1
|
Wang W, Pocock R. A sphingolipid message promotes neuronal health across generations. Neural Regen Res 2024; 19:2325-2326. [PMID: 38526257 PMCID: PMC11090423 DOI: 10.4103/1673-5374.391333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 03/26/2024] Open
Affiliation(s)
- Wenyue Wang
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Sun A, Li YF, Miao Y, Wang HX, Zhang LL. Research on the mechanism of Ursolic acid for treating Parkinson's disease by network pharmacology and experimental verification. Heliyon 2024; 10:e34113. [PMID: 39108896 PMCID: PMC11301175 DOI: 10.1016/j.heliyon.2024.e34113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 01/03/2025] Open
Abstract
The objective of this study was to investigate the potential targets and mechanisms of UA in the treatment of PD. The efficacy of UA in PD was assessed through network pharmacology, molecular docking, and experimental methods. Common target protein-protein interaction (PPI) networks were constructed and visualized using Cytoscape. As a result, 9 key genes, namely CASP3, IL6, IL1B, PTGS2, CREB1, TNF, MAPK3, JUN, and CASP8, were selected. Molecular docking simulations were performed using Discovery Studio 2019 to validate the correlation between UA and the core targets. The results demonstrated a favorable binding affinity between UA and CASP8, IL1B, CASP3, TNF, MAPK3 and IL6. In vivo studies showed UA ameliorated motor dysfunction, and UA can significantly increase the protein expression of tyrosine hydroxylase (TH) in PD mice model. In addition, in vitro experiments confirmed that UA effectively reduced the protein expression of CASP8, CASP3 and MAPK3 in PD cell models and suppressed the gene expression of TNF-α, IL-6, and IL-1β. These findings indicate that the therapeutic effects of UA on PD could be due to its influence on various targets within both the apoptosis and neuroinflammatory signaling pathways. Consequently, this study provides a methodological and theoretical foundation for further elucidating the pharmacological mechanism of UA.
Collapse
Affiliation(s)
| | | | - Yang Miao
- Department of Pharmacology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Hong-xia Wang
- Department of Pharmacology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Lin-lin Zhang
- Department of Pharmacology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| |
Collapse
|
3
|
Willis AR, Zhao W, Sukhdeo R, Burton NO, Reinke AW. Parental dietary vitamin B12 causes intergenerational growth acceleration and protects offspring from pathogenic microsporidia and bacteria. iScience 2024; 27:110206. [PMID: 38993662 PMCID: PMC11237918 DOI: 10.1016/j.isci.2024.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
The parental environment of C. elegans can have lasting effects on progeny development and immunity. Vitamin B12 exposure in C. elegans has been shown to accelerate development and protect against pathogenic bacteria. Here, we show that parental exposure to dietary vitamin B12 or vitamin B12-producing bacteria results in offspring with accelerated growth that persists for a single generation. During infection with the microsporidian Nematocida parisii, the offspring of worms fed vitamin B12 diets have better reproductive fitness but similar infection levels, suggesting increased tolerance to microsporidian infection. Vitamin B12-induced intergenerational growth acceleration and N. parisii tolerance is dependent upon the methionine biosynthesis pathway. Offspring from vitamin B12-exposed parents are protected from pathogenic Pseudomonas vranovensis and this protection is mediated through methionine biosynthesis and propionyl-CoA breakdown pathways. Our results show how parental microbial diet impacts progeny development through the transfer of vitamin B12 which results in accelerated growth and pathogen tolerance.
Collapse
Affiliation(s)
- Alexandra R. Willis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ronesh Sukhdeo
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Breen PC, Kanakanui KG, Newman MA, Dowen RH. The F-box protein FBXL-5 governs vitellogenesis and lipid homeostasis in C. elegans. Front Cell Dev Biol 2024; 12:1389077. [PMID: 38946799 PMCID: PMC11211535 DOI: 10.3389/fcell.2024.1389077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
The molecular mechanisms that govern the metabolic commitment to reproduction, which often occurs at the expense of somatic reserves, remain poorly understood. We identified the Caenorhabditis elegans F-box protein FBXL-5 as a negative regulator of maternal provisioning of vitellogenin lipoproteins, which mediate the transfer of intestinal lipids to the germline. Mutations in fbxl-5 partially suppress the vitellogenesis defects observed in the heterochronic mutants lin-4 and lin-29, both of which ectopically express fbxl-5 at the adult developmental stage. FBXL-5 functions in the intestine to negatively regulate expression of the vitellogenin genes; and consistently, intestine-specific over-expression of FBXL-5 is sufficient to inhibit vitellogenesis, restrict lipid accumulation, and shorten lifespan. Our epistasis analyses suggest that fbxl-5 functions in concert with cul-6, a cullin gene, and the Skp1-related gene skr-3 to regulate vitellogenesis. Additionally, fbxl-5 acts genetically upstream of rict-1, which encodes the core mTORC2 protein Rictor, to govern vitellogenesis. Together, our results reveal an unexpected role for a SCF ubiquitin-ligase complex in controlling intestinal lipid homeostasis by engaging mTORC2 signaling.
Collapse
Affiliation(s)
- Peter C Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Kendall G Kanakanui
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Martin A Newman
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Robert H Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| |
Collapse
|
5
|
Breen PC, Kanakanui KG, Newman MA, Dowen RH. The F-box protein FBXL-5 governs vitellogenesis and lipid homeostasis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590113. [PMID: 38712300 PMCID: PMC11071313 DOI: 10.1101/2024.04.18.590113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The molecular mechanisms that govern the metabolic commitment to reproduction, which often occurs at the expense of somatic reserves, remain poorly understood. We identified the C. elegans F-box protein FBXL-5 as a negative regulator of maternal provisioning of vitellogenin lipoproteins, which mediate the transfer of intestinal lipids to the germline. Mutations in fbxl-5 partially suppress the vitellogenesis defects observed in the heterochronic mutants lin-4 and lin-29, both of which ectopically express fbxl-5 at the adult developmental stage. FBXL-5 functions in the intestine to negatively regulate expression of the vitellogenin genes; and consistently, intestine-specific over-expression of FBXL-5 is sufficient to inhibit vitellogenesis, restrict lipid accumulation, and shorten lifespan. Our epistasis analyses suggest that fbxl-5 functions in concert with cul-6 , a cullin gene, and the Skp1-related gene skr-3 to regulate vitellogenesis. Additionally, fbxl-5 acts genetically upstream of rict-1 , which encodes the core mTORC2 protein Rictor, to govern vitellogenesis. Together, our results reveal an unexpected role for a SCF ubiquitin-ligase complex in controlling intestinal lipid homeostasis by engaging mTORC2 signaling.
Collapse
|
6
|
Manzo OL, Nour J, Sasset L, Marino A, Rubinelli L, Palikhe S, Smimmo M, Hu Y, Bucci MR, Borczuk A, Elemento O, Freed JK, Norata GD, Di Lorenzo A. Rewiring Endothelial Sphingolipid Metabolism to Favor S1P Over Ceramide Protects From Coronary Atherosclerosis. Circ Res 2024; 134:990-1005. [PMID: 38456287 PMCID: PMC11009055 DOI: 10.1161/circresaha.123.323826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood. METHODS We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction. RESULTS We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE-/- mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BECKOApoE-/-) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BECKOApoE-/- mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature. CONCLUSIONS These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.
Collapse
Affiliation(s)
- Onorina Laura Manzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jasmine Nour
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Excellence of Pharmacological and Biomolecular Sciences, University of Milan, Via G. Balzaretti, 9 – 20133, Milano, Italy
| | - Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Alice Marino
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luisa Rubinelli
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Sailesh Palikhe
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Martina Smimmo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Yang Hu
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Maria Rosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Alain Borczuk
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julie K. Freed
- Department of Anesthesiology, Medical College of Wisconsin Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd. Milwaukee, WI 53226, USA
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, University of Milan, Via G. Balzaretti, 9 – 20133, Milano, Italy
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
7
|
Cooper JF, Nguyen K, Gates D, Wolfrum E, Capan C, Lee H, Williams D, Okoye C, Wojtovich AP, Burton NO. Oocyte mitochondria link maternal environment to offspring phenotype. RESEARCH SQUARE 2024:rs.3.rs-4087193. [PMID: 38585755 PMCID: PMC10996803 DOI: 10.21203/rs.3.rs-4087193/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
During maturation oocytes undergo a recently discovered mitochondrial proteome remodeling event in flies1, frogs1, and humans2. This oocyte mitochondrial remodeling, which includes substantial changes in electron transport chain (ETC) subunit abundance1,2, is regulated by maternal insulin signaling1. Why oocytes undergo mitochondrial remodeling is unknown, with some speculating that it might be an evolutionarily conserved mechanism to protect oocytes from genotoxic damage by reactive oxygen species (ROS)2. In Caenorhabditis elegans, we previously found that maternal exposure to osmotic stress drives a 50-fold increase in offspring survival in response to future osmotic stress3. Like mitochondrial remodeling, we found that this intergenerational adaptation is also regulated by insulin signaling to oocytes3. Here, we used proteomics and genetic manipulations to show that insulin signaling to oocytes regulates offspring's ability to adapt to future stress via a mechanism that depends on ETC composition in maternal oocytes. Specifically, we found that maternally expressed mutant alleles of nduf-7 (complex I subunit) or isp-1 (complex III subunit) altered offspring's response to osmotic stress at hatching independently of offspring genotype. Furthermore, we found that expressing wild-type isp-1 in germ cells (oocytes) was sufficient to restore offspring's normal response to osmotic stress. Chemical mutagenesis screens revealed that maternal ETC composition regulates offspring's response to stress by altering AMP kinase function in offspring which in turn regulates both ATP and glycerol metabolism in response to continued osmotic stress. To our knowledge, these data are the first to show that proper oocyte ETC composition is required to link a mother's environment to adaptive changes in offspring metabolism. The data also raise the possibility that the reason diverse animals exhibit insulin regulated remodeling of oocyte mitochondria is to tailor offspring metabolism to best match the environment of their mother.
Collapse
Affiliation(s)
- Jason F. Cooper
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, Michigan, USA, 49503
| | - Kim Nguyen
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, Michigan, USA, 49503
| | - Darrick Gates
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, Michigan, USA, 49503
| | - Emily Wolfrum
- Van Andel Research Institute, Grand Rapids, Michigan, USA, 49503
| | - Colt Capan
- Van Andel Research Institute, Grand Rapids, Michigan, USA, 49503
| | - Hyoungjoo Lee
- Van Andel Research Institute, Grand Rapids, Michigan, USA, 49503
| | - Devia Williams
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, Michigan, USA, 49503
| | - Chidozie Okoye
- University of Rochester Medical Center, Department of Anaesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anaesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Nicholas O. Burton
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, Michigan, USA, 49503
| |
Collapse
|
8
|
Sural S. Protecting axons in grandchildren. Trends Genet 2023; 39:892-894. [PMID: 37743186 DOI: 10.1016/j.tig.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Prenatal exposure to environmental agents can influence the fitness of not only the fetus, but also subsequent generations. In a recent study, Wang et al. demonstrated that feeding ursolic acid (UA), a plant-derived compound, to Caenorhabditis elegans mothers during their reproductive period prevented neurodegeneration in not only their offspring, but also the F2 progeny.
Collapse
Affiliation(s)
- Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Burton NO. A mother to offspring metabolic link. Nat Cell Biol 2023; 25:1083-1084. [PMID: 37537364 DOI: 10.1038/s41556-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Affiliation(s)
- Nicholas O Burton
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|