1
|
Laragione T, Harris C, Gulko PS. Magnesium Supplementation Modifies Arthritis Synovial and Splenic Transcriptomic Signatures Including Ferroptosis and Cell Senescence Biological Pathways. Nutrients 2024; 16:4247. [PMID: 39683640 DOI: 10.3390/nu16234247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common systemic autoimmune inflammatory disease that can cause joint damage. We have recently reported that oral magnesium supplementation significantly reduces disease severity and joint damage in models of RA. METHODS In the present study, we analyzed the transcriptome of spleens and synovial tissues obtained from mice with KRN serum-induced arthritis (KSIA) consuming either a high Mg supplemented diet (Mg2800; n = 7) or a normal diet (Mg500; n = 7). Tissues were collected at the end of a 15-day KSIA experiment. RNA was extracted and used for sequencing and analyses. RESULTS There was an enrichment of differentially expressed genes (DEGs) belonging to Reactome and Gene Ontology (GO) pathways implicated in RA pathogenesis such as RHO GTPases, the RUNX1 pathway, oxidative stress-induced senescence, and the senescence-associated secretory phenotype. Actc1 and Nr4a3 were among the genes with the highest expression, while Krt79 and Ffar2 were among the genes with the lowest expression in synovial tissues of the Mg2800 group compared with the Mg500 group. Spleens had an enrichment for the metabolism of folate and pterines and the HSP90 chaperone cycle for the steroid hormone receptor. CONCLUSIONS We describe the tissue transcriptomic consequences of arthritis-protecting Mg supplementation in KSIA mice. These results show that oral Mg supplementation may interfere with the response to oxidative stress and senescence and other processes known to participate in RA pathogenesis. We provide new evidence supporting the disease-suppressing effect of increased Mg intake in arthritis and its potential to become a new addition to the therapeutic options for RA and other autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolyn Harris
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pércio S Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Lee MC, Jodat YA, Endo Y, Rodríguez-delaRosa A, Zhang T, Karvar M, Tanoury ZA, Quint J, Kamperman T, Kiaee K, Ochoa SL, Shi K, Huang Y, Rosales MP, Lee H, Kim J, Ceron EL, Reyes IG, Panayi AC, Wang X, Kim KT, Moon JI, Park SG, Lee K, Calabrese MA, Lee J, Tamayol A, Lee L, Pourquié O, Kim WJ, Sinha I, Shin SR. Engineering large-scale hiPSC-derived vessel-integrated muscle-like lattices for enhanced volumetric muscle regeneration. Trends Biotechnol 2024; 42:1715-1744. [PMID: 39306493 PMCID: PMC11625013 DOI: 10.1016/j.tibtech.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 12/08/2024]
Abstract
Engineering biomimetic tissue implants with human induced pluripotent stem cells (hiPSCs) holds promise for repairing volumetric tissue loss. However, these implants face challenges in regenerative capability, survival, and geometric scalability at large-scale injury sites. Here, we present scalable vessel-integrated muscle-like lattices (VMLs), containing dense and aligned hiPSC-derived myofibers alongside passively perfusable vessel-like microchannels inside an endomysium-like supporting matrix using an embedded multimaterial bioprinting technology. The contractile and millimeter-long myofibers are created in mechanically tailored and nanofibrous extracellular matrix-based hydrogels. Incorporating vessel-like lattice enhances myofiber maturation in vitro and guides host vessel invasion in vivo, improving implant integration. Consequently, we demonstrate successful de novo muscle formation and muscle function restoration through a combinatorial effect between improved graft-host integration and its increased release of paracrine factors within volumetric muscle loss injury models. The proposed modular bioprinting technology enables scaling up to centimeter-sized prevascularized hiPSC-derived muscle tissues with custom geometries for next-generation muscle regenerative therapies.
Collapse
Affiliation(s)
- Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Medicinal Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea
| | - Yasamin A. Jodat
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yori Endo
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alejandra Rodríguez-delaRosa
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Ting Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Mehran Karvar
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ziad Al Tanoury
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Tom Kamperman
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Kiavash Kiaee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sofia Lara Ochoa
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Kun Shi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yike Huang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Montserrat Pineda Rosales
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Hyeseon Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jiseong Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Eder Luna Ceron
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Isaac Garcia Reyes
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Adriana C. Panayi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ki-Tae Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-I Moon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Gwa Park
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangju Lee
- Department of Healthcare and Medical Engineering, Chonnam National University, Yeosu 59626, South Korea
| | - Michelle A. Calabrese
- Chemical Engineering and Materials Science Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Junmin Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Luke Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Woo-Jin Kim
- Correspondence: (I.S.), (W.J.K.), (S.R.S.), Twitter: Yasamin A. Jodat: @YasaminJodat
| | - Indranil Sinha
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
3
|
Gu S, Huang Q, Jie Y, Sun C, Wen C, Yang N. Transcriptomic and epigenomic landscapes of muscle growth during the postnatal period of broilers. J Anim Sci Biotechnol 2024; 15:91. [PMID: 38961455 PMCID: PMC11223452 DOI: 10.1186/s40104-024-01049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/12/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Broilers stand out as one of the fastest-growing livestock globally, making a substantial contribution to animal meat production. However, the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear. This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers. We measured the growth performance of Cornish (CC) and White Plymouth Rock (RR) over a 42-d period. Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching (D21) and D42 for RNA-seq and ATAC-seq library construction. RESULTS The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured, with CC outpacing RR in terms of weight at each stage of development. Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages, respectively. A total of 75,149 ATAC-seq peaks were annotated in promoter, exon, intron and intergenic regions, with a higher number of peaks in the promoter and intronic regions. The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis. The results spotlighted the upregulation of ACTC1 and FDPS at D21, which were primarily associated with muscle structure development by gene cluster enrichment. Additionally, a noteworthy upregulation of MUSTN1, FOS and TGFB3 was spotted in broiler chickens at D42, which were involved in cell differentiation and muscle regeneration after injury, suggesting a regulatory role of muscle growth and repair. CONCLUSIONS This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration. Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration. These findings provide a foundation for future research to investigate the functional aspects of muscle development.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Yuchen Jie
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
4
|
Lenardič A, Domenig SA, Zvick J, Bundschuh N, Tarnowska-Sengül M, Furrer R, Noé F, Trautmann CL, Ghosh A, Bacchin G, Gjonlleshaj P, Qabrati X, Masschelein E, De Bock K, Handschin C, Bar-Nur O. Generation of allogeneic and xenogeneic functional muscle stem cells for intramuscular transplantation. J Clin Invest 2024; 134:e166998. [PMID: 38713532 PMCID: PMC11178549 DOI: 10.1172/jci166998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected Dmdmdx mouse induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Notably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.
Collapse
MESH Headings
- Animals
- Mice
- Muscular Dystrophy, Duchenne/therapy
- Muscular Dystrophy, Duchenne/genetics
- Induced Pluripotent Stem Cells/transplantation
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Rats
- Satellite Cells, Skeletal Muscle/transplantation
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/cytology
- Stem Cell Transplantation
- Humans
- Dystrophin/genetics
- Dystrophin/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Mice, Inbred mdx
- Heterografts
- Transplantation, Heterologous
- Injections, Intramuscular
- Transplantation, Homologous
Collapse
Affiliation(s)
- Ajda Lenardič
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Seraina A. Domenig
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Joel Zvick
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Monika Tarnowska-Sengül
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Falko Noé
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Christine L. Trautmann
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Giada Bacchin
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Pjeter Gjonlleshaj
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
5
|
Su Y, He S, Chen Q, Zhang H, Huang C, Zhao Q, Pu Y, He X, Jiang L, Ma Y, Zhao Q. Integrative ATAC-seq and RNA-seq analysis of myogenic differentiation of ovine skeletal muscle satellite cell. Genomics 2024; 116:110851. [PMID: 38692440 DOI: 10.1016/j.ygeno.2024.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-β and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.
Collapse
Affiliation(s)
- Yingxiao Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Siqi He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Qian Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hechun Zhang
- Chaoyang Chaomu Breeding Farm Co., LTD, Chaoyang, Liaoning 122629, China
| | - Chang Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qian Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China.
| |
Collapse
|
6
|
Crist SB, Azzag K, Kiley J, Coleman I, Magli A, Perlingeiro RCR. The adult environment promotes the transcriptional maturation of human iPSC-derived muscle grafts. NPJ Regen Med 2024; 9:16. [PMID: 38575647 PMCID: PMC10994941 DOI: 10.1038/s41536-024-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Pluripotent stem cell (PSC)-based cell therapy is an attractive option for the treatment of multiple human disorders, including muscular dystrophies. While in vitro differentiating PSCs can generate large numbers of human lineage-specific tissue, multiple studies evidenced that these cell populations mostly display embryonic/fetal features. We previously demonstrated that transplantation of PSC-derived myogenic progenitors provides long-term engraftment and functional improvement in several dystrophic mouse models, but it remained unknown whether donor-derived myofibers mature to match adult tissue. Here, we transplanted iPAX7 myogenic progenitors into muscles of non-dystrophic and dystrophic mice and compared the transcriptional landscape of human grafts with respective in vitro-differentiated iPAX7 myotubes as well as human skeletal muscle biospecimens. Pairing bulk RNA sequencing with computational deconvolution of human reads, we were able to pinpoint key myogenic changes that occur during the in vitro-to-in vivo transition, confirm developmental maturity, and consequently evaluate their applicability for cell-based therapies.
Collapse
Affiliation(s)
- Sarah B Crist
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - James Kiley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ilsa Coleman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alessandro Magli
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
- Sanofi, Genomic Medicine Unit, 225 2nd Ave, Waltham, MA, 02451, USA.
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Anderson CD. Therapeutic potential for mRNA-based IGF-I regenerative therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102143. [PMID: 38419942 PMCID: PMC10899049 DOI: 10.1016/j.omtn.2024.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Affiliation(s)
- Cynthia D Anderson
- The Center for Cardiovascular Research, Department of Medicine, John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|