1
|
Wei JR, Zhang B, Zhang Y, Chen WM, Zhang XP, Zeng TT, Li Y, Zhu YH, Guan XY, Li L. QSOX1 facilitates dormant esophageal cancer stem cells to evade immune elimination via PD-L1 upregulation and CD8 T cell exclusion. Proc Natl Acad Sci U S A 2024; 121:e2407506121. [PMID: 39432781 PMCID: PMC11536095 DOI: 10.1073/pnas.2407506121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Dormant cancer stem cells (DCSCs) exhibit characteristics of chemotherapy resistance and immune escape, and they are a crucial source of tumor recurrence and metastasis. However, the underlying mechanisms remain unrevealed. We demonstrate that enriched Gzmk+ CD8+ T cells within the niche of esophageal DCSCs restrict the outgrowth of tumor mass. Nonetheless, DCSCs can escape immune elimination by enhancing PD-L1 signaling, thereby maintaining immune equilibrium. Quiescent fibroblast-derived quiescin sulfhydryl oxidase 1 (QSOX1) promotes the expression of PD-L1 and its own expression in DCSCs by elevating the level of reactive oxygen species. Additionally, high QSOX1 in the dormant tumor niche contributes to the exclusion of CD8+ T cells. Conversely, blocking QSOX1 with Ebselen in combination with anti-PD-1 and chemotherapy can effectively eradicate residual DCSCs by reducing PD-L1 expression and promoting CD8+ T cell infiltration. Clinically, high expression of QSOX1 predicts a poor response to anti-PD-1 treatment in patients with esophageal cancer. Thus, our findings reveal a mechanism whereby QSOX1 promotes PD-L1 upregulation and T cell exclusion, facilitating the immune escape of DCSCs, and QSOX1 inhibition, combined with immunotherapy and chemotherapy, represents a promising therapeutic approach for eliminating DCSCs and preventing recurrence.
Collapse
Affiliation(s)
- Jia-Ru Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
| | - Baifeng Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong00852, People’s Republic of China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Wo-Ming Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
| | - Xiao-Ping Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Yan Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong00852, People’s Republic of China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
- Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| |
Collapse
|
2
|
Man CH, Li C, Xu X, Zhao M. Metabolic regulation in normal and leukemic stem cells. Trends Pharmacol Sci 2024; 45:919-930. [PMID: 39306527 DOI: 10.1016/j.tips.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are crucial for ensuring hematopoietic homeostasis and driving leukemia progression, respectively. Recent research has revealed that metabolic adaptations significantly regulate the function and survival of these stem cells. In this review, we provide an overview of how metabolic pathways regulate oxidative and proteostatic stresses in HSCs during homeostasis and aging. Furthermore, we highlight targetable metabolic pathways and explore their interactions with epigenetics and the microenvironment in addressing the chemoresistance and immune evasion capacities of LSCs. The metabolic differences between HSCs and LSCs have profound implications for therapeutic strategies.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510030, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
3
|
Tin W, Xiao C, Sun K, Zhao Y, Xie M, Zheng J, Wang Y, Liu S, Yu U. TRIM8 as a predictor for prognosis in childhood acute lymphoblastic leukemia based on a signature of neutrophil extracellular traps. Front Oncol 2024; 14:1427776. [PMID: 39224802 PMCID: PMC11366590 DOI: 10.3389/fonc.2024.1427776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background Neutrophil extracellular traps (NETs) can be attributed to the metastasis, occurrence, and immune evasion of cancer cells. We investigated the prognostic value of NET-related genes in childhood acute lymphoblastic leukemia (cALL) patients. Methods Differential gene expression analysis was conducted on samples collected from public databases. Grouping them based on the expression level of NET-related genes, we assessed the correlation between immune cell types and the risk score for having a poor prognosis of cALL, with an evaluation of the sensitivity of drugs used in cALL. We further divided the groups, integrating survival data. Subsequently, methods including multivariable Cox algorithms, least absolute shrinkage and selection operator (LASSO), and univariable were utilized to create a risk model predicting prognosis. Experiments in cell lines and animals were performed to explore the functions of TRIM8, a gene selected by the model. To validate the role of TRIM8 in leukemia development, lentivirus-mediated overexpression or knockdown of TRIM8 was employed in mice with T-ALL and B-ALL. Results Kaplan-Meier (KM) analysis underscored the importance of differentially expressed genes identified in the groups divided by genes participated in NETs, with enrichment analysis showing the mechanism. Correlation analysis revealed significant associations with B cells, NK cells, mast cells, T cells, plasma cells, dendritic cells, and monocytes. The IC50 values of drugs such as all-trans-retinoic acid (ATRA), axitinib, doxorubicin, methotrexate, sorafenib, and vinblastine were increased, while dasatinib exhibited a lower IC50. A total of 13 NET-related genes were selected in constructing the risk model. In the training, testing, and merged cohorts, KM analysis demonstrated significantly improved survival for low-risk cALL patients compared to high-risk cALL patients (p < 0.001). The area under the curve (AUC) indicated strong predictive performance. Experiments in Jurkat and SUP-B15 revealed that TRIM8 knockdown decreased the proliferation of leukemia cell lines. Further experiments demonstrated a more favorable prognosis in mice with TRIM8-knockdown leukemia cells. Results of cell lines and animals showed better outcomes in prognosis when TRIM8 was knocked down. Conclusion We identified a novelty in a prognostic model that could aid in the development of personalized treatments for cALL patients. Furthermore, it revealed that the expression of TRIM8 is a contributing factor to the proliferation of leukemia cells and worsens the prognosis of cALL.
Collapse
Affiliation(s)
- Waihin Tin
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuilan Xiao
- Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Maternal and Child Health of Haizhu District, Guangzhou, China
| | - Kexin Sun
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yijun Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyun Xie
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiayin Zheng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Hematology, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Uet Yu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
4
|
Wang YX, Wang A, Su YF, Wang J, Li YH, Li F, Jing Y, Xu L, Wang YZ, Zheng X, Gao CJ, Hu LD, Gao XN, Liu DH. Anti-PD-1 combined with hypomethylating agent and CAG regimen bridging to allogeneic hematopoietic stem cell transplantation: a novel strategy for relapsed/refractory acute myeloid leukemia. Front Immunol 2024; 15:1409302. [PMID: 39221255 PMCID: PMC11361969 DOI: 10.3389/fimmu.2024.1409302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The prognosis of relapsed/refractory acute myeloid leukemia (r/rAML) is dismal, and allogeneic hematopoietic stem cell transplant (allo-HSCT) is a potential cure. Combining anti-PD-1, hypomethylating agent (HMA), and CAG (cytarabine, aclarubicin/idarubicin, granulocyte colony-stimulating factor) regimen has showed primary efficacy in r/rAML. However, pre-transplant exposure to anti-PD-1 may lead to severe graft-versus-host disease (GVHD). This preliminary study aimed to evaluate the safety and efficacy of allo-HSCT in r/rAML patients receiving the anti-PD-1+HMA+CAG regimen. Methods Fifteen r/rAML patients (12 related haploidentical donors [HIDs], 2 matched siblings, 1 unrelated donor) received this regimen and subsequent peripheral blood HSCT. Results Four patients with HIDs received a GVHD prophylaxis regimen consisted of Anti-thymocyte globulin and a reduced-dose of post-transplant cyclophosphamide. The median follow-up was 20.9 months (range, 1.2-34.2). The cumulative incidences of acute GVHD grade 2-4 and grade 3-4 were 40% and 13.3%, respectively. The 2-year incidence of moderate-to-severe chronic GVHD, non-relapse mortality, and relapse were 10%, 22.3%, and 22.5%, respectively. The 2-year overall survival and GVHD-free/relapse-free survival rates were 54% and 48.6%, respectively. No death or relapse was observed in the PTCy group. Conclusion The anti-PD-1+HMA+CAG regimen bridging to allo-HSCT for r/r AML was tolerable with promising efficacy. GVHD prophylaxis with PTCy for HID-HSCT showed preliminary survival advantage.
Collapse
Affiliation(s)
- Yu-Xin Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - An Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yong-Feng Su
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yu-Hang Li
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fei Li
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yu Jing
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lei Xu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yi-Zhi Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xuan Zheng
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Chun-Ji Gao
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Liang-Ding Hu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiao-Ning Gao
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Dai-Hong Liu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Liu S, Chen B. China's top 10 achievements in hematology in 2023. BLOOD SCIENCE 2024; 6:e00195. [PMID: 38854482 PMCID: PMC11161293 DOI: 10.1097/bs9.0000000000000195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Affiliation(s)
- Shuang Liu
- Chinese Journal of Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 300020, China
| | - Biao Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
7
|
Lee TA, Tsai EY, Liu SH, Hsu Hung SD, Chang SJ, Chao CH, Lai YJ, Yamaguchi H, Li CW. Post-translational Modification of PD-1: Potential Targets for Cancer Immunotherapy. Cancer Res 2024; 84:800-807. [PMID: 38231470 PMCID: PMC10940856 DOI: 10.1158/0008-5472.can-23-2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Activation of effector T cells leads to upregulation of PD-1, which can inhibit T-cell activity following engagement with its ligand PD-L1. Post-translational modifications (PTM), including glycosylation, phosphorylation, ubiquitination, and palmitoylation, play a significant role in regulating PD-1 protein stability, localization, and interprotein interactions. Targeting PTM of PD-1 in T cells has emerged as a potential strategy to overcome PD-1-mediated immunosuppression in cancer and enhances antitumor immunity. The regulatory signaling pathways that induce PTM of PD-1 can be suppressed with small-molecule inhibitors, and mAbs can directly target PD-1 PTMs. Preliminary outcomes from exploratory studies suggest that focusing on the PTM of PD-1 has strong therapeutic potential and can enhance the response to anti-PD-1.
Collapse
Affiliation(s)
- Te-An Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - En-Yun Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shou-Hou Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yun-Ju Lai
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Li C, Guan J, Li Y, Tian X, Zhao Y, Liu W, Tian H, Tian H, Yang Y, Zhao M. Protocol for high-sensitivity western blot on murine hematopoietic stem cells. STAR Protoc 2023; 4:102578. [PMID: 37733599 PMCID: PMC10519847 DOI: 10.1016/j.xpro.2023.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Hematopoietic stem cells (HSCs) sustain hematopoiesis during homeostasis and regeneration. However, their limited availability poses a challenge for protein analysis. Here, we present a protocol for performing high-sensitivity western blot on HSCs using two techniques that enhance HSC isolation from mice and boost sensitivity for low cell numbers. We describe steps for isolating murine bone marrow cells, antibody staining, and cell sorting and post-sort analysis. We then detail a western blot procedure suitable for low numbers of HSCs. For complete details on the use and execution of this protocol, please refer to Li et al (2022).1,2.
Collapse
Affiliation(s)
- Changzheng Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingjing Guan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yishan Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobin Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yijun Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiming Liu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huixuan Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huiqi Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yalan Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Cao H, Wu T, Zhou X, Xie S, Sun H, Sun Y, Li Y. Progress of research on PD-1/PD-L1 in leukemia. Front Immunol 2023; 14:1265299. [PMID: 37822924 PMCID: PMC10562551 DOI: 10.3389/fimmu.2023.1265299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Leukemia cells prevent immune system from clearing tumor cells by inducing the immunosuppression of the bone marrow (BM) microenvironment. In recent years, further understanding of the BM microenvironment and immune landscape of leukemia has resulted in the introduction of several immunotherapies, including checkpoint inhibitors, T-cell engager, antibody drug conjugates, and cellular therapies in clinical trials. Among them, the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is a significant checkpoint for controlling immune responses, the PD-1 receptor on tumor-infiltrating T cells is bound by PD-L1 on leukemia cells. Consequently, the activation of tumor reactive T cells is inhibited and their apoptosis is promoted, preventing the rejection of the tumor by immune system and thus resulting in the occurrence of immune tolerance. The PD-1/PD-L1 axis serves as a significant mechanism by which tumor cells evade immune surveillance, and PD-1/PD-L1 checkpoint inhibitors have been approved for the treatment of lymphomas and varieties of solid tumors. However, the development of drugs targeting PD-1/PD-L1 in leukemia remains in the clinical-trial stage. In this review, we tally up the basic research and clinical trials on PD-1/PD-L1 inhibitors in leukemia, as well as discuss the relevant toxicity and impacts of PD-1/PD-L1 on other immunotherapies such as hematopoietic stem cell transplantation, bi-specific T-cell engager, chimeric antigen receptor T-cell immunotherapy.
Collapse
Affiliation(s)
- Huizhen Cao
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Tianyu Wu
- Department of Gastrointestinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xue Zhou
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Hongfang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
10
|
Huang YH, Wan CL, Dai HP, Xue SL. Targeted therapy and immunotherapy for T cell acute lymphoblastic leukemia/lymphoma. Ann Hematol 2023; 102:2001-2013. [PMID: 37227492 DOI: 10.1007/s00277-023-05286-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
T cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is an aggressive malignancy of progenitor T cells. Despite significant improvements in survival of T-ALL/LBL over the past decades, treatment of relapsed and refractory T-ALL (R/R T-ALL/LBL) remains extremely challenging. The prognosis of R/R T-ALL/LBL patients who are intolerant to intensive chemotherapy remains poor. Therefore, innovative approaches are needed to further improve the survival of R/R T-ALL/LBL patients. With the widespread use of next-generation sequencing in T-ALL/LBL, a range of new therapeutic targets such as NOTCH1 inhibitors, JAK-STAT inhibitors, and tyrosine kinase inhibitors have been identified. These findings led to pre-clinical studies and clinical trials of molecular targeted therapy in T-ALL/LBL. Furthermore, immunotherapies such as CD7 CAR T cell therapy and CD5 CAR T cell therapy have shown profound response rate in R/R T-ALL/LBL. Here, we review the progress of targeted therapies and immunotherapies for T-ALL/LBL, and look at the future directions and challenges for the further use of these therapies in T-ALL/LBL.
Collapse
Affiliation(s)
- Yuan-Hong Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
11
|
Patel J, Gao X, Wang H. An Update on Clinical Trials and Potential Therapeutic Strategies in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:7201. [PMID: 37108359 PMCID: PMC10139433 DOI: 10.3390/ijms24087201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Current therapies for T-cell acute leukemia are based on risk stratification and have greatly improved the survival rate for patients, but mortality rates remain high owing to relapsed disease, therapy resistance, or treatment-related toxicities/infection. Patients with relapsed disease continue to have poor outcomes. In the past few years, newer agents have been investigated to optimize upfront therapies for higher-risk patients in the hopes of decreasing relapse rates. This review summarizes the progress of chemo/targeted therapies using Nelarabine/Bortezomib/CDK4/6 inhibitors for T-ALL in clinical trials and novel strategies to target NOTCH-induced T-ALL. We also outline immunotherapy clinical trials using monoclonal/bispecific T-cell engaging antibodies, anti-PD1/anti-PDL1 checkpoint inhibitors, and CAR-T for T-ALL therapy. Overall, pre-clinical studies and clinical trials showed that applying monoclonal antibodies or CAR-T for relapsed/refractory T-ALL therapy is promising. The combination of target therapy and immunotherapy may be a novel strategy for T-ALL treatment.
Collapse
Affiliation(s)
- Janisha Patel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; (J.P.); (X.G.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Pediatric Hematology/Oncology, Medical University of South Carolina-Shawn Jenkins Children’s Hospital, Charleston, SC 29425, USA
| | - Xueliang Gao
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; (J.P.); (X.G.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; (J.P.); (X.G.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Chen H, Xu S, Zhang Y, Chen P. Systematic analysis of lncRNA gene characteristics based on PD-1 immune related pathway for the prediction of non-small cell lung cancer prognosis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:9818-9838. [PMID: 37322912 DOI: 10.3934/mbe.2023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is heterogeneous. Molecular subtyping based on the gene expression profiles is an effective technique for diagnosing and determining the prognosis of NSCLC patients. METHODS Here, we downloaded the NSCLC expression profiles from The Cancer Genome Atlas and the Gene Expression Omnibus databases. ConsensusClusterPlus was used to derive the molecular subtypes based on long-chain noncoding RNA (lncRNA) associated with the PD-1-related pathway. The LIMMA package and least absolute shrinkage and selection operator (LASSO)-Cox analysis were used to construct the prognostic risk model. The nomogram was constructed to predict the clinical outcomes, followed by decision curve analysis (DCA) to validate the reliability of this nomogram. RESULTS We discovered that PD-1 was strongly and positively linked to the T-cell receptor signaling pathway. Furthermore, we identified two NSCLC molecular subtypes yielding a significantly distinctive prognosis. Subsequently, we developed and validated the 13-lncRNA-based prognostic risk model in the four datasets with high AUC values. Patients with low-risk showed a better survival rate and were more sensitive to PD-1 treatment. Nomogram construction combined with DCA revealed that the risk score model could accurately predict the prognosis of NSCLC patients. CONCLUSIONS This study demonstrated that lncRNAs engaged in the T-cell receptor signaling pathway played a significant role in the onset and development of NSCLC, and that they could influence the sensitivity to PD-1 treatment. In addition, the 13 lncRNA model was effective in assisting clinical treatment decision-making and prognosis evaluation.
Collapse
Affiliation(s)
- Hejian Chen
- Department of Respiratory and Critical Care Medicine, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, China
| | - Shuiyu Xu
- Department of Oncology, HaploX Biotechnology, Shenzhen 518035, China
| | - Yuhong Zhang
- Department of Oncology, HaploX Biotechnology, Shenzhen 518035, China
| | - Peifeng Chen
- Department of Respiratory and Critical Care Medicine, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, China
| |
Collapse
|
13
|
Yang C, Suda T. Revisiting PD-1 to target leukaemic stem cells. Nat Cell Biol 2023; 25:17-19. [PMID: 36624185 DOI: 10.1038/s41556-022-01040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chong Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|