1
|
Di Giorgio E, Dalla E, Tolotto V, D’Este F, Paluvai H, Ranzino L, Brancolini C. HDAC4 influences the DNA damage response and counteracts senescence by assembling with HDAC1/HDAC2 to control H2BK120 acetylation and homology-directed repair. Nucleic Acids Res 2024; 52:8218-8240. [PMID: 38874468 PMCID: PMC11317144 DOI: 10.1093/nar/gkae501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Access to DNA is the first level of control in regulating gene transcription, a control that is also critical for maintaining DNA integrity. Cellular senescence is characterized by profound transcriptional rearrangements and accumulation of DNA lesions. Here, we discovered an epigenetic complex between HDAC4 and HDAC1/HDAC2 that is involved in the erase of H2BK120 acetylation. The HDAC4/HDAC1/HDAC2 complex modulates the efficiency of DNA repair by homologous recombination, through dynamic deacetylation of H2BK120. Deficiency of HDAC4 leads to accumulation of H2BK120ac, impaired recruitment of BRCA1 and CtIP to the site of lesions, accumulation of damaged DNA and senescence. In senescent cells this complex is disassembled because of increased proteasomal degradation of HDAC4. Forced expression of HDAC4 during RAS-induced senescence reduces the genomic spread of γH2AX. It also affects H2BK120ac levels, which are increased in DNA-damaged regions that accumulate during RAS-induced senescence. In summary, degradation of HDAC4 during senescence causes the accumulation of damaged DNA and contributes to the activation of the transcriptional program controlled by super-enhancers that maintains senescence.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Emiliano Dalla
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Vanessa Tolotto
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Francesca D’Este
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Harikrishnareddy Paluvai
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Liliana Ranzino
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
2
|
Li Y, Li L, Wang X, Zhao F, Yang Y, Zhou Y, Zhang J, Wang L, Jiang Z, Zhang Y, Chen Y, Wu C, Li K, Zhang T, Wang P, Mao Z, Zhu W, Xu X, Liang S, Lou Z, Yuan J. USP25 Elevates SHLD2-Mediated DNA Double-Strand Break Repair and Regulates Chemoresponse in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403485. [PMID: 38803048 PMCID: PMC11267380 DOI: 10.1002/advs.202403485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 05/29/2024]
Abstract
DNA damage plays a significant role in the tumorigenesis and progression of the disease. Abnormal DNA repair affects the therapy and prognosis of cancer. In this study, it is demonstrated that the deubiquitinase USP25 promotes non-homologous end joining (NHEJ), which in turn contributes to chemoresistance in cancer. It is shown that USP25 deubiquitinates SHLD2 at the K64 site, which enhances its binding with REV7 and promotes NHEJ. Furthermore, USP25 deficiency impairs NHEJ-mediated DNA repair and reduces class switch recombination (CSR) in USP25-deficient mice. USP25 is overexpressed in a subset of colon cancers. Depletion of USP25 sensitizes colon cancer cells to IR, 5-Fu, and cisplatin. TRIM25 is also identified, an E3 ligase, as the enzyme responsible for degrading USP25. Downregulation of TRIM25 leads to an increase in USP25 levels, which in turn induces chemoresistance in colon cancer cells. Finally, a peptide that disrupts the USP25-SHLD2 interaction is successfully identified, impairing NHEJ and increasing sensitivity to chemotherapy in PDX model. Overall, these findings reveal USP25 as a critical effector of SHLD2 in regulating the NHEJ repair pathway and suggest its potential as a therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yunhui Li
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Lei Li
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
| | - Xinshu Wang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Fei Zhao
- College of BiologyHunan UniversityChangsha410082China
| | - Yuntong Yang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Yujuan Zhou
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Jiyuan Zhang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Li Wang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Zeshan Jiang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Yuanyuan Zhang
- Department of General Surgery and Colorectal SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yuping Chen
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200080China
| | - Chenming Wu
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
| | - Ke Li
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Ping Wang
- Tongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineShanghai200072China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal‐Fetal MedicineClinical and Translational Research Center of Shanghai First Maternity and Infant HospitalFrontier Science Center for Stem Cell ResearchTongji University School of MedicineShanghai200040China
| | - Weiguo Zhu
- International Cancer CenterGuangdong Key Laboratory of Genome Instability and Human Disease PreventionMarshall Laboratory of Biomedical EngineeringDepartment of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhen518037China
| | - Xingzhi Xu
- The Sixth Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Genome Stability and Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University School of MedicineShenzhen518055China
| | - Shikang Liang
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong Kong SAR999077Hong Kong
| | - Zhenkun Lou
- Department of OncologyMayo ClinicRochesterMNUSA
| | - Jian Yuan
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| |
Collapse
|
3
|
Zhang H, Jiang L, Du X, Qian Z, Wu G, Jiang Y, Mao Z. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ 2024; 31:792-803. [PMID: 38664591 PMCID: PMC11164703 DOI: 10.1038/s41418-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyi Du
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Qian
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guizhu Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Zhou Q, Tu X, Hou X, Yu J, Zhao F, Huang J, Kloeber J, Olson A, Gao M, Luo K, Zhu S, Wu Z, Zhang Y, Sun C, Zeng X, Schoolmeester KJ, Weroha JS, Hu X, Jiang Y, Wang L, Mutter RW, Lou Z. Syk-dependent homologous recombination activation promotes cancer resistance to DNA targeted therapy. Drug Resist Updat 2024; 74:101085. [PMID: 38636338 PMCID: PMC11095636 DOI: 10.1016/j.drup.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xinyi Tu
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jake Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Anna Olson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Yong Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL 60657, United States
| | - Xiangyu Zeng
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | | | - John S Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xiwen Hu
- Nursing Department, Rochester Community and Technical College, Rochester, MN 55904, United States
| | - Yanxia Jiang
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States
| | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
5
|
Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z, Yang X, Jin M, Huang B, Ding X, Li R, Yang J, He Y, Wang Q, Wang W, Kloeber JA, Li Y, Hao B, Zhang Y, Wang J, Tan M, Li K, Wang P, Lou Z, Yuan J. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 2024; 187:294-311.e21. [PMID: 38128537 DOI: 10.1016/j.cell.2023.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 08/09/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.
Collapse
Affiliation(s)
- Yuping Chen
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhuan Wu
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang 422001, China
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhe Wang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoning Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingpeng Jin
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Bingsong Huang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Ding
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Rui Li
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Jie Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yiming He
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Qianwen Wang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic Alix School of Medicine and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Yunxuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Shanghai 200072, China
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Yuan
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
6
|
Swift ML, Zhou R, Syed A, Moreau LA, Tomasik B, Tainer JA, Konstantinopoulos PA, D'Andrea AD, He YJ, Chowdhury D. Dynamics of the DYNLL1-MRE11 complex regulate DNA end resection and recruitment of Shieldin to DSBs. Nat Struct Mol Biol 2023; 30:1456-1467. [PMID: 37696958 PMCID: PMC10686051 DOI: 10.1038/s41594-023-01074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/21/2023] [Indexed: 09/13/2023]
Abstract
The extent and efficacy of DNA end resection at DNA double-strand breaks (DSB) determine the repair pathway choice. Here we describe how the 53BP1-associated protein DYNLL1 works in tandem with the Shieldin complex to protect DNA ends. DYNLL1 is recruited to DSBs by 53BP1, where it limits end resection by binding and disrupting the MRE11 dimer. The Shieldin complex is recruited to a fraction of 53BP1-positive DSBs hours after DYNLL1, predominantly in G1 cells. Shieldin localization to DSBs depends on MRE11 activity and is regulated by the interaction of DYNLL1 with MRE11. BRCA1-deficient cells rendered resistant to PARP inhibitors by the loss of Shieldin proteins can be resensitized by the constitutive association of DYNLL1 with MRE11. These results define the temporal and functional dynamics of the 53BP1-centric DNA end resection factors in cells.
Collapse
Affiliation(s)
- Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rui Zhou
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aleem Syed
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lisa A Moreau
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Faculty of Medicine, Gdańsk, Poland
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular and Cellular Oncology and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alan D D'Andrea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yizhou Joseph He
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Min J, Zhao J, Zagelbaum J, Lee J, Takahashi S, Cummings P, Schooley A, Dekker J, Gottesman ME, Rabadan R, Gautier J. Mechanisms of insertions at a DNA double-strand break. Mol Cell 2023; 83:2434-2448.e7. [PMID: 37402370 PMCID: PMC10527084 DOI: 10.1016/j.molcel.2023.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023]
Abstract
Insertions and deletions (indels) are common sources of structural variation, and insertions originating from spontaneous DNA lesions are frequent in cancer. We developed a highly sensitive assay called insertion and deletion sequencing (Indel-seq) to monitor rearrangements in human cells at the TRIM37 acceptor locus that reports indels stemming from experimentally induced and spontaneous genome instability. Templated insertions, which derive from sequences genome wide, require contact between donor and acceptor loci, require homologous recombination, and are stimulated by DNA end-processing. Insertions are facilitated by transcription and involve a DNA/RNA hybrid intermediate. Indel-seq reveals that insertions are generated via multiple pathways. The broken acceptor site anneals with a resected DNA break or invades the displaced strand of a transcription bubble or R-loop, followed by DNA synthesis, displacement, and then ligation by non-homologous end joining. Our studies identify transcription-coupled insertions as a critical source of spontaneous genome instability that is distinct from cut-and-paste events.
Collapse
Affiliation(s)
- Jaewon Min
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Junfei Zhao
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jennifer Zagelbaum
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jina Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sho Takahashi
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Portia Cummings
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Allana Schooley
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Max E Gottesman
- Department of Biochemistry and Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Raul Rabadan
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
8
|
Chen B, Ge T, Jian M, Chen L, Fang Z, He Z, Huang C, An Y, Yin S, Xiong Y, Zhang J, Li R, Ye M, Li Y, Liu F, Ma W, Songyang Z. Transmembrane nuclease NUMEN/ENDOD1 regulates DNA repair pathway choice at the nuclear periphery. Nat Cell Biol 2023:10.1038/s41556-023-01165-1. [PMID: 37322289 DOI: 10.1038/s41556-023-01165-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Proper repair of DNA damage lesions is essential to maintaining genome integrity and preventing the development of human diseases, including cancer. Increasing evidence suggests the importance of the nuclear envelope in the spatial regulation of DNA repair, although the mechanisms of such regulatory processes remain poorly defined. Through a genome-wide synthetic viability screen for PARP-inhibitor resistance using an inducible CRISPR-Cas9 platform and BRCA1-deficient breast cancer cells, we identified a transmembrane nuclease (renamed NUMEN) that could facilitate compartmentalized and non-homologous end joining-dependent repair of double-stranded DNA breaks at the nuclear periphery. Collectively, our data demonstrate that NUMEN generates short 5' overhangs through its endonuclease and 3'→5' exonuclease activities, promotes the repair of DNA lesions-including heterochromatic lamina-associated domain breaks as well as deprotected telomeres-and functions as a downstream effector of DNA-dependent protein kinase catalytic subunit. These findings underline the role of NUMEN as a key player in DNA repair pathway choice and genome-stability maintenance, and have implications for ongoing research into the development and treatment of genome instability disorders.
Collapse
Affiliation(s)
- Bohong Chen
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tianyu Ge
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meiqi Jian
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liutao Chen
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengwen Fang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chengjing Huang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan An
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Yin
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Xiong
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - JingKai Zhang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Miaoman Ye
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yubing Li
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenbing Ma
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Zhou Q, Tu X, Hou X, Yu J, Zhao F, Huang J, Kloeber J, Olson A, Gao M, Luo K, Zhu S, Wu Z, Zhang Y, Sun C, Zeng X, Schoolmeester K, Weroha J, Wang L, Mutter R, Lou Z. Syk-dependent alternative homologous recombination activation promotes cancer resistance to DNA targeted therapy. RESEARCH SQUARE 2023:rs.3.rs-2922520. [PMID: 37333340 PMCID: PMC10275042 DOI: 10.21203/rs.3.rs-2922520/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase known to regulate immune cell function, cell adhesion, and vascular development. Here, we report that Syk can be expressed in high grade serous ovarian cancer and triple negative breast cancers and promotes DNA double strand break resection, homologous recombination (HR) and therapeutic resistance. We found that Syk is activated by ATM following DNA damage and is recruited to DNA double strand breaks by NBS1. Once at the break site, Syk phosphorylates CtIP, a key mediator of resection and HR, at Thr-847 to promote repair activity, specifically in Syk expressing cancer cells. Syk inhibition or genetic deletion abolished CtIP Thr-847 phosphorylation and overcame the resistant phenotype. Collectively, our findings suggest that Syk drives therapeutic resistance by promoting DNA resection and HR through a novel ATM-Syk-CtIP pathway, and that Syk is a new tumor-specific target to sensitize Syk-expressing tumors to PARPi and other DNA targeted therapy.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Radiation Oncology, Mayo Clinic
| | - Xinyi Tu
- Department of Radiation Oncology, Mayo Clinic
| | | | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | - Fei Zhao
- Department of Oncology, Mayo Clinic
| | | | | | | | - Ming Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
| | | | | | | | | | | | | | | | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | | | | |
Collapse
|
10
|
Huang J, Wu C, Kloeber JA, Gao H, Gao M, Zhu Q, Chang Y, Zhao F, Guo G, Luo K, Dai H, Liu S, Huang Q, Kim W, Zhou Q, Zhu S, Wu Z, Tu X, Yin P, Deng M, Wang L, Yuan J, Lou Z. SLFN5-mediated chromatin dynamics sculpt higher-order DNA repair topology. Mol Cell 2023; 83:1043-1060.e10. [PMID: 36854302 PMCID: PMC10467573 DOI: 10.1016/j.molcel.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/23/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.
Collapse
Affiliation(s)
- Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chenming Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yiming Chang
- Jinzhou Medical University, Shanghai East Hospital, Shanghai 200120, China
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Haiming Dai
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sijia Liu
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Qiru Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Yuan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200092, China.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Zhou R, Swift ML, Syed A, Huang K, Moreau L, Tainer JA, Konstantinopoulos PA, Dâ Andrea AD, He YJ, Chowdhury D. Dynamics of the DYNLL1/MRE11 complex regulates DNA end resection and recruitment of the Shieldin complex to DSBs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534416. [PMID: 37034578 PMCID: PMC10081242 DOI: 10.1101/2023.03.27.534416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Extent and efficacy of DNA end resection at DNA double strand break (DSB)s determines the choice of repair pathway. Here we describe how the 53BP1 associated protein DYNLL1 works in tandem with Shieldin and the CST complex to protect DNA ends. DYNLL1 is recruited to DSBs by 53BP1 where it limits end resection by binding and disrupting the MRE11 dimer. The Shieldin complex is recruited to a fraction of 53BP1-positive DSBs hours after DYNLL1 predominantly in the G1 cells. Shieldin localization to DSBs is dependent on MRE11 activity and is regulated by the interaction of DYNLL1 with MRE11. BRCA1-deficient cells rendered resistant to PARP inhibitors by the loss of Shieldin proteins can be re-sensitized by the constitutive association of DYNLL1 with MRE11. These results define the temporal and functional dynamics of the 53BP1-centric DNA end resection factors in cells.
Collapse
|
12
|
Refaat AM, Nakata M, Husain A, Kosako H, Honjo T, Begum NA. HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression. Cell Rep 2023; 42:112284. [PMID: 36943867 DOI: 10.1016/j.celrep.2023.112284] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/23/2022] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
B cells generate functionally different classes of antibodies through class-switch recombination (CSR), which requires classical non-homologous end joining (C-NHEJ) to join the DNA breaks at the donor and acceptor switch (S) regions. We show that the RNA-binding protein HNRNPU promotes C-NHEJ-mediated S-S joining through the 53BP1-shieldin DNA-repair complex. Notably, HNRNPU binds to the S region RNA/DNA G-quadruplexes, contributing to regulating R-loop and single-stranded DNA (ssDNA) accumulation. HNRNPU is an intrinsically disordered protein that interacts with both C-NHEJ and R-loop complexes in an RNA-dependent manner. Strikingly, recruitment of HNRNPU and the C-NHEJ factors is highly sensitive to liquid-liquid phase separation inhibitors, suggestive of DNA-repair condensate formation. We propose that HNRNPU facilitates CSR by forming and stabilizing the C-NHEJ ribonucleoprotein complex and preventing excessive R-loop accumulation, which otherwise would cause persistent DNA breaks and aberrant DNA repair, leading to genomic instability.
Collapse
Affiliation(s)
- Ahmed M Refaat
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Hidetaka Kosako
- Division of Cell Signaling, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Moon J, Kitty I, Renata K, Qin S, Zhao F, Kim W. DNA Damage and Its Role in Cancer Therapeutics. Int J Mol Sci 2023; 24:4741. [PMID: 36902170 PMCID: PMC10003233 DOI: 10.3390/ijms24054741] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
DNA damage is a double-edged sword in cancer cells. On the one hand, DNA damage exacerbates gene mutation frequency and cancer risk. Mutations in key DNA repair genes, such as breast cancer 1 (BRCA1) and/or breast cancer 2 (BRCA2), induce genomic instability and promote tumorigenesis. On the other hand, the induction of DNA damage using chemical reagents or radiation kills cancer cells effectively. Cancer-burdening mutations in key DNA repair-related genes imply relatively high sensitivity to chemotherapy or radiotherapy because of reduced DNA repair efficiency. Therefore, designing specific inhibitors targeting key enzymes in the DNA repair pathway is an effective way to induce synthetic lethality with chemotherapy or radiotherapy in cancer therapeutics. This study reviews the general pathways involved in DNA repair in cancer cells and the potential proteins that could be targeted for cancer therapeutics.
Collapse
Affiliation(s)
- Jaeyoung Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Kusuma Renata
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
- Magister of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | - Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
14
|
Mirman Z, Cai S, de Lange T. CST/Polα/primase-mediated fill-in synthesis at DSBs. Cell Cycle 2023; 22:379-389. [PMID: 36205622 PMCID: PMC9879193 DOI: 10.1080/15384101.2022.2123886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) pose a major threat to the genome, so the efficient repair of such breaks is essential. DSB processing and repair is affected by 53BP1, which has been proposed to determine repair pathway choice and/or promote repair fidelity. 53BP1 and its downstream effectors, RIF1 and shieldin, control 3' overhang length, and the mechanism has been a topic of intensive research. Here, we highlight recent evidence that 3' overhang control by 53BP1 occurs through fill-in synthesis of resected DSBs by CST/Polα/primase. We focus on the crucial role of fill-in synthesis in BRCA1-deficient cells treated with PARPi and discuss the notion of fill-in synthesis in other specialized settings and in the repair of random DSBs. We argue that - in addition to other determinants - repair pathway choice may be influenced by the DNA sequence at the break which can impact CST binding and therefore the deployment of Polα/primase fill-in.
Collapse
Affiliation(s)
- Zachary Mirman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, HHMI, Boston, MA, USA
| | - Sarah Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
- Laboratory for Molecular Electron Microscopy, The Rockefeller University, New York, NY
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
15
|
Rass E, Willaume S, Bertrand P. 53BP1: Keeping It under Control, Even at a Distance from DNA Damage. Genes (Basel) 2022; 13:genes13122390. [PMID: 36553657 PMCID: PMC9778356 DOI: 10.3390/genes13122390] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Double-strand breaks (DSBs) are toxic lesions that can be generated by exposure to genotoxic agents or during physiological processes, such as during V(D)J recombination. The repair of these DSBs is crucial to prevent genomic instability and to maintain cellular homeostasis. Two main pathways participate in repairing DSBs, namely, non-homologous end joining (NHEJ) and homologous recombination (HR). The P53-binding protein 1 (53BP1) plays a pivotal role in the choice of DSB repair mechanism, promotes checkpoint activation and preserves genome stability upon DSBs. By preventing DSB end resection, 53BP1 promotes NHEJ over HR. Nonetheless, the balance between DSB repair pathways remains crucial, as unscheduled NHEJ or HR events at different phases of the cell cycle may lead to genomic instability. Therefore, the recruitment of 53BP1 to chromatin is tightly regulated and has been widely studied. However, less is known about the mechanism regulating 53BP1 recruitment at a distance from the DNA damage. The present review focuses on the mechanism of 53BP1 recruitment to damage and on recent studies describing novel mechanisms keeping 53BP1 at a distance from DSBs.
Collapse
Affiliation(s)
- Emilie Rass
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Correspondence:
| | - Simon Willaume
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
16
|
Cisneros-Aguirre M, Ping X, Stark JM. To indel or not to indel: Factors influencing mutagenesis during chromosomal break end joining. DNA Repair (Amst) 2022; 118:103380. [PMID: 35926296 PMCID: PMC10105512 DOI: 10.1016/j.dnarep.2022.103380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
Abstract
Chromosomal DNA double-strand breaks (DSBs) are the effective lesion of radiotherapy and other clastogenic cancer therapeutics, and are also the initiating event of many approaches to gene editing. Ligation of the DSBs by end joining (EJ) pathways can restore the broken chromosome, but the repair junctions can have insertion/deletion (indel) mutations. The indel patterns resulting from DSB EJ are likely defined by the initial structure of the DNA ends, how the ends are processed and synapsed prior to ligation, and the factors that mediate the ligation step. In this review, we describe key factors that influence these steps of DSB EJ in mammalian cells, which is significant both for understanding mutagenesis resulting from clastogenic cancer therapeutics, and for developing approaches to manipulating gene editing outcomes.
Collapse
Affiliation(s)
- Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Xiaoli Ping
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
17
|
Zeng X, Zhao F, Cui G, Zhang Y, Deshpande RA, Chen Y, Deng M, Kloeber JA, Shi Y, Zhou Q, Zhang C, Hou J, Kim W, Tu X, Yan Y, Xu Z, Chen L, Gao H, Guo G, Liu J, Zhu Q, Cao Y, Huang J, Wu Z, Zhu S, Yin P, Luo K, Mer G, Paull TT, Yuan J, Tao K, Lou Z. METTL16 antagonizes MRE11-mediated DNA end resection and confers synthetic lethality to PARP inhibition in pancreatic ductal adenocarcinoma. NATURE CANCER 2022; 3:1088-1104. [PMID: 36138131 DOI: 10.1038/s43018-022-00429-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Characterization of genetic alterations will improve our understanding and therapies for this disease. Here, we report that PDAC with elevated expression of METTL16, one of the 'writers' of RNA N6-methyladenosine modification, may benefit from poly-(ADP-ribose)-polymerase inhibitor (PARPi) treatment. Mechanistically, METTL16 interacts with MRE11 through RNA and this interaction inhibits MRE11's exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 resulting in a conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression show increased sensitivity to PARPi, especially when combined with gemcitabine. Thus, our findings reveal a role for METTL16 in homologous recombination repair and suggest that a combination of PARPi with gemcitabine could be an effective treatment strategy for PDAC with elevated METTL16 expression.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yong Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yuping Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Yu Shi
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Chao Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jing Hou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wootae Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Republic of Korea
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yuanliang Yan
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lifeng Chen
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaqi Liu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yueyu Cao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Jian Yuan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China.
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
CHAMP1 binds to REV7/FANCV and promotes homologous recombination repair. Cell Rep 2022; 40:111297. [PMID: 36044844 PMCID: PMC9472291 DOI: 10.1016/j.celrep.2022.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/13/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
A critical determinant of DNA repair pathway choice is REV7, an adaptor that binds to various DNA repair proteins through its C-terminal seatbelt domain. The REV7 seatbelt binds to either REV3, activating translesion synthesis, or to SHLD3, activating non-homologous end joining (NHEJ) repair. Recent studies have identified another REV7 seatbelt-binding protein, CHAMP1 (chromosome alignment-maintaining phosphoprotein 1), though its possible role in DNA repair is unknown. Here, we show that binding of CHAMP1 to REV7 activates homologous recombination (HR) repair. Mechanistically, CHAMP1 binds directly to REV7 and reduces the level of the Shieldin complex, causing an increase in double-strand break end resection. CHAMP1 also interacts with POGZ in a heterochromatin complex further promoting HR repair. Importantly, in human tumors, CHAMP1 overexpression promotes HR, confers poly (ADP-ribose) polymerase inhibitor resistance, and correlates with poor prognosis. Thus, by binding to either SHLD3 or CHAMP1 through its seatbelt, the REV7 protein can promote either NHEJ or HR repair, respectively. Feng et al. demonstrate that CHAMP1 promotes homologous recombination by binding to REV7 and reducing the level of the Shieldin complex, causing an increase in double-strand break end resection. CHAMP1 and POGZ form a complex to further promote HR. Upregulation of CHAMP1 expression is a mechanism of acquired PARP inhibitor resistance.
Collapse
|
19
|
Genomic instability genes in lung and colon adenocarcinoma indicate organ specificity of transcriptomic impact on Copy Number Alterations. Sci Rep 2022; 12:11739. [PMID: 35817785 PMCID: PMC9273645 DOI: 10.1038/s41598-022-15692-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
Genomic instability (GI) in cancer facilitates cancer evolution and is an exploitable target for therapy purposes. However, specific genes involved in cancer GI remain elusive. Causal genes for GI via expressions have not been comprehensively identified in colorectal cancers (CRCs). To fill the gap in knowledge, we developed a data mining strategy (Gene Expression to Copy Number Alterations; "GE-CNA"). Here we applied the GE-CNA approach to 592 TCGA CRC datasets, and identified 500 genes whose expression levels associate with CNA. Among these, 18 were survival-critical (i.e., expression levels correlate with significant differences in patients' survival). Comparison with previous results indicated striking differences between lung adenocarcinoma and CRC: (a) less involvement of overexpression of mitotic genes in generating genomic instability in the colon and (b) the presence of CNA-suppressing pathways, including immune-surveillance, was only partly similar to those in the lung. Following 13 genes (TIGD6, TMED6, APOBEC3D, EP400NL, B3GNT4, ZNF683, FOXD4, FOXD4L1, PKIB, DDB2, MT1G, CLCN3, CAPS) were evaluated as potential drug development targets (hazard ratio [> 1.3 or < 0.5]). Identification of specific CRC genomic instability genes enables researchers to develop GI targeting approach. The new results suggest that the "targeting genomic instability and/or aneuploidy" approach must be tailored for specific organs.
Collapse
|
20
|
Mirman Z, Sharma K, Carroll TS, de Lange T. Expression of BRCA1, BRCA2, RAD51, and other DSB repair factors is regulated by CRL4 WDR70. DNA Repair (Amst) 2022; 113:103320. [PMID: 35316728 PMCID: PMC9474743 DOI: 10.1016/j.dnarep.2022.103320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
Double-strand break (DSB) repair relies on DNA damage response (DDR) factors including BRCA1, BRCA2, and RAD51, which promote homology-directed repair (HDR); 53BP1, which affects single-stranded DNA formation; and proteins that mediate end-joining. Here we show that the CRL4/DDB1/WDR70 complex (CRL4WDR70) controls the expression of DDR factors. Auxin-mediated degradation of WDR70 led to reduced expression of BRCA1, BRCA2, RAD51, and other HDR factors; 53BP1 and its downstream effectors; and other DDR factors. In contrast, cNHEJ factors were generally unaffected. WDR70 loss abrogated the localization of HDR factors to DSBs and elicited hallmarks of genomic instability, although 53BP1/RIF1 foci still formed. Mutation of the DDB1-binding WD40 motif, disruption of DDB1, or inhibition of cullins phenocopied WDR70 loss, consistent with CRL4, DDB1, and WDR70 functioning as a complex. RNA-sequencing revealed that WDR70 degradation affects the mRNA levels of DDR and many other factors. The data indicate that CRL4WDR70 is critical for expression of myriad genes including BRCA1, BRCA2, and RAD51.
Collapse
Affiliation(s)
- Zachary Mirman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Keshav Sharma
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
21
|
Libri A, Marton T, Deriano L. The (Lack of) DNA Double-Strand Break Repair Pathway Choice During V(D)J Recombination. Front Genet 2022; 12:823943. [PMID: 35082840 PMCID: PMC8785701 DOI: 10.3389/fgene.2021.823943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can be mended via several DNA repair pathways. Multiple factors can influence the choice and the restrictiveness of repair towards a given pathway in order to warrant the maintenance of genome integrity. During V(D)J recombination, RAG-induced DSBs are (almost) exclusively repaired by the non-homologous end-joining (NHEJ) pathway for the benefit of antigen receptor gene diversity. Here, we review the various parameters that constrain repair of RAG-generated DSBs to NHEJ, including the peculiarity of DNA DSB ends generated by the RAG nuclease, the establishment and maintenance of a post-cleavage synaptic complex, and the protection of DNA ends against resection and (micro)homology-directed repair. In this physiological context, we highlight that certain DSBs have limited DNA repair pathway choice options.
Collapse
Affiliation(s)
- Alice Libri
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| | - Timea Marton
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| |
Collapse
|
22
|
Blasiak J, Szczepańska J, Sobczuk A, Fila M, Pawlowska E. RIF1 Links Replication Timing with Fork Reactivation and DNA Double-Strand Break Repair. Int J Mol Sci 2021; 22:11440. [PMID: 34768871 PMCID: PMC8583789 DOI: 10.3390/ijms222111440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Replication timing (RT) is a cellular program to coordinate initiation of DNA replication in all origins within the genome. RIF1 (replication timing regulatory factor 1) is a master regulator of RT in human cells. This role of RIF1 is associated with binding G4-quadruplexes and changes in 3D chromatin that may suppress origin activation over a long distance. Many effects of RIF1 in fork reactivation and DNA double-strand (DSB) repair (DSBR) are underlined by its interaction with TP53BP1 (tumor protein p53 binding protein). In G1, RIF1 acts antagonistically to BRCA1 (BRCA1 DNA repair associated), suppressing end resection and homologous recombination repair (HRR) and promoting non-homologous end joining (NHEJ), contributing to DSBR pathway choice. RIF1 is an important element of intra-S-checkpoints to recover damaged replication fork with the involvement of HRR. High-resolution microscopic studies show that RIF1 cooperates with TP53BP1 to preserve 3D structure and epigenetic markers of genomic loci disrupted by DSBs. Apart from TP53BP1, RIF1 interact with many other proteins, including proteins involved in DNA damage response, cell cycle regulation, and chromatin remodeling. As impaired RT, DSBR and fork reactivation are associated with genomic instability, a hallmark of malignant transformation, RIF1 has a diagnostic, prognostic, and therapeutic potential in cancer. Further studies may reveal other aspects of common regulation of RT, DSBR, and fork reactivation by RIF1.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Szczepańska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| |
Collapse
|
23
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
24
|
He YJ, Chowdhury D. ASTE1 cutting to block DNA end resection. Nat Cell Biol 2021; 23:818-819. [PMID: 34354234 DOI: 10.1038/s41556-021-00731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yizhou Joseph He
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA. .,Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
|