1
|
Merza E, Pearson S, Lichtwark G, Malliaras P. Regional changes in the free Achilles tendon volume in response to repeated submaximal contractions. Foot (Edinb) 2024; 61:102141. [PMID: 39378697 DOI: 10.1016/j.foot.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION The Achilles tendon (AT) may become smaller in volume following acute bouts of heavy and sustained loading likely because of transient fluid exudation to the periphery and this could augment cellular mechanotransduction and tendon adaptation. Given the structure of the AT is distinct across its length, regional changes in the free AT volume may occur in response to loading. This study aimed to investigate whether the change in tendon volume in response to repeated submaximal loading is distinct across the free AT length. METHODS Sixteen ATs of healthy males and females (age 24.4 ± 9.4 years, body mass 70.9 ± 16.1 kg, height 1.7 ± 0.1 m) were scanned at rest using freehand 3D ultrasound. Scanning was done before and immediately after submaximal (75 %) voluntary isometric plantarflexion contractions (8 s) involving four sets of ten repetitions. Regional volumetric changes were assessed across the free AT length by dividing the tendon into distal, mid, and proximal regions. RESULTS Significant reduction in the free AT volume occurred across all tendon regions in response to the intervention, however, the mid- region exhibited the greatest reduction in volume compared to the proximal region (P = 0.025). DISCUSSION The fact that volume reduction was greatest in the mid-region compared to the proximal region of the free AT may suggest greater tendon adaptation, via mechanotransduction pathways, in the mid-region and this may be important for tendon health and injury prevention.
Collapse
Affiliation(s)
| | - Stephen Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Greater Manchester M5 4WT, United Kingdom.
| | - Glen Lichtwark
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, 4072 Brisbane, QLD, Australia.
| | - Peter Malliaras
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston Vic 3199, Melbourne, Australia.
| |
Collapse
|
2
|
Yang W, Gong W, Chang B, Wang Y, Li K, Li Y, Zhang Q, Hou C, Wang H. Scale-Bridging Mechanics Transfer Enables Ultrabright Mechanoluminescent Fiber Electronics. ACS NANO 2024; 18:24404-24413. [PMID: 39163617 DOI: 10.1021/acsnano.4c07125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Mechanoluminescent (ML) fibers and textiles enable stress visualization without auxiliary power, showing great potential in wearable electronics, machine vision, and human-computer interaction. However, traditional ML devices suffer from inefficient stress transfer in soft-rigid material systems, leading to low luminescence brightness and short cycle life. Here, we propose a tendon-inspired scale-bridging mechanics transfer mechanism for ML composites, which employs molecular-scale copolymerized cross-linking and nanoscale inorganic nanoparticles as hierarchical stress transfer sites. This strategy effectively reduces the dissipation of stress in molecular chain segments and alleviates local stress concentration, increases luminescence by 9 times, and extends cycle life to more than 10,000 times. Furthermore, a scalable (kilometer-scale) anti-Plateau-Rayleigh instability manufacturing technology is developed for thermoset ML fibers, compatible with various existing textile techniques. We also demonstrate its system-level applications in motion capture, underwater interaction, etc., providing a feasible strategy for the next generation of smart visual textiles.
Collapse
Affiliation(s)
- Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Department of Health Science and Technology, ETH Zurich, Lengghalde 5, Zurich 8008, Switzerland
| | - Wei Gong
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, P. R. China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, P.R. China
| | - Boya Chang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
3
|
Wang L, Shi Y, Qiu Z, Dang J, Sun L, Qu X, He J, Fan H. Bioactive 3D Electrohydrodynamic Printed Lattice Architectures Augment Tenogenesis of Tendon Stem/Progenitor Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18574-18590. [PMID: 38567837 DOI: 10.1021/acsami.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Tendon defect repair remains a tough clinical procedure that hinders functional motion in patients. Electrohydrodynamic (EHD) three-dimensional (3D) printing, as a novel strategy, can controllably fabricate biomimetic micro/nanoscale architecture, but the hydrophobic and bioinert nature of polymers might be adverse to cell-material interplay. In this work, 3D EHD printed polycaprolactone (PCL) was immobilized on basic fibroblast growth factor (bFGF) using polydopamine (PDA), and the proliferation and tenogenic differentiation of tendon stem/progenitor cells (TSPCs) in vitro was researched. A subcutaneous model was established to evaluate the effects of tenogenesis and immunomodulation. We then investigated the in situ implantation and immunomodulation effects in an Achilles tendon defect model. After immobilization of bFGF, the scaffolds profoundly facilitated proliferation and tenogenic differentiation; however, PDA had only a proliferative effect. Intriguingly, the bFGF immobilized on EHD printed PCL indicated a synergistic effect on the highest expression of tenogenic gene and protein markers at 14 days, and the tenogenesis may be induced by activating the transforming growth factor-β (TGF-β) signal pathway in vitro. The subcutaneous engraftment study confirmed a tendon-like structure, similar to that of the native tendon, as well as an M2 macrophage polarization effect. Additionally, the bioactive scaffold exhibited superior efficacy in new collagen formation and repair of Achilles tendon defects. Our study revealed that the topographic cues alone were insufficient to trigger tenogenic differentiation, requiring appropriate chemical signals, and that appropriate immunomodulation was conducive to tenogenesis. The tenogenesis of TSPCs on the bioactive scaffold may be correlated with the TGF-β signal pathway and M2 macrophage polarization.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopedic Surgery, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| | - Yubo Shi
- Department of Orthopedic Surgery, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingyi Dang
- Department of Orthopedic Surgery, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| | - Liguo Sun
- Shaanxi Province Hospital of Traditional Chinese Medicine, Xi'an 710018, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| |
Collapse
|
4
|
Gençoğlu C, Ulupınar S, Özbay S, Turan M, Savaş BÇ, Asan S, İnce İ. Validity and reliability of "My Jump app" to assess vertical jump performance: a meta-analytic review. Sci Rep 2023; 13:20137. [PMID: 37978338 PMCID: PMC10656545 DOI: 10.1038/s41598-023-46935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
This systematic review and meta-analysis aims to investigate the validity and reliability of the My Jump smartphone application in measuring vertical jump height, specifically using flight-time-based measures. To identify potential studies for inclusion, a comprehensive search strategy was employed in PubMed, Web of Science, Scopus, and EBSCO host databases. Validity was assessed in two ways: (1) mean and standard deviations of My Jump measurements were compared to criterion methods to assess the agreement of raw scores; (2) correlation coefficients evaluated the within-group consistency of rankings between My Jump and criterion methods. Reliability was assessed using intraclass correlation coefficients (ICC). Heterogeneity was evaluated via Cochrane's Q statistic, its p-value, I2 value, and tau2 value. Publication bias was explored through funnel plot symmetry and confirmed with extended Egger's test. Following the search, 21 studies met the inclusion criteria. Results showed no significant difference in raw scores between My Jump and criterion methods, indicating high agreement. High correlation was also found for within-group rankings, suggesting consistency. The My Jump application demonstrated nearly perfect reliability scores. The My Jump application appears to be a valid and reliable tool for sports scientists and strength and conditioning practitioners, offering a cost-effective and accessible means for accurately assessing vertical jump performance in various settings. However, it should be noted that these results are specific to flight-time-based measures, and further research is needed to validate these findings against gold-standard take-off velocity methods.
Collapse
Affiliation(s)
- Cebrail Gençoğlu
- Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Süleyman Ulupınar
- Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey.
| | - Serhat Özbay
- Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Murat Turan
- Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | | | - Selim Asan
- Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | - İzzet İnce
- Faculty of Sport Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
5
|
Xue Y, Kim HJ, Lee J, Liu Y, Hoffman T, Chen Y, Zhou X, Sun W, Zhang S, Cho HJ, Lee J, Kang H, WonHyoung R, Chang-Moon L, Ahadian S, Dokmeci MR, Lei B, Lee K, Khademhosseini A. Co-Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107714. [PMID: 35487761 PMCID: PMC9714686 DOI: 10.1002/smll.202107714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Indexed: 05/03/2023]
Abstract
Silk fibroin (SF) is a promising biomaterial for tendon repair, but its relatively rigid mechanical properties and low cell affinity have limited its application in regenerative medicine. Meanwhile, gelatin-based polymers have advantages in cell attachment and tissue remodeling but have insufficient mechanical strength to regenerate tough tissue such as tendons. Taking these aspects into account, in this study, gelatin methacryloyl (GelMA) is combined with SF to create a mechanically strong and bioactive nanofibrous scaffold (SG). The mechanical properties of SG nanofibers can be flexibly modulated by varying the ratio of SF and GelMA. Compared to SF nanofibers, mesenchymal stem cells (MSCs) seeded on SG fibers with optimal composition (SG7) exhibit enhanced growth, proliferation, vascular endothelial growth factor production, and tenogenic gene expression behavior. Conditioned media from MSCs cultured on SG7 scaffolds can greatly promote the migration and proliferation of tenocytes. Histological analysis and tenogenesis-related immunofluorescence staining indicate SG7 scaffolds demonstrate enhanced in vivo tendon tissue regeneration compared to other groups. Therefore, rational combinations of SF and GelMA hybrid nanofibers may help to improve therapeutic outcomes and address the challenges of tissue-engineered scaffolds for tendon regeneration.
Collapse
Affiliation(s)
- Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, 710072, China
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710000, China
| | - Han-Jun Kim
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Junmin Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Mechanical Engineering, YONSEI University, Seoul, 03722, South Korea
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Yaowen Liu
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Tyler Hoffman
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Chen
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wujin Sun
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Shiming Zhang
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, 23431, South Korea
| | - JiYong Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Mechanical Engineering, YONSEI University, Seoul, 03722, South Korea
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Ryu WonHyoung
- Department of Mechanical Engineering, YONSEI University, Seoul, 03722, South Korea
| | - Lee Chang-Moon
- Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, South Korea
| | - Samad Ahadian
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Mehmet R. Dokmeci
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710000, China
| | - KangJu Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, South Korea
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ali Khademhosseini
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
6
|
Marqueti RDC, Kjaer M, Moriscot AS. Editorial: Trends in Muscle and Tendon Molecular and Cell Biology. Front Physiol 2022; 12:832613. [PMID: 35185607 PMCID: PMC8851330 DOI: 10.3389/fphys.2021.832613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rita de Cássia Marqueti
- Graduate Program in Rehabilitation Sciences and Graduate Program of Sciences and Technology of Health, Faculty of Ceilândia, University of Brasília, Brasília, Brazil
- *Correspondence: Rita de Cássia Marqueti ;
| | - Michael Kjaer
- Department of Orthopedic Surgery, Institute of Sports Medicine, Copenhagen University Hospital - Bispebjerg Frederiksberg, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anselmo Sigari Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|