle formulation itself in an organism.
Collapse
Affiliation(s)
- Lei Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xi Yan
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Meng Xia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Bi Shen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yiting Cao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xiayu Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Jinwen Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yue Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Mingcui Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
10
|
Saini S, Singha H, Shanmugasundaram K, Tripathi BN. Characterization of immunoglobulin and cytokine responses in Burkholderia mallei infected equids. Microb Pathog 2021; 162:105310. [PMID: 34838612 DOI: 10.1016/j.micpath.2021.105310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/30/2023]
Abstract
Burkholderia mallei causes a highly fatal infectious disease in equines known as glanders. It is one of the OIE listed notifiable diseases, which entails strict control policy measures once B. mallei infection is confirmed in the susceptible hosts. Humans, especially equine handlers, veterinary professionals and laboratory workers are at greater risk to acquire the B. mallei infection directly through prolonged contact with glanderous equines, and indirectly through unprotected handling of B. mallei contaminated materials. Further, natural resistance of B. mallei to multiple antibiotics, aerosol transmission, lack of effective vaccine and treatment make this organism a potential agent of biological warfare. Results of experimental B. mallei infection in mouse and non-human primates and immunization with live attenuated B. mallei strains demonstrated that activation of early innate and adaptive immune responses play a critical role in controlling B. mallei infection. However, the immune response elicited by the primary hosts (equids) B. mallei infection is poorly understood. Therefore, we aimed to investigate immune responses in glanders affected horses (n = 23) and mules (n = 1). In this study, chronically infected equids showed strong humoral responses (IgM, IgG and IgA) specific to B. mallei type 6 secretory proteins such as Hcp1, TssA and TssB. The infected equids also elicited robust cellular responses characterized by significantly elevated levels of IFN-γ, TNF-α, IL-12, IL-17 and IL-6 in PBMCs. In addition, stimulation of equine PBMCs by Hcp1 resulted in the further elevation of these cytokines. Thus, the present study indicated that antibody response and T helper cell (Th) type 1-associated cytokines were the salient features of chronic B. mallei infection in horses. The immune responses also suggest further evaluation of these proteins as potential vaccine candidates.
Collapse
Affiliation(s)
- Sheetal Saini
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India
| | - Harisankar Singha
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India.
| | - Karuppusamy Shanmugasundaram
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India
| | - Bhupendra Nath Tripathi
- Division of Animal Sciences, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001, India.
| |
Collapse
|
11
|
Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. Nanotechnology-Based Delivery Systems for Antimicrobial Peptides. Pharmaceutics 2021; 13:pharmaceutics13111795. [PMID: 34834210 PMCID: PMC8620809 DOI: 10.3390/pharmaceutics13111795] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant threat to global health. The conventional antibiotic pool has been depleted, forcing the investigation of novel and alternative antimicrobial strategies. Antimicrobial peptides (AMPs) have shown potential as alternative diagnostic and therapeutic agents in biomedical applications. To date, over 3000 AMPs have been identified, but only a fraction of these have been approved for clinical trials. Their clinical applications are limited to topical application due to their systemic toxicity, susceptibility to protease degradation, short half-life, and rapid renal clearance. To circumvent these challenges and improve AMP’s efficacy, different approaches such as peptide chemical modifications and the development of AMP delivery systems have been employed. Nanomaterials have been shown to improve the activity of antimicrobial drugs by providing support and synergistic effect against pathogenic microbes. This paper describes the role of nanotechnology in the targeted delivery of AMPs, and some of the nano-based delivery strategies for AMPs are discussed with a clear focus on metallic nanoparticle (MNP) formulations.
Collapse
Affiliation(s)
| | | | | | - Mervin Meyer
- Correspondence: (A.O.F.); (N.R.S.S.); (A.M.M.); (M.M.)
| |
Collapse
|
12
|
Zhu H, Rollier CS, Pollard AJ. Recent advances in lipopolysaccharide-based glycoconjugate vaccines. Expert Rev Vaccines 2021; 20:1515-1538. [PMID: 34550840 DOI: 10.1080/14760584.2021.1984889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The public health burden caused by pathogenic Gram-negative bacteria is increasingly prominent due to antimicrobial resistance. The surface carbohydrates are potential antigens for vaccines against Gram-negative bacteria. The enhanced immunogenicity of the O-specific polysaccharide (O-SP) moiety of LPS when coupled to a carrier protein may protect against bacterial pathogens. However, because of the toxic lipid A moiety and relatively high costs of O-SP isolation, LPS has not been a popular vaccine antigen until recently. AREAS COVERED In this review, we discuss the rationales for developing LPS-based glycoconjugate vaccines, principles of glycoconjugate-induced immunity, and highlight the recent developments and challenges faced by LPS-based glycoconjugate vaccines. EXPERT OPINION Advances in LPS harvesting, LPS chemical synthesis, and newer carrier proteins in the past decade have propelled LPS-based glycoconjugate vaccines toward further development, through to clinical evaluation. The development of LPS-based glycoconjugates offers a new horizon for vaccine prevention of Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
13
|
Grund ME, Kramarska E, Choi SJ, McNitt DH, Klimko CP, Rill NO, Dankmeyer JL, Shoe JL, Hunter M, Fetterer DP, Hedrick ZM, Velez I, Biryukov SS, Cote CK, Berisio R, Lukomski S. Predictive and Experimental Immunogenicity of Burkholderia Collagen-like Protein 8-Derived Antigens. Vaccines (Basel) 2021; 9:vaccines9111219. [PMID: 34835150 PMCID: PMC8621890 DOI: 10.3390/vaccines9111219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Burkholderia pseudomallei is an infectious bacterium of clinical and biodefense concern, and is the causative agent of melioidosis. The mortality rate can reach up to 50% and affects 165,000 people per year; however, there is currently no vaccine available. In this study, we examine the antigen-specific immune response to a vaccine formulated with antigens derived from an outer membrane protein in B. pseudomallei, Bucl8. Here, we employed a number of bioinformatic tools to predict Bucl8-derived epitopes that are non-allergenic and non-toxic, but would elicit an immune response. From these data, we formulated a vaccine based on two extracellular components of Bucl8, the β-barrel loops and extended collagen and non-collagen domains. Outbred CD-1 mice were immunized with vaccine formulations—composed of recombinant proteins or conjugated synthetic peptides with adjuvant—to assess the antigen-specific immune responses in mouse sera and lymphoid organs. We found that mice vaccinated with either Bucl8-derived components generated a robust TH2-skewed antibody response when antigen was combined with the adjuvant AddaVax, while the TH1 response was limited. Mice immunized with synthetic loop peptides had a stronger, more consistent antibody response than recombinant protein antigens, based on higher IgG titers and recognition of bacteria. We then compared peptide-based vaccines in an established C57BL/6 inbred mouse model and observed a similar TH2-skewed response. The resulting formulations will be applied in future studies examining the protection of Bucl8-derived vaccines.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.); (D.H.M.)
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, National Research Council (CNR-IBB), 80134 Naples, Italy; (E.K.); (R.B.)
| | - Soo Jeon Choi
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.); (D.H.M.)
| | - Dudley H. McNitt
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.); (D.H.M.)
| | - Christopher P. Klimko
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Nathaniel O. Rill
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Jennifer L. Dankmeyer
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Jennifer L. Shoe
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Melissa Hunter
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - David P. Fetterer
- Biostatistics Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA;
| | - Zander M. Hedrick
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Ivan Velez
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Sergei S. Biryukov
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council (CNR-IBB), 80134 Naples, Italy; (E.K.); (R.B.)
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.); (D.H.M.)
- Correspondence:
| |
Collapse
|
14
|
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Muzahidul I. Anik
- Department of Chemical Engineering University of Rhode Island South Kingstown Rhode Island USA
| | - Niaz Mahmud
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| |
Collapse
|
15
|
Christodoulides M, Humbert MV, Heckels JE. The potential utility of liposomes for Neisseria vaccines. Expert Rev Vaccines 2021; 20:1235-1256. [PMID: 34524062 DOI: 10.1080/14760584.2021.1981865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Species of the genus Neisseria are important global pathogens. Neisseria gonorrhoeae (gonococcus) causes the sexually transmitted disease gonorrhea and Neisseria meningitidis (meningococcus) causes meningitis and sepsis. Liposomes are self-assembled spheres of phospholipid bilayers enclosing a central aqueous space, and they have attracted much interest and use as a delivery vehicle for Neisseria vaccine antigens. AREAS COVERED A brief background on Neisseria infections and the success of licensed meningococcal vaccines are provided. The absence of a gonococcal vaccine is highlighted. The use of liposomes for delivering Neisseria antigens and adjuvants, for the purposes of generating specific immune responses, is reviewed. The use of other lipid-based systems for antigen and adjuvant delivery is examined briefly. EXPERT OPINION With renewed interest in developing a gonococcal vaccine, liposomes remain an attractive option for delivering antigens. The discipline of nanotechnology provides additional nanoparticle-based options for gonococcal vaccine development. Future work would be needed to tailor the composition of liposomes and other nanoparticles to the specific vaccine antigen(s), in order to generate optimal anti-gonococcal immune responses. The potential use of liposomes and other nanoparticles to deliver anti-gonococcal compounds to treat infections also should be explored further.
Collapse
Affiliation(s)
- Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Maria Victoria Humbert
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - John E Heckels
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| |
Collapse
|
16
|
Multicomponent Gold-Linked Glycoconjugate Vaccine Elicits Antigen-Specific Humoral and Mixed T H1-T H17 Immunity, Correlated with Increased Protection against Burkholderia pseudomallei. mBio 2021; 12:e0122721. [PMID: 34182777 PMCID: PMC8263005 DOI: 10.1128/mbio.01227-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal disease with a high mortality rate. The intrinsic resistance to commonly used antibiotics combined with the complex bacterial life cycle has hampered the development of preventive and therapeutic interventions and vaccines. Furthermore, the need of humoral and cell-mediated immunity in protection against B. pseudomallei has complicated the development of effective vaccines. Antigen delivery vaccine platforms that promote humoral and cellular responses while maintaining a safe profile are a roadblock to developing subunit vaccines against intracellular pathogens. Gold nanoparticles (AuNPs) were used for the delivery of multicomponent antigens with the goal of inducing vaccine-mediated immunity, promoting protection against melioidosis disease. Different nanoglycoconjugates using predicted immunogenic protein candidates, Hcp1, FlgL, OpcP, OpcP1, OmpW, and hemagglutinin, were covalently coupled to AuNPs, together with the lipopolysaccharide (LPS) from Burkholderia thailandensis, which acted as an additional antigen. Animals immunized with individually coupled (AuNP-protein-LPS) formulations containing OpcP or OpcP1, together with CpG as an adjuvant, showed a significant increase in protection, whereas a nanovaccine combination (AuNP-Combo2-LPS) showed significant and complete protection against a lethal intranasal B. pseudomallei challenge. Animals immunized with AuNP-Combo2-LPS showed robust humoral antigen-specific (IgG and IgA) responses with higher IgG2c titer, indicating a TH1-skewed response and promotion of macrophage uptake. In addition, immunization with the nanovaccine combination resulted in a mixed antigen-specific TH1-TH17 cytokine profile after immunization. This study provides the basis for an elegant and refined multicomponent glycoconjugate vaccine formulation capable of eliciting both humoral and cell-mediated responses against lethal B. pseudomallei challenge.
Collapse
|
17
|
Grund ME, Choi Soo J, Cote CK, Berisio R, Lukomski S. Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines. Cells 2021; 10:cells10030495. [PMID: 33668922 PMCID: PMC7996558 DOI: 10.3390/cells10030495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing antimicrobial resistance due to misuse and overuse of antimicrobials, as well as a lack of new and innovative antibiotics in development has become an alarming global threat. Preventative therapeutics, like vaccines, are combative measures that aim to stop infections at the source, thereby decreasing the overall use of antibiotics. Infections due to Gram-negative pathogens pose a significant treatment challenge because of substantial multidrug resistance that is acquired and spread throughout the bacterial population. Burkholderia spp. are Gram-negative intrinsically resistant bacteria that are responsible for environmental and nosocomial infections. The Burkholderia cepacia complex are respiratory pathogens that primarily infect immunocompromised and cystic fibrosis patients, and are acquired through contaminated products and equipment, or via patient-to-patient transmission. The Burkholderia pseudomallei complex causes percutaneous wound, cardiovascular, and respiratory infections. Transmission occurs through direct exposure to contaminated water, water-vapors, or soil, leading to the human disease melioidosis, or the equine disease glanders. Currently there is no licensed vaccine against any Burkholderia pathogen. This review will discuss Burkholderia vaccine candidates derived from outer membrane proteins, OmpA, OmpW, Omp85, and Bucl8, encompassing their structures, conservation, and vaccine formulation.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Jeon Choi Soo
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA;
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council (CNR-IBB), 80145 Naples, Italy;
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
- Correspondence: ; Tel.: +1-304-293-6405
| |
Collapse
|