1
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Zhou X, Cao W, Chen Y, Zhu Z, Lai Y, Liu Z, Jia F, Lu Z, Han H, Yao K, Wang Y, Ji J, Zhang P. An elastomer with in situ generated pure zwitterionic surfaces for fibrosis-resistant implants. Acta Biomater 2024; 185:226-239. [PMID: 38972625 DOI: 10.1016/j.actbio.2024.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Polymeric elastomers are widely utilized in implantable biomedical devices. Nevertheless, the implantation of these elastomers can provoke a robust foreign body response (FBR), leading to the rejection of foreign implants and consequently reducing their effectiveness in vivo. Building effective anti-FBR coatings on those implants remains challenging. Herein, we introduce a coating-free elastomer with superior immunocompatibility. A super-hydrophilic anti-fouling zwitterionic layer can be generated in situ on the surface of the elastomer through a simple chemical trigger. This elastomer can repel the adsorption of proteins, as well as the adhesion of cells, platelets, and diverse microbes. The elastomer elicited negligible inflammatory responses after subcutaneous implantation in rodents for 2 weeks. No apparent fibrotic capsule formation was observed surrounding the elastomer after 6 months in rodents. Continuous subcutaneous insulin infusion (CSII) catheters constructed from the elastomer demonstrated prolonged longevity and performance compared to commercial catheters, indicating its great potential for enhancing and extending the performance of various implantable biomedical devices by effectively attenuating local immune responses. STATEMENT OF SIGNIFICANCE: The foreign body response remains a significant challenge for implants. Complicated coating procedures are usually needed to construct anti-fibrotic coatings on implantable elastomers. Herein, a coating-free elastomer with superior immunocompatibility was achieved using a zwitterionic monomer derivative. A pure zwitterionic layer can be generated on the elastomer surface through a simple chemical trigger. This elastomer significantly reduces protein adsorption, cell and bacterial adhesion, and platelet activation, leading to minimal fibrotic capsule formation even after six months of subcutaneous implantation in rodents. CSII catheters constructed from the PQCBE-H elastomer demonstrated prolonged longevity and performance compared to commercial catheters, highlighting the significant potential of PQCBE-H elastomers for enhancing and extending the performance of various implantable biomedical devices.
Collapse
Affiliation(s)
- Xianchi Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Wenzhong Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Zihao Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Yuxian Lai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Zuolong Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311202, Zhejiang Province, PR China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, PR China
| | - Zhouyu Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, Zhejiang Province, PR China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, Zhejiang Province, PR China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, Zhejiang Province, PR China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311202, Zhejiang Province, PR China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311202, Zhejiang Province, PR China.
| |
Collapse
|
3
|
Zhou X, Lu Z, Cao W, Zhu Z, Chen Y, Ni Y, Liu Z, Jia F, Ye Y, Han H, Yao K, Liu W, Wang Y, Ji J, Zhang P. Immunocompatible elastomer with increased resistance to the foreign body response. Nat Commun 2024; 15:7526. [PMID: 39214984 PMCID: PMC11364871 DOI: 10.1038/s41467-024-52023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Polymeric elastomers are extensively employed to fabricate implantable medical devices. However, implantation of the elastomers can induce a strong immune rejection known as the foreign body response (FBR), diminishing their efficacy. Herein, we present a group of immunocompatible elastomers, termed easy-to-synthesize vinyl-based anti-FBR dense elastomers (EVADE). EVADE materials effectively suppress the inflammation and capsule formation in subcutaneous models of rodents and non-human primates for at least one year and two months, respectively. Implantation of EVADE materials significantly reduces the expression of inflammation-related proteins S100A8/A9 in adjacent tissues compared to polydimethylsiloxane. We also show that inhibition or knockout of S100A8/A9 leads to substantial attenuation of fibrosis in mice, suggesting a target for fibrosis inhibition. Continuous subcutaneous insulin infusion (CSII) catheters constructed from EVADE elastomers demonstrate significantly improved longevity and performance compared to commercial catheters. The EVADE materials reported here may enhance and extend function in various medical devices by resisting the local immune responses.
Collapse
Affiliation(s)
- Xianchi Zhou
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Zhouyu Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Wenzhong Cao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Zihao Zhu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yifeng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yanwen Ni
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Zuolong Liu
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Yang Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Weifeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Jian Ji
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Peng Zhang
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
4
|
Zhang Y, Li D, Zhang F, Wang Z, Xue L, Nan X, Li N, Tan X, Guo W, Zhang Y, Zhao H, Ge Q, Wang D. Evaluation and modeling of diaphragm displacement using ultrasound imaging for wearable respiratory assistive robot. Front Bioeng Biotechnol 2024; 12:1436702. [PMID: 39219622 PMCID: PMC11361991 DOI: 10.3389/fbioe.2024.1436702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Assessing the influence of respiratory assistive devices on the diaphragm mobility is essential for advancing patient care and improving treatment outcomes. Existing respiratory assistive robots have not yet effectively assessed their impact on diaphragm mobility. In this study, we introduce for the first time a non-invasive, real-time clinically feasible ultrasound method to evaluate the impact of soft wearable robots on diaphragm displacement. Methods We measured and compared diaphragm displacement and lung volume in eight participants during both spontaneous and robotic-assisted respiration. Building on these measurements, we proposed a human-robot coupled two-compartment respiratory mechanics model that elucidates the underlying mechanism by which our extracorporeal wearable robots augments respiration. Specifically, the soft robot applies external compression to the abdominal wall muscles, inducing their inward movement, which consequently pushes the diaphragm upward and enhances respiratory function. Finally, we investigated the level and shape of various robotic assistive forces on diaphragm motion. Results This robotic intervention leads to a significant increase in average diaphragm displacement by 1.95 times and in lung volume by 2.14 times compared to spontaneous respiration. Furthermore, the accuracy of the proposed respiratory mechanics model is confirmed by the experimental results, with less than 7% error in measurements of both diaphragm displacement and lung volume. Finally, the magnitude of robotic assistive forces positively correlates with diaphragm movement, while the shape of the forces shows no significant relationship with diaphragm activity. Conclusion Our experimental findings validate the effective assistance mechanism of the proposed robot, which enhances diaphragm mobility and assists in ventilation through extracorporeal robotic intervention. This robotic system can assist with ventilation while increasing diaphragm mobility, potentially resolving the issue of diaphragm atrophy. Additionally, this work paves the way for improved robotic designs and personalized assistance, tailored to the dynamics of the diaphragm in respiratory rehabilitation.
Collapse
Affiliation(s)
- Yan Zhang
- The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Danye Li
- China-Japan Friendship Hospital, Beijing, China
| | - Fengyao Zhang
- The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Zongyu Wang
- The Peking University Third Hospital, Beijing, China
| | - Lei Xue
- The Peking University Third Hospital, Beijing, China
| | - Xiaolu Nan
- The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Nianming Li
- The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Xilai Tan
- The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Weidong Guo
- The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Yuru Zhang
- The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
- School of Mechanical Engineering and Automation, Beijing, China
| | | | - Qinggang Ge
- The Peking University Third Hospital, Beijing, China
| | - Dangxiao Wang
- The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
- School of Mechanical Engineering and Automation, Beijing, China
- The Beijing Advanced Innovation Center for Biomedical Engineering, Beijing, China
| |
Collapse
|
5
|
Singh M, Roubertie F, Ozturk C, Borchiellini P, Rames A, Bonnemain J, Gollob SD, Wang SX, Naulin J, El Hamrani D, Dugot-Senant N, Gosselin I, Grenet C, L'Heureux N, Roche ET, Kawecki F. Hemodynamic evaluation of biomaterial-based surgery for Tetralogy of Fallot using a biorobotic heart, in silico, and ovine models. Sci Transl Med 2024; 16:eadk2936. [PMID: 38985852 DOI: 10.1126/scitranslmed.adk2936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Tetralogy of Fallot is a congenital heart disease affecting newborns and involves stenosis of the right ventricular outflow tract (RVOT). Surgical correction often widens the RVOT with a transannular enlargement patch, but this causes issues including pulmonary valve insufficiency and progressive right ventricle failure. A monocusp valve can prevent pulmonary regurgitation; however, valve failure resulting from factors including leaflet design, morphology, and immune response can occur, ultimately resulting in pulmonary insufficiency. A multimodal platform to quantitatively evaluate the effect of shape, size, and material on clinical outcomes could optimize monocusp design. This study introduces a benchtop soft biorobotic heart model, a computational fluid model of the RVOT, and a monocusp valve made from an entirely biological cell-assembled extracellular matrix (CAM) to tackle the multifaceted issue of monocusp failure. The hydrodynamic and mechanical performance of RVOT repair strategies was assessed in biorobotic and computational platforms. The monocusp valve design was validated in vivo in ovine models through echocardiography, cardiac magnetic resonance, and catheterization. These models supported assessment of surgical feasibility, handling, suturability, and hemodynamic and mechanical monocusp capabilities. The CAM-based monocusp offered a competent pulmonary valve with regurgitation of 4.6 ± 0.9% and a transvalvular pressure gradient of 4.3 ± 1.4 millimeters of mercury after 7 days of implantation in sheep. The biorobotic heart model, in silico analysis, and in vivo RVOT modeling allowed iteration in monocusp design not now feasible in a clinical environment and will support future surgical testing of biomaterials for complex congenital heart malformations.
Collapse
Affiliation(s)
- Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - François Roubertie
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33604 Pessac, France
- Congenital Heart Diseases Department, CHU de Bordeaux, F-33604 Pessac, France
| | - Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Paul Borchiellini
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Adeline Rames
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Samuel Dutra Gollob
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sophie X Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jérôme Naulin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33604 Pessac, France
| | - Dounia El Hamrani
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33604 Pessac, France
| | - Nathalie Dugot-Senant
- Plateforme d'histopathologie, TBMcore INSERM US005-CNRS 3427, F-33000 Bordeaux, France
| | - Isalyne Gosselin
- Plateforme d'histopathologie, TBMcore INSERM US005-CNRS 3427, F-33000 Bordeaux, France
| | - Célia Grenet
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Nicolas L'Heureux
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fabien Kawecki
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| |
Collapse
|
6
|
Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y, Bai W. Skin-inspired, sensory robots for electronic implants. Nat Commun 2024; 15:4777. [PMID: 38839748 PMCID: PMC11153219 DOI: 10.1038/s41467-024-48903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Sicheng Xing
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hiep Thanh Tran
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Chuqi Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wei Luo
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | | | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Samuel Hankley
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Amber Huang
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Brynn Brusseau
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jett Messenger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yici Zou
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
7
|
Park C, Singh M, Saeed MY, Nguyen CT, Roche ET. Biorobotic hybrid heart as a benchtop cardiac mitral valve simulator. DEVICE 2024; 2:100217. [PMID: 38312504 PMCID: PMC10836162 DOI: 10.1016/j.device.2023.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
In this work, we developed a high-fidelity beating heart simulator that provides accurate mitral valve pathophysiology. The benchtop platform is based on a biorobotic hybrid heart that combines preserved intracardiac tissue with soft robotic cardiac muscle providing dynamic left ventricular motion and precise anatomical features designed for testing intracardiac devices, particularly for mitral valve repair. The heart model is integrated into a mock circulatory loop, and the active myocardium drives fluid circulation producing physiological hemodynamics without an external pulsatile pump. Using biomimetic soft robotic technology, the heart can replicate both ventricular and septal wall motion, as well as intraventricular pressure-volume relationships. This enables the system to recreate the natural motion and function of the mitral valve, which allows us to demonstrate various surgical and interventional techniques. The biorobotic cardiovascular simulator allows for real-time hemodynamic data collection, direct visualization of the intracardiac procedure, and compatibility with clinical imaging modalities.
Collapse
Affiliation(s)
- Clara Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, MA, USA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA 02139
| | - Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, MA, USA 02139
| | - Mossab Y. Saeed
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Christopher T. Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital; Charlestown, MA, USA 02114
- Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic; Cleveland, OH, USA 44195
- Imaging Sciences, Imaging Institute, Cleveland Clinic; Cleveland, OH, USA 44195
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic; Cleveland, OH, USA 44196
| | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, MA, USA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA 02139
| |
Collapse
|
8
|
Menciassi A. A biohybrid robotic right ventricle. NATURE CARDIOVASCULAR RESEARCH 2024; 3:21-22. [PMID: 39195889 DOI: 10.1038/s44161-023-00402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
- Interdisciplinary Research Center in Health Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
9
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Bai W, Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y. Skin-inspired, sensory robots for electronic implants. RESEARCH SQUARE 2023:rs.3.rs-3665801. [PMID: 38196588 PMCID: PMC10775366 DOI: 10.21203/rs.3.rs-3665801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Living organisms with motor and sensor units integrated seamlessly demonstrate effective adaptation to dynamically changing environments. Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in these organisms, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle, that naturally couples multifunctional sensing and on-demand actuation in a biocompatible platform. We introduce an in situ solution-based method to create an e-skin layer with diverse sensing materials (e.g., silver nanowires, reduced graphene oxide, MXene, and conductive polymers) incorporated within a polymer matrix (e.g., polyimide), imitating complex skin receptors to perceive various stimuli. Biomimicry designs (e.g., starfish and chiral seedpods) of the robots enable various motions (e.g., bending, expanding, and twisting) on demand and realize good fixation and stress-free contact with tissues. Furthermore, integration of a battery-free wireless module into these robots enables operation and communication without tethering, thus enhancing the safety and biocompatibility as minimally invasive implants. Demonstrations range from a robotic cuff encircling a blood vessel for detecting blood pressure, to a robotic gripper holding onto a bladder for tracking bladder volume, an ingestible robot residing inside stomach for pH sensing and on-site drug delivery, and a robotic patch wrapping onto a beating heart for quantifying cardiac contractility, temperature and applying cardiac pacing, highlighting the application versatilities and potentials of the nature-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Wubin Bai
- University of North Carolina, Chapel Hill
| | | | | | | | | | | | | | | | | | | | - Yizhang Wu
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Singh M, Bonnemain J, Ozturk C, Ayers B, Saeed MY, Quevedo-Moreno D, Rowlett M, Park C, Fan Y, Nguyen CT, Roche ET. Robotic right ventricle is a biohybrid platform that simulates right ventricular function in (patho)physiological conditions and intervention. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1310-1326. [PMID: 39183977 PMCID: PMC11343235 DOI: 10.1038/s44161-023-00387-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/02/2023] [Indexed: 08/27/2024]
Abstract
The increasing recognition of the right ventricle (RV) necessitates the development of RV-focused interventions, devices and testbeds. In this study, we developed a soft robotic model of the right heart that accurately mimics RV biomechanics and hemodynamics, including free wall, septal and valve motion. This model uses a biohybrid approach, combining a chemically treated endocardial scaffold with a soft robotic synthetic myocardium. When connected to a circulatory flow loop, the robotic right ventricle (RRV) replicates real-time hemodynamic changes in healthy and pathological conditions, including volume overload, RV systolic failure and pressure overload. The RRV also mimics clinical markers of RV dysfunction and is validated using an in vivo porcine model. Additionally, the RRV recreates chordae tension, simulating papillary muscle motion, and shows the potential for tricuspid valve repair and replacement in vitro. This work aims to provide a platform for developing tools for research and treatment for RV pathophysiology.
Collapse
Affiliation(s)
- Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian Ayers
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Mossab Y. Saeed
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Diego Quevedo-Moreno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Meagan Rowlett
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Clara Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yiling Fan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Christopher T. Nguyen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|