1
|
Sun Y, Wang C, Wen L, Ling Z, Xia J, Cheng B, Peng J. Quercetin ameliorates senescence and promotes osteogenesis of BMSCs by suppressing the repetitive element‑triggered RNA sensing pathway. Int J Mol Med 2025; 55:4. [PMID: 39450556 PMCID: PMC11537266 DOI: 10.3892/ijmm.2024.5445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cell senescence impedes the self‑renewal and osteogenic capacity of bone marrow mesenchymal stem cells (BMSCs), thus limiting their application in tissue regeneration. The present study aimed to elucidate the role and mechanism of repetitive element (RE) activation in BMSC senescence and osteogenesis, as well as the intervention effect of quercetin. In an H2O2‑induced BMSC senescence model, quercetin treatment alleviated senescence as shown by a decrease in senescence‑associated β‑galactosidase (SA‑β‑gal)‑positive cell ratio, increased colony formation ability and decreased mRNA expression of p21 and senescence‑associated secretory phenotype genes. DNA damage response marker γ‑H2AX increased in senescent BMSCs, while expression of epigenetic markers methylation histone H3 Lys9, heterochromatin protein 1α and heterochromatin‑related nuclear membrane protein lamina‑associated polypeptide 2 decreased. Quercetin rescued these alterations, indicating its ability to ameliorate senescence by stabilizing heterochromatin structure where REs are primarily suppressed. Transcriptional activation of REs accompanied by accumulation of cytoplasmic double‑stranded (ds)RNA, as well as triggering of the RNA sensor retinoic acid‑inducible gene I (RIG‑I) receptor pathway in H2O2‑induced senescent BMSCs were shown. Similarly, quercetin treatment inhibited these responses. Additionally, RIG‑I knockdown led to a decreased number of SA‑β‑gal‑positive cells, confirming its functional impact on senescence. Induction of senescence or administration of dsRNA analogue significantly hindered the osteogenic capacity of BMSCs, while quercetin treatment or RIG‑I knockdown reversed the decline in osteogenic function. The findings of the current study demonstrated that quercetin inhibited the activation of REs and the RIG‑I RNA sensing pathway via epigenetic regulation, thereby alleviating the senescence of BMSCs and promoting osteogenesis.
Collapse
Affiliation(s)
- Yutong Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chunyang Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Liling Wen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jianmin Peng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
2
|
Wang S, Meng L, Xu N, Chen H, Xiao Z, Lu D, Fan X, Xia L, Chen J, Zheng S, Wei Q, Wei X, Xu X. Hepatocellular carcinoma-specific epigenetic checkpoints bidirectionally regulate the antitumor immunity of CD4 + T cells. Cell Mol Immunol 2024; 21:1296-1308. [PMID: 39300319 PMCID: PMC11528031 DOI: 10.1038/s41423-024-01215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with significant global health implications. The role of CD4+ T cells, particularly conventional CD4+ T cells (Tconvs), in HCC progression remains unexplored. Furthermore, epigenetic factors are crucial in immune regulation, yet their specific role in HCC-infiltrating Tconv cells remains elusive. This study elucidates the role of MATR3, an epigenetic regulator, in modulating Tconv activity and immune evasion within the HCC microenvironment. Reanalysis of the scRNA-seq data revealed that early activation of CD4+ T cells is crucial for establishing an antitumor immune response. In vivo and in vitro experiments revealed that Tconv enhances cDC1-induced CD8+ T-cell activation. Screening identified MATR3 as a critical regulator of Tconv function, which is necessary for antitumour activity but harmful when overexpressed. Excessive MATR3 expression exacerbates Tconv exhaustion and impairs function by recruiting the SWI/SNF complex to relax chromatin in the TOX promoter region, leading to aberrant transcriptional changes. In summary, MATR3 is an HCC-specific epigenetic checkpoint that bidirectionally regulates Tconv antitumour immunity, suggesting new therapeutic strategies targeting epigenetic regulators to enhance antitumour immunity in HCC.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Lijun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Huan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaofeng Xiao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
| | - Xiaohui Fan
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, Zhejiang, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, 310000, Hangzhou, China.
| |
Collapse
|
3
|
Huang M, Huang X, Li L. ERH is a prognostic biomarker associated with immune cell infiltration in lung cancer. Biomarkers 2024:1-13. [PMID: 39422755 DOI: 10.1080/1354750x.2024.2418579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION The enhancer of rudimentary homolog (ERH) is significant in cancers, but its role in lung cancer is understudied. METHODS We divided lung cancer patients into high and low ERH expression groups based on tumour tissue levels. Using the log-rank test, we analysed the correlation between ERH expression and patient prognosis. The effects of high ERH expression on lung cancer cell proliferation, migration, and invasion were assessed using CCK8, EDU, transwell, and wound healing assays. RESULTS ERH expression was significantly higher in cancerous versus normal lung tissue (p < 0.05), including lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Patients with high ERH expression had worse overall survival (HR = 1.37, p = 2.5 × 1 0 -7) and first progression survival (HR = 1.38, p = 0.00065) in lung cancer. However, while high ERH expression predicts an unfavourable prognosis in LUAD, it does not hold true for LUSC. Furthermore, knockdown of ERH inhibited lung cancer cell proliferation, migration, and invasion. ERH expression was linked to immune cell infiltration. High ERH expression in LUAD and LUSC samples correlated with higher CD8 T cell, T cells CD4 memory activated, and M1 macrophages abundance, while low ERH expression correlated with higher T cells CD4 memory resting abundance. CONCLUSION Upregulation of ERH in lung cancer tissue is associated with poor prognosis and immune cell infiltration.
Collapse
Affiliation(s)
- Mingfang Huang
- Department of Thoracic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Xiuming Huang
- Department of Thoracic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Liang Li
- Department of Thoracic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| |
Collapse
|
4
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programmes and repeats in pluripotent cells. Nat Cell Biol 2024:10.1038/s41556-024-01547-z. [PMID: 39482359 DOI: 10.1038/s41556-024-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
H3K9me3 heterochromatin, established by lysine methyltransferases (KMTs) and compacted by heterochromatin protein 1 (HP1) isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3 heterochromatin stability is presently limited to individual domains and DNA repeats. Here we engineered Suv39h2-knockout mouse embryonic stem cells to degrade remaining two H3K9me3 KMTs within 1 hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A 'binary switch' governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMT depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening and exit from pluripotency within 12 h. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3 heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael B Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programs and repeats in pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613328. [PMID: 39345615 PMCID: PMC11429881 DOI: 10.1101/2024.09.16.613328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
H3K9me3-heterochromatin, established by lysine methyltransferases (KMTs) and compacted by HP1 isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3-heterochromatin stability is presently limited to individual domains and DNA repeats. We engineered Suv39h2 KO mouse embryonic stem cells to degrade remaining two H3K9me3-KMTs within one hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A "binary switch" governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMTs' depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening, and exit from pluripotency within 12 hr. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3-heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael B. Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Zhang W, Cheng L, Li K, Xie L, Ji J, Lei X, Jiang A, Chen C, Li H, Li P, Sun Q. Evolutional heterochromatin condensation delineates chromocenter formation and retrotransposon silencing in plants. NATURE PLANTS 2024; 10:1215-1230. [PMID: 39014153 DOI: 10.1038/s41477-024-01746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Heterochromatic condensates (chromocenters) are critical for maintaining the silencing of heterochromatin. It is therefore puzzling that the presence of chromocenters is variable across plant species. Here we reveal that variations in the plant heterochromatin protein ADCP1 confer a diversity in chromocenter formation via phase separation. ADCP1 physically interacts with the high mobility group protein HMGA to form a complex and mediates heterochromatin condensation by multivalent interactions. The loss of intrinsically disordered regions (IDRs) in ADCP1 homologues during evolution has led to the absence of prominent chromocenter formation in various plant species, and introduction of IDR-containing ADCP1 with HMGA promotes heterochromatin condensation and retrotransposon silencing. Moreover, plants in the Cucurbitaceae group have evolved an IDR-containing chimaera of ADCP1 and HMGA, which remarkably enables formation of chromocenters. Together, our work uncovers a coevolved mechanism of phase separation in packing heterochromatin and silencing retrotransposons.
Collapse
Affiliation(s)
- Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Leiming Xie
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinyao Ji
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Anjie Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chunlai Chen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Pilong Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
7
|
Katznelson A, Hernandez B, Fahning H, Zhang J, Burton A, Torres-Padilla ME, Plachta N, Zaret KS, McCarthy RL. Heterochromatin protein ERH represses alternative cell fates during early mammalian differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597604. [PMID: 38895478 PMCID: PMC11185749 DOI: 10.1101/2024.06.06.597604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
During development, H3K9me3 heterochromatin is dynamically rearranged, silencing repeat elements and protein coding genes to restrict cell identity. Enhancer of Rudimentary Homolog (ERH) is an evolutionarily conserved protein originally characterized in fission yeast and recently shown to be required for H3K9me3 maintenance in human fibroblasts, but its function during development remains unknown. Here, we show that ERH is required for proper segregation of the inner cell mass and trophectoderm cell lineages during mouse development by repressing totipotent and alternative lineage programs. During human embryonic stem cell (hESC) differentiation into germ layer lineages, ERH is crucial for silencing naïve and pluripotency genes, transposable elements, and alternative lineage genes. Strikingly, ERH depletion in somatic cells reverts the H3K9me3 landscape to an hESC state and enables naïve and pluripotency gene and transposable element activation during iPSC reprogramming. Our findings reveal a role for ERH in initiation and maintenance of developmentally established gene repression.
Collapse
|
8
|
Subramani PG, Fraszczak J, Helness A, Estall JL, Möröy T, Di Noia JM. Conserved role of hnRNPL in alternative splicing of epigenetic modifiers enables B cell activation. EMBO Rep 2024; 25:2662-2697. [PMID: 38744970 PMCID: PMC11169469 DOI: 10.1038/s44319-024-00152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
The multifunctional RNA-binding protein hnRNPL is implicated in antibody class switching but its broader function in B cells is unknown. Here, we show that hnRNPL is essential for B cell activation, germinal center formation, and antibody responses. Upon activation, hnRNPL-deficient B cells show proliferation defects and increased apoptosis. Comparative analysis of RNA-seq data from activated B cells and another eight hnRNPL-depleted cell types reveals common effects on MYC and E2F transcriptional programs required for proliferation. Notably, while individual gene expression changes are cell type specific, several alternative splicing events affecting histone modifiers like KDM6A and SIRT1, are conserved across cell types. Moreover, hnRNPL-deficient B cells show global changes in H3K27me3 and H3K9ac. Epigenetic dysregulation after hnRNPL loss could underlie differential gene expression and upregulation of lncRNAs, and explain common and cell type-specific phenotypes, such as dysfunctional mitochondria and ROS overproduction in mouse B cells. Thus, hnRNPL is essential for the resting-to-activated B cell transition by regulating transcriptional programs and metabolism, at least in part through the alternative splicing of several histone modifiers.
Collapse
Affiliation(s)
- Poorani Ganesh Subramani
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
| | - Jennifer Fraszczak
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Anne Helness
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Department of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900 Boul Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada.
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Department of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900 Boul Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
9
|
Choudalakis M, Bashtrykov P, Jeltsch A. RepEnTools: an automated repeat enrichment analysis package for ChIP-seq data reveals hUHRF1 Tandem-Tudor domain enrichment in young repeats. Mob DNA 2024; 15:6. [PMID: 38570859 PMCID: PMC10988844 DOI: 10.1186/s13100-024-00315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Repeat elements (REs) play important roles for cell function in health and disease. However, RE enrichment analysis in short-read high-throughput sequencing (HTS) data, such as ChIP-seq, is a challenging task. RESULTS Here, we present RepEnTools, a software package for genome-wide RE enrichment analysis of ChIP-seq and similar chromatin pulldown experiments. Our analysis package bundles together various software with carefully chosen and validated settings to provide a complete solution for RE analysis, starting from raw input files to tabular and graphical outputs. RepEnTools implementations are easily accessible even with minimal IT skills (Galaxy/UNIX). To demonstrate the performance of RepEnTools, we analysed chromatin pulldown data by the human UHRF1 TTD protein domain and discovered enrichment of TTD binding on young primate and hominid specific polymorphic repeats (SVA, L1PA1/L1HS) overlapping known enhancers and decorated with H3K4me1-K9me2/3 modifications. We corroborated these new bioinformatic findings with experimental data by qPCR assays using newly developed primate and hominid specific qPCR assays which complement similar research tools. Finally, we analysed mouse UHRF1 ChIP-seq data with RepEnTools and showed that the endogenous mUHRF1 protein colocalizes with H3K4me1-H3K9me3 on promoters of REs which were silenced by UHRF1. These new data suggest a functional role for UHRF1 in silencing of REs that is mediated by TTD binding to the H3K4me1-K9me3 double mark and conserved in two mammalian species. CONCLUSIONS RepEnTools improves the previously available programmes for RE enrichment analysis in chromatin pulldown studies by leveraging new tools, enhancing accessibility and adding some key functions. RepEnTools can analyse RE enrichment rapidly, efficiently, and accurately, providing the community with an up-to-date, reliable and accessible tool for this important type of analysis.
Collapse
Affiliation(s)
- Michel Choudalakis
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
10
|
Muhammad A, Sarkadi Z, van Emden T, Mazumder A, Capella M, Fekete G, Sreechakram VNS, Al-Sady B, Papp B, Barrales RR, Braun S. A systematic quantitative approach comprehensively defines domain-specific functional pathways linked to Schizosaccharomyces pombe heterochromatin regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579970. [PMID: 38405799 PMCID: PMC10888830 DOI: 10.1101/2024.02.13.579970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Heterochromatin plays a critical role in regulating gene expression and maintaining genome integrity. While structural and enzymatic components have been linked to heterochromatin establishment, a comprehensive view of the underlying pathways at diverse heterochromatin domains remains elusive. Here, we developed a systematic approach to identify factors involved in heterochromatin silencing at pericentromeres, subtelomeres, and the silent mating type locus in Schizosaccharomyces pombe. Using quantitative measures, iterative genetic screening, and domain-specific heterochromatin reporters, we identified 369 mutants with different degrees of reduced or enhanced silencing. As expected, mutations in the core heterochromatin machinery globally decreased silencing. However, most other mutants exhibited distinct qualitative and quantitative profiles that indicate domain-specific functions. For example, decreased mating type silencing was linked to mutations in heterochromatin maintenance genes, while compromised subtelomere silencing was associated with metabolic pathways. Furthermore, similar phenotypic profiles revealed shared functions for subunits within complexes. We also discovered that the uncharacterized protein Dhm2 plays a crucial role in maintaining constitutive and facultative heterochromatin, while its absence caused phenotypes akin to DNA replication-deficient mutants. Collectively, our systematic approach unveiled a landscape of domain-specific heterochromatin regulators controlling distinct states and identified Dhm2 as a previously unknown factor linked to heterochromatin inheritance and replication fidelity.
Collapse
Affiliation(s)
- Abubakar Muhammad
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Zsuzsa Sarkadi
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Agnisrota Mazumder
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Matias Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Present address: Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Vishnu N Suma Sreechakram
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Bassem Al-Sady
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Present address: Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Moyers BA, Partridge EC, Mackiewicz M, Betti MJ, Darji R, Meadows SK, Newberry KM, Brandsmeier LA, Wold BJ, Mendenhall EM, Myers RM. Characterization of human transcription factor function and patterns of gene regulation in HepG2 cells. Genome Res 2023; 33:1879-1892. [PMID: 37852782 PMCID: PMC10760452 DOI: 10.1101/gr.278205.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Transcription factors (TFs) are trans-acting proteins that bind cis-regulatory elements (CREs) in DNA to control gene expression. Here, we analyzed the genomic localization profiles of 529 sequence-specific TFs and 151 cofactors and chromatin regulators in the human cancer cell line HepG2, for a total of 680 broadly termed DNA-associated proteins (DAPs). We used this deep collection to model each TF's impact on gene expression, and identified a cohort of 26 candidate transcriptional repressors. We examine high occupancy target (HOT) sites in the context of three-dimensional genome organization and show biased motif placement in distal-promoter connections involving HOT sites. We also found a substantial number of closed chromatin regions with multiple DAPs bound, and explored their properties, finding that a MAFF/MAFK TF pair correlates with transcriptional repression. Altogether, these analyses provide novel insights into the regulatory logic of the human cell line HepG2 genome and show the usefulness of large genomic analyses for elucidation of individual TF functions.
Collapse
Affiliation(s)
- Belle A Moyers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Michael J Betti
- Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Roshan Darji
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | | | - Barbara J Wold
- Merkin Institute for Translational Research, California Institute of Technology, Pasadena, California 91125, USA
| | - Eric M Mendenhall
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA;
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA;
| |
Collapse
|
12
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
13
|
Kuwayama N, Kujirai T, Kishi Y, Hirano R, Echigoya K, Fang L, Watanabe S, Nakao M, Suzuki Y, Ishiguro KI, Kurumizaka H, Gotoh Y. HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation. Nat Commun 2023; 14:6420. [PMID: 37828010 PMCID: PMC10570362 DOI: 10.1038/s41467-023-42094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of factors that regulate chromatin condensation is important for understanding of gene regulation. High-mobility group AT-hook (HMGA) proteins 1 and 2 are abundant nonhistone chromatin proteins that play a role in many biological processes including tissue stem-progenitor cell regulation, but the nature of their protein function remains unclear. Here we show that HMGA2 mediates direct condensation of polynucleosomes and forms droplets with nucleosomes. Consistently, most endogenous HMGA2 localized to transposase 5- and DNase I-inaccessible chromatin regions, and its binding was mostly associated with gene repression, in mouse embryonic neocortical cells. The AT-hook 1 domain was necessary for chromatin condensation by HMGA2 in vitro and in cellulo, and an HMGA2 mutant lacking this domain was defective in the ability to maintain neuronal progenitors in vivo. Intrinsically disordered regions of other proteins could substitute for the AT-hook 1 domain in promoting this biological function of HMGA2. Taken together, HMGA2 may regulate neural cell fate by its chromatin condensation activity.
Collapse
Grants
- This research was supported by AMED-CREST and AMED-PRIME of the Japan Agency for Medical Research and Development (JP22gm1310004, JP22gm6110021), SECOM Science and Technology Foundation SECOM Science and Technology Foundation (for Y.K.), Platform Project for Supporting Drug Discovery and Life Science Research from AMED JP21am0101076 and (for H.K.), Research Support Project for Life Science and Drug Discovery from AMED JP22ama121009 (for H.K.), Japan Science and Technology Agency ERATO JPMJER1901 (for H.K.) and by KAKENHI grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science (JP21J14115 for N.K.; JP22K15033 for T.K.;16H06279, 20H03179, 21H00242 and 22H04687 for Y.K.; 20K07589 for S.W.; JP20H00449, JP18H05534 for H.K.; JP22H00431, JP16H06279 and JP22H04925 for Y.G.)
Collapse
Affiliation(s)
- Naohiro Kuwayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yusuke Kishi
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Rina Hirano
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Kenta Echigoya
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Lingyan Fang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sugiko Watanabe
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Mitsuyoshi Nakao
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Kei-Ichiro Ishiguro
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
14
|
Bell O, Burton A, Dean C, Gasser SM, Torres-Padilla ME. Heterochromatin definition and function. Nat Rev Mol Cell Biol 2023; 24:691-694. [PMID: 37069331 DOI: 10.1038/s41580-023-00599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Affiliation(s)
- Oliver Bell
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Adam Burton
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany.
| | | | - Susan M Gasser
- L'Institut Suisse de Recherche Expérimentale sur le Cancer (ISREC) Foundation, Lausanne, Switzerland.
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
15
|
Cherney RE, Eberhard QE, Giri G, Mills CA, Porrello A, Zhang Z, White D, Trotman JB, Herring LE, Dominguez D, Calabrese JM. SAFB associates with nascent RNAs and can promote gene expression in mouse embryonic stem cells. RNA (NEW YORK, N.Y.) 2023; 29:1535-1556. [PMID: 37468167 PMCID: PMC10578485 DOI: 10.1261/rna.079569.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Scaffold attachment factor B (SAFB) is a conserved RNA-binding protein that is essential for early mammalian development. However, the functions of SAFB in mouse embryonic stem cells (ESCs) have not been characterized. Using RNA immunoprecipitation followed by RNA-seq (RIP-seq), we examined the RNAs associated with SAFB in wild-type and SAFB/SAFB2 double-knockout ESCs. SAFB predominantly associated with introns of protein-coding genes through purine-rich motifs. The transcript most enriched in SAFB association was the lncRNA Malat1, which also contains a purine-rich region in its 5' end. Knockout of SAFB/SAFB2 led to differential expression of approximately 1000 genes associated with multiple biological processes, including apoptosis, cell division, and cell migration. Knockout of SAFB/SAFB2 also led to splicing changes in a set of genes that were largely distinct from those that exhibited changes in expression level. The spliced and nascent transcripts of many genes whose expression levels were positively regulated by SAFB also associated with high levels of SAFB, implying that SAFB binding promotes their expression. Reintroduction of SAFB into double-knockout cells restored gene expression toward wild-type levels, an effect again observable at the level of spliced and nascent transcripts. Proteomics analysis revealed a significant enrichment of nuclear speckle-associated and RS domain-containing proteins among SAFB interactors. Neither Xist nor Polycomb functions were dramatically altered in SAFB/2 knockout ESCs. Our findings suggest that among other potential functions in ESCs, SAFB promotes the expression of certain genes through its ability to bind nascent RNA.
Collapse
Affiliation(s)
- Rachel E Cherney
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Quinn E Eberhard
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Gilbert Giri
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christine A Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Alessandro Porrello
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhiyue Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - David White
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jackson B Trotman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
16
|
Cousu C, Mulot E, De Smet A, Formichetti S, Lecoeuche D, Ren J, Muegge K, Boulard M, Weill JC, Reynaud CA, Storck S. Germinal center output is sustained by HELLS-dependent DNA-methylation-maintenance in B cells. Nat Commun 2023; 14:5695. [PMID: 37709749 PMCID: PMC10502085 DOI: 10.1038/s41467-023-41317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
HELLS/LSH (Helicase, Lymphoid Specific) is a SNF2-like chromatin remodelling protein involved in DNA methylation. Its loss-of-function in humans causes humoral immunodeficiency, called ICF4 syndrome (Immunodeficiency, Centromeric Instability, Facial anomalies). Here we show by our newly generated B-cell-specific Hells conditional knockout mouse model that HELLS plays a pivotal role in T-dependent B-cell responses. HELLS deficiency induces accelerated decay of germinal center (GC) B cells and impairs the generation of high affinity memory B cells and circulating antibodies. Mutant GC B cells undergo dramatic DNA hypomethylation and massive de-repression of evolutionary recent retrotransposons, which surprisingly does not directly affect their survival. Instead, they prematurely upregulate either memory B cell markers or the transcription factor ATF4, which is driving an mTORC1-dependent metabolic program typical of plasma cells. Treatment of wild type mice with a DNMT1-specific inhibitor phenocopies the accelerated kinetics, thus pointing towards DNA-methylation maintenance by HELLS being a crucial mechanism to fine-tune the GC transcriptional program and enable long-lasting humoral immunity.
Collapse
Affiliation(s)
- Clara Cousu
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Eléonore Mulot
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Annie De Smet
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sara Formichetti
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
- Joint PhD degree program, European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Damiana Lecoeuche
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Jianke Ren
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
- NHC Key Lab of Reproduction Regulation,Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
| | - Jean-Claude Weill
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sébastien Storck
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France.
| |
Collapse
|
17
|
Fukuda K, Shimi T, Shimura C, Ono T, Suzuki T, Onoue K, Okayama S, Miura H, Hiratani I, Ikeda K, Okada Y, Dohmae N, Yonemura S, Inoue A, Kimura H, Shinkai Y. Epigenetic plasticity safeguards heterochromatin configuration in mammals. Nucleic Acids Res 2023; 51:6190-6207. [PMID: 37178005 PMCID: PMC10325917 DOI: 10.1093/nar/gkad387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Heterochromatin is a key architectural feature of eukaryotic chromosomes critical for cell type-specific gene expression and genome stability. In the mammalian nucleus, heterochromatin segregates from transcriptionally active genomic regions and exists in large, condensed, and inactive nuclear compartments. However, the mechanisms underlying the spatial organization of heterochromatin need to be better understood. Histone H3 lysine 9 trimethylation (H3K9me3) and lysine 27 trimethylation (H3K27me3) are two major epigenetic modifications that enrich constitutive and facultative heterochromatin, respectively. Mammals have at least five H3K9 methyltransferases (SUV39H1, SUV39H2, SETDB1, G9a and GLP) and two H3K27 methyltransferases (EZH1 and EZH2). In this study, we addressed the role of H3K9 and H3K27 methylation in heterochromatin organization using a combination of mutant cells for five H3K9 methyltransferases and an EZH1/2 dual inhibitor, DS3201. We showed that H3K27me3, which is normally segregated from H3K9me3, was redistributed to regions targeted by H3K9me3 after the loss of H3K9 methylation and that the loss of both H3K9 and H3K27 methylation resulted in impaired condensation and spatial organization of heterochromatin. Our data demonstrate that the H3K27me3 pathway safeguards heterochromatin organization after the loss of H3K9 methylation in mammalian cells.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
- School of Biosciences, The University of Melbourne, Royal Parade, 3010 Parkville, Australia
| | - Takeshi Shimi
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
| | - Takao Ono
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Satoko Okayama
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Kazuho Ikeda
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo113-0033, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka565-0874, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima770-8503, Japan
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical Sciences, Yokohama230-0045, Japan
- Tokyo Metropolitan University, Hachioji192-0397, Japan
| | - Hiroshi Kimura
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama226-8501, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
| |
Collapse
|
18
|
Cherney RE, Mills CA, Herring LE, Braceros AK, Calabrese JM. A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB. Biol Open 2023; 12:bio059955. [PMID: 37283223 PMCID: PMC10259849 DOI: 10.1242/bio.059955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.
Collapse
Affiliation(s)
- Rachel E. Cherney
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Christine A. Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Proteomics Core Facility, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Proteomics Core Facility, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Aki K. Braceros
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - J. Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| |
Collapse
|
19
|
McCarthy RL, Zhang J, Zaret KS. Diverse heterochromatin states restricting cell identity and reprogramming. Trends Biochem Sci 2023; 48:513-526. [PMID: 36990958 PMCID: PMC10182259 DOI: 10.1016/j.tibs.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Heterochromatin is defined as a chromosomal domain harboring repressive H3K9me2/3 or H3K27me3 histone modifications and relevant factors that physically compact the chromatin. Heterochromatin can restrict where transcription factors bind, providing a barrier to gene activation and changes in cell identity. While heterochromatin thus helps maintain cell differentiation, it presents a barrier to overcome during efforts to reprogram cells for biomedical purposes. Recent findings have revealed complexity in the composition and regulation of heterochromatin, and shown that transiently disrupting the machinery of heterochromatin can enhance reprogramming. Here, we discuss how heterochromatin is established and maintained during development, and how our growing understanding of the mechanisms regulating H3K9me3 heterochromatin can be leveraged to improve our ability to direct changes in cell identity.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingchao Zhang
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Grewal SIS. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 2023; 83:1767-1785. [PMID: 37207657 PMCID: PMC10309086 DOI: 10.1016/j.molcel.2023.04.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Trier Maansson C, Meldgaard P, Stougaard M, Nielsen AL, Sorensen BS. Cell-free chromatin immunoprecipitation can determine tumor gene expression in lung cancer patients. Mol Oncol 2023; 17:722-736. [PMID: 36825535 PMCID: PMC10158780 DOI: 10.1002/1878-0261.13394] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Cell-free DNA (cfDNA) in blood plasma can be bound to nucleosomes that contain post-translational modifications representing the epigenetic profile of the cell of origin. This includes histone H3 lysine 36 trimethylation (H3K36me3), a marker of active transcription. We hypothesised that cell-free chromatin immunoprecipitation (cfChIP) of H3K36me3-modified nucleosomes present in blood plasma can delineate tumour gene expression levels. H3K36me3 cfChIP followed by targeted NGS (cfChIP-seq) was performed on blood plasma samples from non-small-cell lung cancer (NSCLC) patients (NSCLC, n = 8), small-cell lung cancer (SCLC) patients (SCLC, n = 4) and healthy controls (n = 4). H3K36me3 cfChIP-seq demonstrated increased enrichment of mutated alleles compared with normal alleles in plasma from patients with known somatic cancer mutations. Additionally, genes identified to be differentially expressed in SCLC and NSCLC tumours had concordant H3K36me3 cfChIP enrichment profiles in NSCLC (sensitivity = 0.80) and SCLC blood plasma (sensitivity = 0.86). Findings here expand the utility of cfDNA in liquid biopsies to characterise treatment resistance, cancer subtyping and disease progression.
Collapse
Affiliation(s)
- Christoffer Trier Maansson
- Department of Clinical Biochemistry, Faculty of Health, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
- Department of Biomedicine, Aarhus University, Denmark
| | - Peter Meldgaard
- Department of Clinical Biochemistry, Faculty of Health, Aarhus University Hospital, Denmark
- Department of Oncology, Aarhus University Hospital, Denmark
| | - Magnus Stougaard
- Department of Clinical Medicine, Aarhus University, Denmark
- Department of Pathology, Aarhus University Hospital, Denmark
| | | | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Faculty of Health, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
22
|
Cherney RE, Mills CA, Herring LE, Braceros AK, Calabrese JM. A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535391. [PMID: 37066147 PMCID: PMC10103960 DOI: 10.1101/2023.04.03.535391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.
Collapse
|
23
|
Shi P, Murphy MR, Aparicio AO, Kesner JS, Fang Z, Chen Z, Trehan A, Guo Y, Wu X. Collateral activity of the CRISPR/RfxCas13d system in human cells. Commun Biol 2023; 6:334. [PMID: 36977923 PMCID: PMC10049998 DOI: 10.1038/s42003-023-04708-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
CRISPR/Cas13 systems are increasingly used for programmable targeting of RNAs. While Cas13 nucleases are capable of degrading both target RNAs and bystander RNAs in vitro and in bacteria, initial studies fail to detect collateral degradation of non-target RNAs in eukaryotic cells. Here we show that RfxCas13d, also known as CasRx, a widely used Cas13 system, can cause collateral transcriptome destruction when targeting abundant reporter RNA and endogenous RNAs, resulting in proliferation defect in target cells. While these results call for caution of using RfxCas13d for targeted RNA knockdown, we demonstrated that the collateral activity can be harnessed for selective depletion of a specific cell population defined by a marker RNA in an in vitro setting.
Collapse
Affiliation(s)
- Peiguo Shi
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Michael R Murphy
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexis O Aparicio
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jordan S Kesner
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhou Fang
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ziheng Chen
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aditi Trehan
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yang Guo
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xuebing Wu
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
24
|
Al Adhami H, Vallet J, Schaal C, Schumacher P, Bardet AF, Dumas M, Chicher J, Hammann P, Daujat S, Weber M. Systematic identification of factors involved in the silencing of germline genes in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:3130-3149. [PMID: 36772830 PMCID: PMC10123117 DOI: 10.1093/nar/gkad071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
In mammals, many germline genes are epigenetically repressed to prevent their illegitimate expression in somatic cells. To advance our understanding of the mechanisms restricting the expression of germline genes, we analyzed their chromatin signature and performed a CRISPR-Cas9 knock-out screen for genes involved in germline gene repression using a Dazl-GFP reporter system in mouse embryonic stem cells (mESCs). We show that the repression of germline genes mainly depends on the polycomb complex PRC1.6 and DNA methylation, which function additively in mESCs. Furthermore, we validated novel genes involved in the repression of germline genes and characterized three of them: Usp7, Shfm1 (also known as Sem1) and Erh. Inactivation of Usp7, Shfm1 or Erh led to the upregulation of germline genes, as well as retrotransposons for Shfm1, in mESCs. Mechanistically, USP7 interacts with PRC1.6 components, promotes PRC1.6 stability and presence at germline genes, and facilitates DNA methylation deposition at germline gene promoters for long term repression. Our study provides a global view of the mechanisms and novel factors required for silencing germline genes in embryonic stem cells.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Celia Schaal
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Paul Schumacher
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.,Karlsruhe Institute of Technology (KIT), IAB, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Sylvain Daujat
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| |
Collapse
|
25
|
Graille M. ERH: a plug-and-play protein important for gene silencing and cell cycle progression. FEBS J 2023; 290:688-691. [PMID: 36334004 DOI: 10.1111/febs.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
In metazoans, most proteins have pleiotropic cellular functions and have the ability to interact with several factors to accomplish these different functions. This is the case of eukaryotic ERH proteins, a family of homodimeric proteins involved in DNA replication and cell cycle control as well as in gene silencing by contributing either to the biogenesis of small interference RNAs (miRNAs, piRNAs) or to the recruitment of RNA decay machineries. Very recently, several crystal structures describing complexes formed by eukaryotic ERH proteins and several small peptides from various partners have highlighted the existence of different binding sites on the surface of ERH proteins. In this issue of The FEBS Journal, Wang et al. present the crystal structure of the complex formed between the human ERH protein and a short peptide of the CIZ1 protein, one of its partners. Altogether, this information will be particularly important for future studies aimed at dissecting the different biological functions governed by this family of highly conserved proteins. Comment on: https://doi.org/10.1111/febs.16611.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
26
|
The influence of high-order chromatin state in the regulation of stem cell fate. Biochem Soc Trans 2022; 50:1809-1822. [DOI: 10.1042/bst20220763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genomic DNA is hierarchically compacted by histones into chromatin, which is initially assembled by the nucleosome and further folded into orderly and flexible structures that include chromatin fiber, chromatin looping, topologically associated domains (TADs), chromosome compartments, and chromosome territories. These distinct structures and motifs build the three-dimensional (3D) genome architecture, which precisely controls spatial and temporal gene expression in the nucleus. Given that each type of cell is characterized by its own unique gene expression profile, the state of high-order chromatin plays an essential role in the cell fate decision. Accumulating evidence suggests that the plasticity of high-order chromatin is closely associated with stem cell fate. In this review, we summarize the biological roles of the state of high-order chromatin in embryogenesis, stem cell differentiation, the maintenance of stem cell identity, and somatic cell reprogramming. In addition, we highlight the roles of epigenetic factors and pioneer transcription factors (TFs) involved in regulating the state of high-order chromatin during the determination of stem cell fate and discuss how H3K9me3-heterochromatin restricts stem cell fate. In summary, we review the most recent progress in research on the regulatory functions of high-order chromatin dynamics in the determination and maintenance of stem cell fate.
Collapse
|
27
|
Destefanis F, Manara V, Santarelli S, Zola S, Brambilla M, Viola G, Maragno P, Signoria I, Viero G, Pasini ME, Penzo M, Bellosta P. Reduction of nucleolar NOC1 leads to the accumulation of pre-rRNAs and induces Xrp1, affecting growth and resulting in cell competition. J Cell Sci 2022; 135:285861. [PMID: 36314272 PMCID: PMC9789402 DOI: 10.1242/jcs.260110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022] Open
Abstract
NOC1 is a nucleolar protein necessary in yeast for both transport and maturation of ribosomal subunits. Here, we show that Drosophila NOC1 (annotated CG7839) is necessary for rRNAs maturation and for a correct animal development. Its ubiquitous downregulation results in a dramatic decrease in polysome level and of protein synthesis. NOC1 expression in multiple organs, such as the prothoracic gland and the fat body, is necessary for their proper functioning. Reduction of NOC1 in epithelial cells from the imaginal discs results in clones that die by apoptosis, an event that is partially rescued in a Minute/+ background, suggesting that reduction of NOC1 induces the cells to become less fit and to acquire a 'loser' state. NOC1 downregulation activates the pro-apoptotic Eiger-JNK pathway and leads to an increase of Xrp1, which results in the upregulation of DILP8, a member of the insulin/relaxin-like family known to coordinate organ growth with animal development. Our data underline NOC1 as an essential gene in ribosome biogenesis and highlight its novel functions in the control of growth and cell competition.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Sheri Zola
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Marco Brambilla
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Giacomo Viola
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Paola Maragno
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Ilaria Signoria
- Institute of Biophysics, CNR, Via Sommarive 18, 38123 Trento, Italy
| | - Gabriella Viero
- Institute of Biophysics, CNR, Via Sommarive 18, 38123 Trento, Italy
| | - Maria Enrica Pasini
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy,Center for Applied Biomedical Research, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy,Department of Medicine, NYU Langone School of Medicine, 550 First Avenue, New York, 10016 NY, USA,Author for correspondence ()
| |
Collapse
|
28
|
Mansisidor AR, Risca VI. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 2022; 13:236-276. [PMID: 36404679 PMCID: PMC9683059 DOI: 10.1080/19491034.2022.2143106] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022] Open
Abstract
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
Collapse
Affiliation(s)
- Andrés R. Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
29
|
Shapiro-Kulnane L, Selengut M, Salz HK. Safeguarding Drosophila female germ cell identity depends on an H3K9me3 mini domain guided by a ZAD zinc finger protein. PLoS Genet 2022; 18:e1010568. [PMID: 36548300 PMCID: PMC9822104 DOI: 10.1371/journal.pgen.1010568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
H3K9me3-based gene silencing is a conserved strategy for securing cell fate, but the mechanisms controlling lineage-specific installation of this epigenetic mark remain unclear. In Drosophila, H3K9 methylation plays an essential role in securing female germ cell fate by silencing lineage inappropriate phf7 transcription. Thus, phf7 regulation in the female germline provides a powerful system to dissect the molecular mechanism underlying H3K9me3 deposition onto protein coding genes. Here we used genetic studies to identify the essential cis-regulatory elements, finding that the sequences required for H3K9me3 deposition are conserved across Drosophila species. Transposable elements are also silenced by an H3K9me3-mediated mechanism. But our finding that phf7 regulation does not require the dedicated piRNA pathway components, piwi, aub, rhino, panx, and nxf2, indicates that the mechanisms of H3K9me3 recruitment are distinct. Lastly, we discovered that an uncharacterized member of the zinc finger associated domain (ZAD) containing C2H2 zinc finger protein family, IDENTITY CRISIS (IDC; CG4936), is necessary for H3K9me3 deposition onto phf7. Loss of idc in germ cells interferes with phf7 transcriptional regulation and H3K9me3 deposition, resulting in ectopic PHF7 protein expression. IDC's role is likely to be direct, as it localizes to a conserved domain within the phf7 gene. Collectively, our findings support a model in which IDC guides sequence-specific establishment of an H3K9me3 mini domain, thereby preventing accidental female-to-male programming.
Collapse
Affiliation(s)
- Laura Shapiro-Kulnane
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Micah Selengut
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Helen K. Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
30
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 332] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
31
|
Endogenous Retroviral Sequences Behave as Putative Enhancers Controlling Gene Expression through HP1-Regulated Long-Range Chromatin Interactions. Cells 2022; 11:cells11152392. [PMID: 35954237 PMCID: PMC9368123 DOI: 10.3390/cells11152392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
About half of the mammalian genome is constituted of repeated elements, among which endogenous retroviruses (ERVs) are known to influence gene expression and cancer development. The HP1 (Heterochromatin Protein 1) proteins are known to be essential for heterochromatin establishment and function and its loss in hepatocytes leads to the reactivation of specific ERVs and to liver tumorigenesis. Here, by studying two ERVs located upstream of genes upregulated upon loss of HP1, Mbd1 and Trim24, we show that these HP1-dependent ERVs behave as either alternative promoters or as putative enhancers forming a loop with promoters of endogenous genes depending on the genomic context and HP1 expression level. These ERVs are characterised by a specific HP1-independent enrichment in heterochromatin-associated marks H3K9me3 and H4K20me3 as well as in the enhancer-specific mark H3K4me1, a combination that might represent a bookmark of putative ERV-derived enhancers. These ERVs are further enriched in a HP1-dependent manner in H3K27me3, suggesting a critical role of this mark together with HP1 in the silencing of the ERVs, as well as for the repression of the associated genes. Altogether, these results lead to the identification of a new regulatory hub involving the HP1-dependent formation of a physical loop between specific ERVs and endogenous genes.
Collapse
|
32
|
Bernard LD, Dubois A, Heurtier V, Fischer V, Gonzalez I, Chervova A, Tachtsidi A, Gil N, Owens N, Bates L, Vandormael-Pournin S, Silva JCR, Ulitsky I, Cohen-Tannoudji M, Navarro P. OCT4 activates a Suv39h1-repressive antisense lncRNA to couple histone H3 Lysine 9 methylation to pluripotency. Nucleic Acids Res 2022; 50:7367-7379. [PMID: 35762231 PMCID: PMC9303268 DOI: 10.1093/nar/gkac550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Histone H3 Lysine 9 (H3K9) methylation, a characteristic mark of heterochromatin, is progressively implemented during development to contribute to cell fate restriction as differentiation proceeds. Accordingly, in undifferentiated and pluripotent mouse Embryonic Stem (ES) cells the global levels of H3K9 methylation are rather low and increase only upon differentiation. How global H3K9 methylation levels are coupled with the loss of pluripotency remains largely unknown. Here, we identify SUV39H1, a major H3K9 di- and tri-methylase, as an indirect target of the pluripotency network of Transcription Factors (TFs). We find that pluripotency TFs, principally OCT4, activate the expression of Suv39h1as, an antisense long non-coding RNA to Suv39h1. In turn, Suv39h1as downregulates Suv39h1 transcription in cis via a mechanism involving the modulation of the chromatin status of the locus. The targeted deletion of the Suv39h1as promoter region triggers increased SUV39H1 expression and H3K9me2 and H3K9me3 levels, affecting all heterochromatic regions, particularly peri-centromeric major satellites and retrotransposons. This increase in heterochromatinization efficiency leads to accelerated and more efficient commitment into differentiation. We report, therefore, a simple genetic circuitry coupling the genetic control of pluripotency with the global efficiency of H3K9 methylation associated with a major cell fate restriction, the irreversible loss of pluripotency.
Collapse
Affiliation(s)
- Laure D Bernard
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Agnès Dubois
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Victor Heurtier
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Véronique Fischer
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Inma Gonzalez
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Alexandra Tachtsidi
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Noa Gil
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nick Owens
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Lawrence E Bates
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - José C R Silva
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou510005, Guangdong Province, China
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Pablo Navarro
- To whom correspondence should be addressed. Tel: +33 145688285;
| |
Collapse
|
33
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
34
|
Zhang S, Xu J, Cao H, Jiang M, Xiong J. KB-68A7.1 Inhibits Hepatocellular Carcinoma Development Through Binding to NSD1 and Suppressing Wnt/β-Catenin Signalling. Front Oncol 2022; 11:808291. [PMID: 35127520 PMCID: PMC8810504 DOI: 10.3389/fonc.2021.808291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies with extremely poor prognosis. Therefore, revealing the critical molecules involved in HCC progression and prognosis is urgently needed. In this study, through combining public dataset and our cohort, we found a novel prognosis-related long non-coding RNA KB-68A7.1 in HCC. KB-68A7.1 was lowly expressed in HCC, whose low expression was associated with large tumour size, aggressive clinical characteristic, and poor survival. Gain- and loss-of-function assays demonstrated that KB-68A7.1 restricted HCC cellular proliferation, induced HCC cellular apoptosis, and suppressed HCC cellular migration and invasion in vitro. Xenograft assays demonstrated that KB-68A7.1 suppressed HCC tumour growth and metastasis in vivo. These functional assays suggested KB-68A7.1 as a tumour suppressor in HCC. Histone methyltransferase nuclear receptor binding SET domain-containing protein 1 (NSD1) was found to bind to KB-68A7.1. KB-68A7.1 was mainly distributed in the cytoplasm. The binding of KB-68A7.1 to NSD1 sequestrated NSD1 in the cytoplasm, leading to the reduction in nuclear NSD1 level. Through decreasing nuclear NSD1 level, KB-68A7.1 reduced di-methylation of histone H3 at lysine 36 (H3K36me2) and increased tri-methylation of histone H3 at lysine 27 (H3K27me3) at the promoter of WNT10B, a target of NSD1. Thus, KB-68A7.1 repressed WNT10B transcription. The expression of WNT10B was negatively correlated with that of KB-68A7.1 in HCC tissues. Through repressing WNT10B, KB-68A7.1 further repressed Wnt/β-catenin signalling. Functional rescue assays showed that overexpression of WNT10B reversed the tumour-suppressive roles of KB-68A7.1, whereas the oncogenic roles of KB-68A7.1 depletion were abolished by Wnt/β-catenin signalling inhibitor. Overall, this study identified KB-68A7.1 as a lowly expressed and prognosis-related lncRNA in HCC, which suppressed HCC progression through binding to NSD1 and repressing Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Shuhua Zhang
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianqun Xu
- Department of Respiratory Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jianqun Xu,
| | - Huan Cao
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Jiang
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Rizavi HS, Chase KA, Liu C, Gavin H, Rosen C, Xia C, Guidotti A, Sharma RP. Differential H3K9me2 heterochromatin levels and concordant mRNA expression in postmortem brain tissue of individuals with schizophrenia, bipolar, and controls. Front Psychiatry 2022; 13:1006109. [PMID: 36386965 PMCID: PMC9644155 DOI: 10.3389/fpsyt.2022.1006109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
The existence of repressive and durable chromatin assemblies along gene promoters or networks, especially in the brain, is of theoretical and therapeutic relevance in a subset of individuals diagnosed with schizophrenia who experience a chronic, persistent, and treatment-resistant trajectory. We used chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to generate an epigenomic map that includes differential sites occupied by di-methylated lysine 9 of histone 3 (H3K9me2), a repressive modification that is yet unexplored in human postmortem brain tissue. We have discovered over 150 significantly differential promoter sites in the postmortem prefrontal cortex tissue of individuals diagnosed with schizophrenia (n = 15) when compared to controls (n = 15). Potentially dysregulated gene categories include postsynaptic proteins, processing enzymes (for proproteins, lipids, and oxidative stress), cadherin family genes, the complement system, and peptide hormones. Ten genes with significantly increased or decreased H3K9me2 promoter occupation were selected through statistical analysis, function, or previous GWAS association, and Quantitative RT-PCR (qRT-PCR) was performed on an extended sample of postmortem brain tissue, adding an additional 17 controls, 7 individuals with schizophrenia, and 19 individuals with bipolar samples (n = 32 control, 22 schizophrenia, 19 bipolar). This approach revealed that mRNA expression levels correlated with chromatin modification levels in eight of 10 selected genes, and mRNA expression in the total sample could be predicted by the occupancy of H3K9me2. Utilization of this method and replication in a larger sample open a pathway to durable and restrictive epigenomic assemblies whose accumulation across the lifespan of individuals diagnosed with schizophrenia may explain treatment resistance, and advance therapeutic options.
Collapse
Affiliation(s)
- Hooriyah S Rizavi
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Kayla A Chase
- Department of Biochemistry and Molecular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Chunyu Liu
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States.,Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hannah Gavin
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cherise Rosen
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cuihua Xia
- School of Life Sciences, Central South University, Changsha, China
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Rajiv P Sharma
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
36
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System. Results Probl Cell Differ 2022; 70:419-442. [PMID: 36348117 DOI: 10.1007/978-3-031-06573-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurons and glial cells in the nervous system exhibit different gene expression programs for neural development and function. These programs are controlled by the epigenetic regulatory layers in the nucleus. The nucleus is a well-organized subcellular organelle that includes chromatin, the nuclear lamina, and nuclear bodies. These subnuclear components operate together as epigenetic regulators of neural development and function and are collectively called the nuclear architecture. In the nervous system, dynamic rearrangement of the nuclear architecture has been observed in each cell type, especially in neurons, allowing for their specialized functions, including learning and memory formation. Although the importance of nuclear architecture has been debated for decades, the paradigm has been changing rapidly, owing to the development of new technologies. Here, we reviewed the latest studies on nuclear geometry, nuclear bodies, and heterochromatin compartments, as well as summarized recent novel insights regarding radial positioning, chromatin condensation, and chromatin interaction between genes and cis-regulatory elements.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania, USA
| | - Takumi Takizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
37
|
Maruyama H, Nambu T, Mashimo C, Okinaga T, Takeyasu K. Single-Molecule/Cell Analyses Reveal Principles of Genome-Folding Mechanisms in the Three Domains of Life. Int J Mol Sci 2021; 22:13432. [PMID: 34948225 PMCID: PMC8707338 DOI: 10.3390/ijms222413432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Comparative structural/molecular biology by single-molecule analyses combined with single-cell dissection, mass spectroscopy, and biochemical reconstitution have been powerful tools for elucidating the mechanisms underlying genome DNA folding. All genomes in the three domains of life undergo stepwise folding from DNA to 30-40 nm fibers. Major protein players are histone (Eukarya and Archaea), Alba (Archaea), and HU (Bacteria) for fundamental structural units of the genome. In Euryarchaeota, a major archaeal phylum, either histone or HTa (the bacterial HU homolog) were found to wrap DNA. This finding divides archaea into two groups: those that use DNA-wrapping as the fundamental step in genome folding and those that do not. Archaeal transcription factor-like protein TrmBL2 has been suggested to be involved in genome folding and repression of horizontally acquired genes, similar to bacterial H-NS protein. Evolutionarily divergent SMC proteins contribute to the establishment of higher-order structures. Recent results are presented, including the use of Hi-C technology to reveal that archaeal SMC proteins are involved in higher-order genome folding, and the use of single-molecule tracking to reveal the detailed functions of bacterial and eukaryotic SMC proteins. Here, we highlight the similarities and differences in the DNA-folding mechanisms in the three domains of life.
Collapse
Affiliation(s)
- Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, Hirakata 573-1121, Japan; (T.N.); (C.M.); (T.O.)
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, Hirakata 573-1121, Japan; (T.N.); (C.M.); (T.O.)
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, Hirakata 573-1121, Japan; (T.N.); (C.M.); (T.O.)
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, Hirakata 573-1121, Japan; (T.N.); (C.M.); (T.O.)
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan;
- Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
| |
Collapse
|
38
|
Affiliation(s)
- Adam Burton
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377, München, Germany. .,Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|