1
|
Sahu RK, Dhakshnamoorthy J, Jain S, Folco HD, Wheeler D, Grewal SIS. Nucleosome remodeler exclusion by histone deacetylation enforces heterochromatic silencing and epigenetic inheritance. Mol Cell 2024; 84:3175-3191.e8. [PMID: 39096900 DOI: 10.1016/j.molcel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.
Collapse
Affiliation(s)
- Rakesh Kumar Sahu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shweta Jain
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Larkin A, Kunze C, Seman M, Levashkevich A, Curran J, Morris-Evans D, Lemieux S, Khalil AS, Ragunathan K. Mapping the dynamics of epigenetic adaptation in S. pombe during heterochromatin misregulation. Dev Cell 2024; 59:2222-2238.e4. [PMID: 39094565 PMCID: PMC11338711 DOI: 10.1016/j.devcel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered genetic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me establishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chromatin states, establishing memory that is tunable and primed for future adaptive epigenetic responses. Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably encode novel adaptive solutions, with implications for drug resistance and response to infection.
Collapse
Affiliation(s)
- Ajay Larkin
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Colin Kunze
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Melissa Seman
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | - Justin Curran
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | - Sophia Lemieux
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | | |
Collapse
|
3
|
Acs-Szabo L, Papp LA, Miklos I. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:288-311. [PMID: 39104724 PMCID: PMC11299203 DOI: 10.15698/mic2024.08.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| |
Collapse
|
4
|
Larkin A, Kunze C, Seman M, Levashkevich A, Curran J, Morris-Evans D, Lemieux S, Khalil AS, Ragunathan K. Mapping the dynamics of epigenetic adaptation during heterochromatin misregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548368. [PMID: 37503217 PMCID: PMC10369875 DOI: 10.1101/2023.07.10.548368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A classical and well-established mechanism that enables cells to adapt to new and adverse conditions is the acquisition of beneficial genetic mutations. Much less is known about epigenetic mechanisms that allow cells to develop novel and adaptive phenotypes without altering their genetic blueprint. It has been recently proposed that histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), normally reserved to maintain genome integrity, can be redistributed across the genome to establish new and potentially adaptive phenotypes. To uncover the dynamics of this process, we developed a precision engineered genetic approach to trigger H3K9me redistribution on-demand in fission yeast. This enabled us to trace genome-scale RNA and chromatin changes over time prior to and during adaptation in long-term continuous cultures. Establishing adaptive H3K9me occurs over remarkably slow time-scales relative to the initiating stress. During this time, we captured dynamic H3K9me redistribution events ultimately leading to cells converging on an optimal adaptive solution. Upon removal of stress, cells relax to new transcriptional and chromatin states rather than revert to their initial (ground) state, establishing a tunable memory for a future adaptive epigenetic response. Collectively, our tools uncover the slow kinetics of epigenetic adaptation that allow cells to search for and heritably encode adaptive solutions, with implications for drug resistance and response to infection.
Collapse
|
5
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
6
|
Hirai H, Sen Y, Tamura M, Ohta K. TOR inactivation triggers heterochromatin formation in rDNA during glucose starvation. Cell Rep 2023; 42:113320. [PMID: 37913773 DOI: 10.1016/j.celrep.2023.113320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
In response to environmental cues, such as nutrient starvation, living organisms modulate gene expression through mechanisms involving histone modifications. Specifically, nutrient depletion inactivates the TOR (target of rapamycin) pathway, leading to reduced expression of ribosomal genes. While these regulatory mechanisms are well elucidated in budding yeast Saccharomyces cerevisiae, their conservation across diverse organisms remains unclear. In this study, we demonstrate that fission yeast Schizosaccharomyces pombe cells repress ribosomal gene transcription through a different mechanism. TORC1, which accumulates in the rDNA region, dissociates upon starvation, resulting in enhanced methylation of H3K9 and heterochromatin formation, facilitated by dissociation of the stress-responsive transcription factor Atf1 and accumulation of the histone chaperone FACT. We propose that this mechanism might be adapted in mammals that possess Suv39H1 and HP1, which are absent in budding yeast.
Collapse
Affiliation(s)
- Hayato Hirai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| | - Yuki Sen
- Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan; Universal Biology Institute, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
7
|
Grewal SIS. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 2023; 83:1767-1785. [PMID: 37207657 PMCID: PMC10309086 DOI: 10.1016/j.molcel.2023.04.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Ohtsuka H, Sakata H, Kitazaki Y, Tada M, Shimasaki T, Otsubo Y, Maekawa Y, Kobayashi M, Imada K, Yamashita A, Aiba H. The ecl family gene ecl3+ is induced by phosphate starvation and contributes to sexual differentiation in fission yeast. J Cell Sci 2023; 136:287015. [PMID: 36779416 PMCID: PMC10038150 DOI: 10.1242/jcs.260759] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
In Schizosaccharomyces pombe, ecl family genes are induced by several signals, such as starvation of various nutrients, including sulfur, amino acids and Mg2+, and environmental stress, including heat or oxidative stress. These genes mediate appropriate cellular responses and contribute to the maintenance of cell viability and induction of sexual differentiation. Although this yeast has three ecl family genes with overlapping functions, any environmental conditions that induce ecl3+ remain unidentified. We demonstrate that ecl3+ is induced by phosphate starvation, similar to its chromosomally neighboring genes, pho1+ and pho84+, which respectively encode an extracellular acid phosphatase and an inorganic phosphate transporter. ecl3+ expression was induced by the transcription factor Pho7 and affected by the cyclin-dependent kinase (CDK)-activating kinase Csk1. Phosphate starvation induced G1 arrest and sexual differentiation via ecl family genes. Biochemical analyses suggested that this G1 arrest was mediated by the stabilization of the CDK inhibitor Rum1, which was dependent on ecl family genes. This study shows that ecl family genes are required for appropriate responses to phosphate starvation and provides novel insights into the diversity and similarity of starvation responses.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroki Sakata
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuto Kitazaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masanobu Tada
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi 444-858, Japan
- National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mikuto Kobayashi
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kazuki Imada
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi 444-858, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
9
|
TORC1 Signaling in Fungi: From Yeasts to Filamentous Fungi. Microorganisms 2023; 11:microorganisms11010218. [PMID: 36677510 PMCID: PMC9864104 DOI: 10.3390/microorganisms11010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is an important regulator of various signaling pathways. It can control cell growth and development by integrating multiple signals from amino acids, glucose, phosphate, growth factors, pressure, oxidation, and so on. In recent years, it has been reported that TORC1 is of great significance in regulating cytotoxicity, morphology, protein synthesis and degradation, nutrient absorption, and metabolism. In this review, we mainly discuss the upstream and downstream signaling pathways of TORC1 to reveal its role in fungi.
Collapse
|
10
|
Shan CM, Fang Y, Jia S. Leaving histone unturned for epigenetic inheritance. FEBS J 2023; 290:310-320. [PMID: 34726351 PMCID: PMC9058036 DOI: 10.1111/febs.16260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Post-translational modifications in histones play important roles in regulating chromatin structure and gene expression programs, and the modified histones can be passed on to subsequent generations as an epigenetic memory. The fission yeast has been a great model organism for studying histone modifications in heterochromatin assembly and epigenetic inheritance. Here, we review findings in this organism that cemented the idea of chromatin-based inheritance and highlight recent studies that reveal the role of histone turnover in regulating this process.
Collapse
Affiliation(s)
- Chun-Min Shan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Present address: State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yimeng Fang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
11
|
Nuckolls NL, Nidamangala Srinivasa A, Mok AC, Helston RM, Bravo Núñez MA, Lange JJ, Gallagher TJ, Seidel CW, Zanders SE. S. pombe wtf drivers use dual transcriptional regulation and selective protein exclusion from spores to cause meiotic drive. PLoS Genet 2022; 18:e1009847. [PMID: 36477651 PMCID: PMC9762604 DOI: 10.1371/journal.pgen.1009847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/19/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Meiotic drivers bias gametogenesis to ensure their transmission into more than half the offspring of a heterozygote. In Schizosaccharomyces pombe, wtf meiotic drivers destroy the meiotic products (spores) that do not inherit the driver from a heterozygote, thereby reducing fertility. wtf drivers encode both a Wtfpoison protein and a Wtfantidote protein using alternative transcriptional start sites. Here, we analyze how the expression and localization of the Wtf proteins are regulated to achieve drive. We show that transcriptional timing and selective protein exclusion from developing spores ensure that all spores are exposed to Wtf4poison, but only the spores that inherit wtf4 receive a dose of Wtf4antidote sufficient for survival. In addition, we show that the Mei4 transcription factor, a master regulator of meiosis, controls the expression of the wtf4poison transcript. This transcriptional regulation, which includes the use of a critical meiotic transcription factor, likely complicates the universal suppression of wtf genes without concomitantly disrupting spore viability. We propose that these features contribute to the evolutionary success of the wtf drivers.
Collapse
Affiliation(s)
- Nicole L. Nuckolls
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ananya Nidamangala Srinivasa
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Anthony C. Mok
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Missouri—Kansas City, Kansas City, Missouri, United States of America
| | - Rachel M. Helston
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | | | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Todd J. Gallagher
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Chris W. Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
12
|
Martín Caballero L, Capella M, Barrales RR, Dobrev N, van Emden T, Hirano Y, Suma Sreechakram VN, Fischer-Burkart S, Kinugasa Y, Nevers A, Rougemaille M, Sinning I, Fischer T, Hiraoka Y, Braun S. The inner nuclear membrane protein Lem2 coordinates RNA degradation at the nuclear periphery. Nat Struct Mol Biol 2022; 29:910-921. [PMID: 36123402 PMCID: PMC9507967 DOI: 10.1038/s41594-022-00831-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
Abstract
Transcriptionally silent chromatin often localizes to the nuclear periphery. However, whether the nuclear envelope (NE) is a site for post-transcriptional gene repression is not well understood. Here we demonstrate that Schizosaccharomycespombe Lem2, an NE protein, regulates nuclear-exosome-mediated RNA degradation. Lem2 deletion causes accumulation of RNA precursors and meiotic transcripts and de-localization of an engineered exosome substrate from the nuclear periphery. Lem2 does not directly bind RNA but instead interacts with the exosome-targeting MTREC complex and its human homolog PAXT to promote RNA recruitment. This pathway acts largely independently of nuclear bodies where exosome factors assemble. Nutrient availability modulates Lem2 regulation of meiotic transcripts, implying that this pathway is environmentally responsive. Our work reveals that multiple spatially distinct degradation pathways exist. Among these, Lem2 coordinates RNA surveillance of meiotic transcripts and non-coding RNAs by recruiting exosome co-factors to the nuclear periphery. The Braun lab shows that the conserved nuclear membrane protein Lem2 interacts with the MTREC complex of the nuclear-exosome pathway to promote recruitment and degradation of ncRNAs and meiotic transcripts at the nuclear periphery in Schizosaccharomycespombe.
Collapse
Affiliation(s)
- Lucía Martín Caballero
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Matías Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| | - Nikolay Dobrev
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Vishnu N Suma Sreechakram
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Fischer-Burkart
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Regulation for intractable Infectious Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Alicia Nevers
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mathieu Rougemaille
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Tamás Fischer
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.,The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Sigurd Braun
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany. .,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany. .,Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
13
|
Foucher AE, Touat-Todeschini L, Juarez-Martinez AB, Rakitch A, Laroussi H, Karczewski C, Acajjaoui S, Soler-López M, Cusack S, Mackereth CD, Verdel A, Kadlec J. Structural analysis of Red1 as a conserved scaffold of the RNA-targeting MTREC/PAXT complex. Nat Commun 2022; 13:4969. [PMID: 36002457 PMCID: PMC9402713 DOI: 10.1038/s41467-022-32542-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
To eliminate specific or aberrant transcripts, eukaryotes use nuclear RNA-targeting complexes that deliver them to the exosome for degradation. S. pombe MTREC, and its human counterpart PAXT, are key players in this mechanism but inner workings of these complexes are not understood in sufficient detail. Here, we present an NMR structure of an MTREC scaffold protein Red1 helix-turn-helix domain bound to the Iss10 N-terminus and show this interaction is required for proper cellular growth and meiotic mRNA degradation. We also report a crystal structure of a Red1-Ars2 complex explaining mutually exclusive interactions of hARS2 with various ED/EGEI/L motif-possessing RNA regulators, including hZFC3H1 of PAXT, hFLASH or hNCBP3. Finally, we show that both Red1 and hZFC3H1 homo-dimerize via their coiled-coil regions indicating that MTREC and PAXT likely function as dimers. Our results, combining structures of three Red1 interfaces with in vivo studies, provide mechanistic insights into conserved features of MTREC/PAXT architecture.
Collapse
Affiliation(s)
| | - Leila Touat-Todeschini
- Institut for Advanced Biosciences, UMR Inserm U1209/CNRS 5309/University Grenoble Alpes, La Tronche, France
| | | | - Auriane Rakitch
- Institut for Advanced Biosciences, UMR Inserm U1209/CNRS 5309/University Grenoble Alpes, La Tronche, France
| | - Hamida Laroussi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Claire Karczewski
- Institut for Advanced Biosciences, UMR Inserm U1209/CNRS 5309/University Grenoble Alpes, La Tronche, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble, France
| | - Montserrat Soler-López
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9, 38042, France
| | - Cameron D Mackereth
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA Laboratory, Institut Européen de Chimie et Biologie, 33607, Pessac, France.
| | - André Verdel
- Institut for Advanced Biosciences, UMR Inserm U1209/CNRS 5309/University Grenoble Alpes, La Tronche, France.
| | - Jan Kadlec
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France.
| |
Collapse
|
14
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|
15
|
Dufour CR, Scholtes C, Yan M, Chen Y, Han L, Li T, Xia H, Deng Q, Vernier M, Giguère V. The mTOR chromatin-bound interactome in prostate cancer. Cell Rep 2022; 38:110534. [PMID: 35320709 DOI: 10.1016/j.celrep.2022.110534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 11/03/2022] Open
Abstract
A growing number of studies support a direct role for nuclear mTOR in gene regulation and chromatin structure. Still, the scarcity of known chromatin-bound mTOR partners limits our understanding of how nuclear mTOR controls transcription. Herein, comprehensive mapping of the mTOR chromatin-bound interactome in both androgen-dependent and -independent cellular models of prostate cancer (PCa) identifies a conserved 67-protein interaction network enriched for chromatin modifiers, transcription factors, and SUMOylation machinery. SUMO2/3 and nuclear pore protein NUP210 are among the strongest interactors, while the androgen receptor (AR) is the dominant androgen-inducible mTOR partner. Further investigation reveals that NUP210 facilitates mTOR nuclear trafficking, that mTOR and AR form a functional transcriptional module with the nucleosome remodeling and deacetylase (NuRD) complex, and that androgens specify mTOR-SUMO2/3 promoter-enhancer association. This work identifies a vast network of mTOR-associated nuclear complexes advocating innovative molecular strategies to modulate mTOR-dependent gene regulation with conceivable implications for PCa and other diseases.
Collapse
Affiliation(s)
- Catherine R Dufour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Charlotte Scholtes
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Ming Yan
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Yonghong Chen
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Lingwei Han
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Ting Li
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Hui Xia
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Qiyun Deng
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Mathieu Vernier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
16
|
Bao K, Shan CM, Chen X, Raiymbek G, Monroe JG, Fang Y, Toda T, Koutmou KS, Ragunathan K, Lu C, Berchowitz LE, Jia S. The cAMP signaling pathway regulates Epe1 protein levels and heterochromatin assembly. PLoS Genet 2022; 18:e1010049. [PMID: 35171902 PMCID: PMC8887748 DOI: 10.1371/journal.pgen.1010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/01/2022] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
The epigenetic landscape of a cell frequently changes in response to fluctuations in nutrient levels, but the mechanistic link is not well understood. In fission yeast, the JmjC domain protein Epe1 is critical for maintaining the heterochromatin landscape. While loss of Epe1 results in heterochromatin expansion, overexpression of Epe1 leads to defective heterochromatin. Through a genetic screen, we found that mutations in genes of the cAMP signaling pathway suppress the heterochromatin defects associated with Epe1 overexpression. We further demonstrated that the activation of Pka1, the downstream effector of cAMP signaling, is required for the efficient translation of epe1+ mRNA to maintain Epe1 overexpression. Moreover, inactivation of the cAMP-signaling pathway, either through genetic mutations or glucose deprivation, leads to the reduction of endogenous Epe1 and corresponding heterochromatin changes. These results reveal the mechanism by which the cAMP signaling pathway regulates heterochromatin landscape in fission yeast. Genomic DNA is folded with histones into chromatin and posttranslational modifications on histones separate chromatin into active euchromatin and repressive heterochromatin. These chromatin domains often change in response to environmental cues, such as nutrient levels. How environmental changes affect histone modifications is not well understood. Here, we found that in fission yeast, the cAMP signaling pathway is required for the function of Epe1, an enzyme that removes histone modifications associated with heterochromatin. Moreover, we found that active cAMP signaling ensures the efficient translation of epe1+ mRNA and therefore maintains high Epe1 protein levels. Finally, we show that changing glucose levels, which modulate cAMP signaling, also affect heterochromatin in a way consistent with cAMP signaling-mediated Epe1 protein level changes. As histone-modifying enzymes often require cofactors that are metabolic intermediates, previous studies on the impact of nutrient levels on chromatin states have mainly focused on metabolites. Our results suggest that nutrient-sensing signaling pathways also regulate histone-modifying enzymes in response to nutritional conditions.
Collapse
Affiliation(s)
- Kehan Bao
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Chun-Min Shan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gulzhan Raiymbek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeremy G. Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yimeng Fang
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Takenori Toda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kaushik Ragunathan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Meiosis initiation: a story of two sexes in all creatures great and small. Biochem J 2021; 478:3791-3805. [PMID: 34709374 PMCID: PMC8589329 DOI: 10.1042/bcj20210412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
Meiosis facilitates diversity across individuals and serves as a major driver of evolution. However, understanding how meiosis begins is complicated by fundamental differences that exist between sexes and species. Fundamental meiotic research is further hampered by a current lack of human meiotic cells lines. Consequently, much of what we know relies on data from model organisms. However, contextualising findings from yeast, worms, flies and mice can be challenging, due to marked differences in both nomenclature and the relative timing of meiosis. In this review, we set out to combine current knowledge of signalling and transcriptional pathways that control meiosis initiation across the sexes in a variety of organisms. Furthermore, we highlight the emerging links between meiosis initiation and oncogenesis, which might explain the frequent re-expression of normally silent meiotic genes in a variety of human cancers.
Collapse
|
18
|
Andric V, Rougemaille M. Long Non-Coding RNAs in the Control of Gametogenesis: Lessons from Fission Yeast. Noncoding RNA 2021; 7:ncrna7020034. [PMID: 34208016 PMCID: PMC8293462 DOI: 10.3390/ncrna7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to cell fate decisions by modulating genome expression and stability. In the fission yeast Schizosaccharomyces pombe, the transition from mitosis to meiosis results in a marked remodeling of gene expression profiles, which ultimately ensures gamete production and inheritance of genetic information to the offspring. This key developmental process involves a set of dedicated lncRNAs that shape cell cycle-dependent transcriptomes through a variety of mechanisms, including epigenetic modifications and the modulation of transcription, post-transcriptional and post-translational regulations, and that contribute to meiosis-specific chromosomal events. In this review, we summarize the biology of these lncRNAs, from their identification to mechanism of action, and discuss their regulatory role in the control of gametogenesis.
Collapse
Affiliation(s)
- Vedrana Andric
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Institute Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75005 Paris, France;
| | - Mathieu Rougemaille
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
19
|
Affiliation(s)
- Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|