1
|
Zinnecker T, Reichl U, Genzel Y. Innovations in cell culture-based influenza vaccine manufacturing - from static cultures to high cell density cultivations. Hum Vaccin Immunother 2024; 20:2373521. [PMID: 39007904 PMCID: PMC11253887 DOI: 10.1080/21645515.2024.2373521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Influenza remains a serious global health concern, causing significant morbidity and mortality each year. Vaccination is crucial to mitigate its impact, but requires rapid and efficient manufacturing strategies to handle timing and supply. Traditionally relying on egg-based production, the field has witnessed a paradigm shift toward cell culture-based methods offering enhanced flexibility, scalability, and process safety. This review provides a concise overview of available cell substrates and technological advancements. We summarize crucial steps toward process intensification - from roller bottle production to dynamic cultures on carriers and from suspension cultures in batch mode to high cell density perfusion using various cell retention devices. Moreover, we compare single-use and conventional systems and address challenges including defective interfering particles. Taken together, we describe the current state-of-the-art in cell culture-based influenza virus production to sustainably meet vaccine demands, guarantee a timely supply, and keep up with the challenges of seasonal epidemics and global pandemics.
Collapse
Affiliation(s)
- Tilia Zinnecker
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
2
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024; 37:e0002524. [PMID: 39360831 PMCID: PMC11629632 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W. Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
3
|
Septer KM, Heinly TA, Sim DG, Patel DR, Roder AE, Wang W, Chung M, Johnson KEE, Ghedin E, Sutton TC. Vaccine-induced NA immunity decreases viral shedding, but does not disrupt chains of airborne transmission for the 2009 pandemic H1N1 virus in ferrets. mBio 2024; 15:e0216124. [PMID: 39248566 PMCID: PMC11481891 DOI: 10.1128/mbio.02161-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Split-virion-inactivated influenza vaccines are formulated based on viral hemagglutinin content. These vaccines also contain the viral neuraminidase (NA) protein, but NA content is not standardized and varies between manufacturers. In clinical studies and animal models, antibodies directed toward NA reduced disease severity and viral load; however, the impact of vaccine-induced NA immunity on airborne transmission of influenza A viruses is not well characterized. Therefore, we evaluated if vaccination against NA could disrupt chains of airborne transmission for the 2009 pandemic H1N1 virus in ferrets. Immunologically naïve donor ferrets were infected with the 2009 pandemic H1N1 virus and then paired in transmission cages with mock- or NA-vaccinated respiratory contacts. The mock- and NA-vaccinated animals were then monitored daily for infection, and once infected, these animals were paired with a naive secondary respiratory contact. In these studies, all mock- and NA-vaccinated animals became infected; however, NA-vaccinated animals shed significantly less virus for fewer days relative to mock-vaccinated animals. For the secondary contacts, 6/6 and 5/6 animals became infected after exposure to mock- and NA-vaccinated animals, respectively. To determine if vaccine-induced immune pressure selected for escape variants, we sequenced viruses recovered from ferrets. No mutations in NA became enriched during transmission. These findings indicate that despite reducing viral load, vaccine-induced NA immunity does not prevent infection during continuous airborne exposure and subsequent onward airborne transmission of the 2009 pandemic H1N1 virus. IMPORTANCE In humans and animal models, immunity against neuraminidase (NA) reduces disease severity and viral replication during influenza infection. However, we have a limited understanding of the impact of NA immunity on viral transmission. Using chains of airborne transmission in ferrets as a strategy to simulate a more natural route of infection, we assessed if vaccine-induced NA immunity could disrupt transmission of the 2009 pandemic H1N1 virus. The 2009 pandemic H1N1 virus transmitted efficiently through chains of transmission in the presence of NA immunity, but NA-vaccinated animals shed significantly less virus and had accelerated viral clearance. To determine if immune pressure led to the generation of escape variants, viruses in ferret nasal wash samples were sequenced, and no mutations in NA were identified. These findings demonstrate that vaccine-induced NA immunity is not sufficient to prevent infection via airborne exposure and onward airborne transmission of the 2009 pandemic H1N1 virus.
Collapse
Affiliation(s)
- K. M. Septer
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - T. A. Heinly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - D. G. Sim
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - D. R. Patel
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - A. E. Roder
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - W. Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - M. Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - K. E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - E. Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - T. C. Sutton
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Stein AN, Mills CW, McGovern I, McDermott KW, Dean A, Bogdanov AN, Sullivan SG, Haag MDM. Relative Vaccine Effectiveness of Cell- vs Egg-Based Quadrivalent Influenza Vaccine Against Test-Confirmed Influenza Over 3 Seasons Between 2017 and 2020 in the United States. Open Forum Infect Dis 2024; 11:ofae175. [PMID: 38698895 PMCID: PMC11064727 DOI: 10.1093/ofid/ofae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Background Influenza vaccine viruses grown in eggs may acquire egg-adaptive mutations that may reduce antigenic similarity between vaccine and circulating influenza viruses and decrease vaccine effectiveness. We compared cell- and egg-based quadrivalent influenza vaccines (QIVc and QIVe, respectively) for preventing test-confirmed influenza over 3 US influenza seasons (2017-2020). Methods Using a retrospective test-negative design, we estimated the relative vaccine effectiveness (rVE) of QIVc vs QIVe among individuals aged 4 to 64 years who had an acute respiratory or febrile illness and were tested for influenza in routine outpatient care. Exposure, outcome, and covariate data were obtained from electronic health records linked to pharmacy and medical claims. Season-specific rVE was estimated by comparing the odds of testing positive for influenza among QIVc vs QIVe recipients. Models were adjusted for age, sex, geographic region, influenza test date, and additional unbalanced covariates. A doubly robust approach was used combining inverse probability of treatment weights with multivariable regression. Results The study included 31 824, 33 388, and 34 398 patients in the 2017-2018, 2018-2019, and 2019-2020 seasons, respectively; ∼10% received QIVc and ∼90% received QIVe. QIVc demonstrated superior effectiveness vs QIVe in prevention of test-confirmed influenza: rVEs were 14.8% (95% CI, 7.0%-22.0%) in 2017-2018, 12.5% (95% CI, 4.7%-19.6%) in 2018-2019, and 10.0% (95% CI, 2.7%-16.7%) in 2019-2020. Conclusions This study demonstrated consistently superior effectiveness of QIVc vs QIVe in preventing test-confirmed influenza over 3 seasons characterized by different circulating viruses and degrees of egg adaptation.
Collapse
Affiliation(s)
- Alicia N Stein
- Centre for Outcomes Research and Epidemiology, CSL Seqirus, Melbourne, Australia
| | | | - Ian McGovern
- Centre for Outcomes Research and Epidemiology, CSL Seqirus, Waltham, Massachusetts, USA
| | | | - Alex Dean
- Real World Evidence, Veradigm, Chicago, Illinois, USA
| | | | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, and Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
- Department of Epidemiology, University of California, Los Angeles, California, USA
| | - Mendel D M Haag
- Centre for Outcomes Research and Epidemiology, CSL Seqirus, Amsterdam, Netherlands
| |
Collapse
|
5
|
Gärtner BC, Beier D, Gosch G, Wahle K, Wendt L, Förster LC, Schmidt KJ, Schwarz TF. Cell-based influenza vaccines: An effective vaccine option for under 60-year-olds. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc21. [PMID: 38766639 PMCID: PMC11099537 DOI: 10.3205/dgkh000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Aim Seasonal influenza poses a significant burden of disease, affecting not only older adults but also individuals under the age of 60. It carries a high economic burden, mainly driven by influenza-associated productivity losses in the working population. Conventional egg-based influenza vaccines may have reduced effectiveness due to antigen adaptation in eggs. In contrast, cell-based influenza vaccines are less likely to be affected by such antigen adaptation. This review aims to present real-world data (RWD) comparing the effectiveness of quadrivalent cell-based (QIVc) and egg-based (QIVe) influenza vaccines over three consecutive seasons. Methods A comprehensive review was conducted, analyzing RWD from retrospective cohort and case-control studies on the relative vaccine effectiveness (rVE) of QIVc versus QIVe during the 2017/18-2019/20 seasons. Results This study included six retrospective cohort studies and one case-control study, with a combined total of approximately 29 million participants. A cohort study involving people aged ≥4 years during the 2017/18 season showed a statistically significant rVE of QIVc compared to QIVe in preventing influenza-like illness, with a value of 36.2%. QIVc demonstrated statistically significant superiority over QIVe in preventing outpatient and inpatient medical encounters as observed in two cohort studies conducted during the 2018/19 and 2019/20 seasons. The rVE of QIVc compared to QIVe was found to be 7.6% in individuals aged ≥4 years and 9.5% in individuals aged ≥18 years. Three additional cohort studies conducted between 2017/18-2019/20 reported a statistically significant improvement in rVE (5.3-14.4%) of QIVc compared to QIVe in preventing influenza-related hospitalizations and emergency department visits due to influenza in individuals aged 4-64 years. In a case-control study across all three seasons, QIVc showed statistically significantly higher effectiveness compared to QIVe in preventing test-confirmed influenza, with rVEs of 10.0-14.8%. Conclusions RWD from the 2017/18-2019/20 seasons demonstrated that QIVc is more effective than QIVe in preventing influenza-related outcomes in individuals aged 4-64 years. Preferential use of cell-based influenza vaccines, as opposed to conventional egg-based vaccines, could reduce the burden of influenza-related symptoms on individuals and alleviate the economic impact on the German population under 60 years of age.
Collapse
Affiliation(s)
- Barbara C. Gärtner
- Institute for Medical Microbiology and Hygiene – Saarland University Hospital, Homburg/Saar, Germany
| | - Dietmar Beier
- Saxon Committee on Vaccinations (SIKO), Chemnitz, Germany
| | | | - Klaus Wahle
- Medical Faculty – University of Münster, Münster, Germany
| | | | | | | | - Tino F. Schwarz
- Institute of Laboratory Medicine and Vaccination Center – Klinikum Würzburg Mitte, Standort Juliusspital, Würzburg, Germany
| |
Collapse
|
6
|
Hamamoto I. Developments and current challenges in the process of cell culture-based seasonal influenza vaccine manufacture in Japan. Glob Health Med 2024; 6:93-100. [PMID: 38690131 PMCID: PMC11043132 DOI: 10.35772/ghm.2023.01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/25/2023] [Accepted: 12/22/2023] [Indexed: 05/02/2024]
Abstract
Seasonal influenza is an acute respiratory infection primarily caused by influenza A and B viruses, which circulate annually and cause substantial morbidity and mortality worldwide. Annual influenza vaccination is currently the most effective measure for preventing influenza and greatly reduces the risk of disease severity and the incidence of complications and death. Annual seasonal influenza vaccines are traditionally produced in Japan and many other countries using viruses propagated in embryonated chicken eggs. However, at present, the effectiveness of the seasonal influenza vaccines has some significant limitations, partly because of egg-adaptive mutations in the antigenic sites of the influenza virus haemagglutinin, which are caused by the continued evolution of seasonal influenza viruses. To overcome the limitations of egg-based influenza vaccine production, a mammalian cell culture-based influenza vaccine production system has been developed in Japan in the past decade as an alternative to the current production method. In this review, I have summarised the progress in the development of cell-based seasonal influenza vaccines and discussed the technological challenges encountered in the development of influenza vaccines.
Collapse
Affiliation(s)
- Itsuki Hamamoto
- Laboratory of Cell-based Vaccine Development, Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
7
|
Gärtner BC, Beier D, Gosch G, Wahle K, Wendt L, Förster LC, Schmidt KJ, Schwarz TF. [Cell-based influenza vaccines: an effective vaccine option for under 60-year-olds]. Wien Klin Wochenschr 2024; 136:35-42. [PMID: 38393348 PMCID: PMC10891230 DOI: 10.1007/s00508-024-02327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/25/2024]
Abstract
The population < 60 years of age is also affected by a significant disease burden from seasonal influenza. It carries a high economic burden, mainly driven by influenza-associated productivity losses in the working population. Conventional egg-based influenza vaccines may experience reduced effectiveness due to antigen adaptation in eggs. In contrast, cell-based influenza vaccines are less likely to be affected by antigenic adaptations to the host system and showed better effectiveness in individuals 4-64 years old over several seasons compared to conventional egg-based influenza vaccines under real-world conditions. Preferential use of cell-based influenza vaccines, as opposed to conventional egg-based vaccines, could reduce the burden of influenza-related symptoms on individuals and alleviate the economic impact on the German population < 60 years of age.
Collapse
Affiliation(s)
- Barbara C Gärtner
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum des Saarlandes, Homburg/Saar, Deutschland
| | | | - Gunther Gosch
- Kinderarztpraxis am Domplatz, Magdeburg, Deutschland
| | - Klaus Wahle
- Medizinische Fakultät, Universität Münster, Münster, Deutschland
| | | | | | | | - Tino F Schwarz
- Institut für Labormedizin und Impfzentrum, Klinikum Würzburg Mitte, Standort Juliusspital, Salvatorstr. 7, 97074, Würzburg, Deutschland.
| |
Collapse
|
8
|
Spruit CM, Sweet IR, Maliepaard JCL, Bestebroer T, Lexmond P, Qiu B, Damen MJA, Fouchier RAM, Reiding KR, Snijder J, Herfst S, Boons GJ, de Vries RP. Contemporary human H3N2 influenza A viruses require a low threshold of suitable glycan receptors for efficient infection. Glycobiology 2023; 33:784-800. [PMID: 37471650 PMCID: PMC10629718 DOI: 10.1093/glycob/cwad060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
Recent human H3N2 influenza A viruses have evolved to employ elongated glycans terminating in α2,6-linked sialic acid as their receptors. These glycans are displayed in low abundancies by (humanized) Madin-Darby Canine Kidney cells, which are commonly employed to propagate influenza A virus, resulting in low or no viral propagation. Here, we examined whether the overexpression of the glycosyltransferases β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1, which are responsible for the elongation of poly-N-acetyllactosamines (LacNAcs), would result in improved A/H3N2 propagation. Stable overexpression of β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1 in Madin-Darby Canine Kidney and "humanized" Madin-Darby Canine Kidney cells was achieved by lentiviral integration and subsequent antibiotic selection and confirmed by qPCR and protein mass spectrometry experiments. Flow cytometry and glycan mass spectrometry experiments using the β-1,3-N-acetylglucosaminyltransferase and/or β-1,4-galactosyltransferase 1 knock-in cells demonstrated increased binding of viral hemagglutinins and the presence of a larger number of LacNAc repeating units, especially on "humanized" Madin-Darby Canine Kidney-β-1,3-N-acetylglucosaminyltransferase cells. An increase in the number of glycan receptors did, however, not result in a greater infection efficiency of recent human H3N2 viruses. Based on these results, we propose that H3N2 influenza A viruses require a low number of suitable glycan receptors to infect cells and that an increase in the glycan receptor display above this threshold does not result in improved infection efficiency.
Collapse
Affiliation(s)
- Cindy M Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Igor R Sweet
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Joshua C L Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Theo Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Boning Qiu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Mirjam J A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| |
Collapse
|
9
|
Coleman BL, Gutmanis I, McGovern I, Haag M. Effectiveness of Cell-Based Quadrivalent Seasonal Influenza Vaccine: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2023; 11:1607. [PMID: 37897009 PMCID: PMC10610589 DOI: 10.3390/vaccines11101607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cell-based seasonal influenza vaccine viruses may more closely match recommended vaccine strains than egg-based options. We sought to evaluate the effectiveness of seasonal cell-based quadrivalent influenza vaccine (QIVc), as reported in the published literature. A systematic literature review was conducted (PROSPERO CRD42020160851) to identify publications reporting on the effectiveness of QIVc in persons aged ≥6 months relative to no vaccination or to standard-dose, egg-based quadrivalent or trivalent influenza vaccines (QIVe/TIVe). Publications from between 1 January 2016 and 25 February 2022 were considered. The review identified 18 relevant publications spanning three influenza seasons from the 2017-2020 period, with an overall pooled relative vaccine effectiveness (rVE) of 8.4% (95% CI, 6.5-10.2%) for QIVc vs. QIVe/TIVe. Among persons aged 4-64 years, the pooled rVE was 16.2% (95% CI, 7.6-24.8%) for 2017-2018, 6.1% (4.9-7.3%) for 2018-2019, and 10.1% (6.3-14.0%) for 2019-2020. For adults aged ≥65 years, the pooled rVE was 9.9% (95% CI, 6.9-12.9%) in the egg-adapted 2017-2018 season, whereas there was no significant difference in 2018-2019. For persons aged 4-64 years, QIVc was consistently more effective than QIVe/TIVe over the three influenza seasons. For persons aged ≥65 years, protection with QIVc was greater than QIVe or TIVe during the 2017-2018 season and comparable in 2018-2019.
Collapse
Affiliation(s)
- Brenda L. Coleman
- Sinai Health, Toronto, ON M5G 2A2, Canada;
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Iris Gutmanis
- Sinai Health, Toronto, ON M5G 2A2, Canada;
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | | | - Mendel Haag
- CSL Seqirus, 1105 BJ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Rockman S, Laurie K, Ong C, Rajaram S, McGovern I, Tran V, Youhanna J. Cell-Based Manufacturing Technology Increases Antigenic Match of Influenza Vaccine and Results in Improved Effectiveness. Vaccines (Basel) 2022; 11:52. [PMID: 36679895 PMCID: PMC9861528 DOI: 10.3390/vaccines11010052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
To ensure that vaccination offers the best protection against an infectious disease, sequence identity between the vaccine and the circulating strain is paramount. During replication of nucleic acid, random mutations occur due to the level of polymerase fidelity. In traditional influenza vaccine manufacture, vaccine viruses are propagated in fertilized chicken eggs, which can result in egg-adaptive mutations in the antigen-encoding genes. Whilst this improves infection and replication in eggs, mutations may reduce the effectiveness of egg-based influenza vaccines against circulating human viruses. In contrast, egg-adaptive mutations are avoided when vaccine viruses are propagated in Madin-Darby canine kidney (MDCK) cell lines during manufacture of cell-based inactivated influenza vaccines. The first mammalian cell-only strain was included in Flucelvax® Quadrivalent in 2017. A sequence analysis of the viruses selected for inclusion in this vaccine (n = 15 vaccine strains, containing both hemagglutinin and neuraminidase) demonstrated that no mutations occur in the antigenic sites of either hemagglutinin or neuraminidase, indicating that cell adaptation does not occur during production of this cell-based vaccine. The development of this now entirely mammalian-based vaccine system, which incorporates both hemagglutinin and neuraminidase, ensures that the significant protective antigens are equivalent to the strains recommended by the World Health Organization (WHO) in both amino acid sequence and glycosylation pattern. The inclusion of both proteins in a vaccine may provide an advantage over recombinant vaccines containing hemagglutinin alone. Findings from real world effectiveness studies support the use of cell-based influenza vaccines.
Collapse
Affiliation(s)
- Steven Rockman
- CSL Seqirus Ltd., Parkville, VIC 3050, Australia
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Karen Laurie
- CSL Seqirus Ltd., Parkville, VIC 3050, Australia
| | - Chi Ong
- CSL Seqirus Ltd., Parkville, VIC 3050, Australia
| | | | | | - Vy Tran
- CSL Seqirus Ltd., Kirkland, QC H9H 4M7, Canada
| | | |
Collapse
|
11
|
Serial Passaging of Seasonal H3N2 Influenza A/Singapore/G2-31.1/2014 Virus in MDCK-SIAT1 Cells and Primary Chick Embryo Cells Generates HA D457G Mutation and Other Variants in HA, NA, PB1, PB1-F2, and NS1. Int J Mol Sci 2022; 23:ijms232012408. [PMID: 36293269 PMCID: PMC9604028 DOI: 10.3390/ijms232012408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza remains one of the most prevalent viruses circulating amongst humans and has resulted in several pandemics. The prevention and control of H3N2 influenza is complicated by its propensity for evolution, which leads to vaccine mismatch and reduced vaccine efficacies. This study employed the strategy of serial passaging to compare the evolution of the human seasonal influenza strain A/Singapore/G2-31.1/2014(H3N2) in MDCK-SIAT1 versus primary chick embryo fibroblast (CEF) cells. Genetic analysis of the HA, NS1, NA, and PB1 gene segments by Sanger sequencing revealed the presence of specific mutations and a repertoire of viral quasispecies following serial passaging. Most quasispecies were also found in PB1, which exhibited consistently high transversion-to-transition ratios in all five MDCK-SIAT1 passages. Most notably, passage 5 virus harbored the D457G substitution in the HA2 subunit, while passage 3 virus acquired K53Q and Q69H mutations in PB1-F2. An A971 variant leading to a non-synonymous R316Q substitution in PB1 was also identified in MDCK-SIAT1 passages 2 and 4. With an increasing number of passages, the proportion of D457G mutations progressively increased and was associated with larger virus plaque sizes. However, microneutralization assays revealed no significant differences in the neutralizing antibody profiles of human-influenza-immune serum samples against pre-passaged virus and passage 5 virus. In contrast, viable virus was only detected in passage 1 of CEF cells, which gave rise to multiple viral RNA quasispecies. Our findings highlight that serial passaging is able to drive differential adaptation of H3N2 influenza in different host species and may alter viral virulence. More studies are warranted to elucidate the complex relationships between H3N2 virus evolution, viral virulence changes, and low vaccine efficacy.
Collapse
|
12
|
Jordan K, Murchu EO, Comber L, Hawkshaw S, Marshall L, O'Neill M, Teljeur C, Harrington P, Carnahan A, Pérez-Martín JJ, Robertson AH, Johansen K, Jonge JD, Krause T, Nicolay N, Nohynek H, Pavlopoulou I, Pebody R, Penttinen P, Soler-Soneira M, Wichmann O, Ryan M. Systematic review of the efficacy, effectiveness and safety of cell-based seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Rev Med Virol 2022; 33:e2332. [PMID: 35137512 DOI: 10.1002/rmv.2332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Abstract
The most effective means of preventing seasonal influenza is through strain-specific vaccination. In this study, we investigated the efficacy, effectiveness and safety of cell-based trivalent and quadrivalent influenza vaccines. A systematic literature search was conducted in electronic databases and grey literature sources up to 7 February 2020. Randomised controlled trials (RCTs) and non-randomised studies of interventions (NRSIs) were eligible for inclusion. Two reviewers independently screened, extracted data and assessed the risk of bias of included studies. Certainty of evidence for key outcomes was assessed using the GRADE methodology. The search returned 28,846 records, of which 868 full-text articles were assessed for relevance. Of these, 19 studies met the inclusion criteria. No relative efficacy data were identified for the direct comparison of cell-based vaccines compared with traditional vaccines (egg-based). Efficacy data were available comparing cell-based trivalent influenza vaccines with placebo in adults (aged 18-49 years). Overall vaccine efficacy was 70% against any influenza subtype (95% CI 61%-77%, two RCTS), 82% against influenza A(H1N1) (95% CI 71%-89%, 2 RCTs), 72% against influenza A(H3N2) (95% CI 39%-87%, 2 RCTs) and 52% against influenza B (95% CI 30%-68%, 2 RCTs). Limited and heterogeneous data were presented for effectiveness when compared with no vaccination. One NRSI compared cell-based trivalent and quadrivalent vaccination with traditional trivalent and quadrivalent vaccination, finding a small but significant difference in favour of cell-based vaccines for influenza-related hospitalisation, hospital encounters and physician office visits. The safety profile of cell-based trivalent vaccines was comparable to traditional trivalent influenza vaccines. Compared with placebo, cell-based trivalent influenza vaccines have demonstrated greater efficacy in adults aged 18-49 years. Overall cell-based vaccines are well-tolerated in adults, however, evidence regarding the effectiveness of these vaccines compared with traditional seasonal influenza vaccines is limited.
Collapse
Affiliation(s)
- Karen Jordan
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Eamon O Murchu
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland.,Department of Health Policy & Management, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Laura Comber
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Sarah Hawkshaw
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Liam Marshall
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Michelle O'Neill
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Conor Teljeur
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Patricia Harrington
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Annasara Carnahan
- Public Health Agency of Sweden, Solna, Sweden.,European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden
| | - Jaime Jesús Pérez-Martín
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,General Directorate of Public Health and Addictions, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Anna Hayman Robertson
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kari Johansen
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Jorgen de Jonge
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Tyra Krause
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Statens Serum Institut, Copenhagen, Denmark
| | - Nathalie Nicolay
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Hanna Nohynek
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ioanna Pavlopoulou
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,School of Health Sciences, Faculty of Nursing, Pediatric Research Laboratory, National and Kapodistrian University of Athens, Athens, Greece.,National Advisory Committee on Immunisation, Hellenic Ministry of Health, Athens, Greece
| | - Richard Pebody
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Institute of Epidemiology & Health, University College London, London, UK
| | - Pasi Penttinen
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Marta Soler-Soneira
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Vigilancia de Enfermedades Prevenibles por Vacunación, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Ole Wichmann
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Immunization Unit, Robert Koch-Institute, Berlin, Germany
| | - Máirín Ryan
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland.,Department of Pharmacology & Therapeutics, Trinity College Dublin, Trinity. Health Sciences, Dublin, Ireland
| |
Collapse
|