1
|
Bai Y, Buren B, Yang Z. Nonadiabatic Effects in the H + LiD(ν = 0, j = 0) → Li(2s) + HD Reaction Near Cold Collisions. ACS OMEGA 2025; 10:5934-5942. [PMID: 39989769 PMCID: PMC11840612 DOI: 10.1021/acsomega.4c09864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
Nonadiabatic dynamic study of the H + LiD(ν = 0, j = 0) → Li(2s) + HD reaction is carried out using the time-dependent wave packet method in a collision energy range of 1-80 cm-1. The total integral cross section exhibits a partial wave resonance near 2 cm-1, corresponding to the opening of the J = 5 partial wave. The nonadiabatic coupling effects inhibit the reactivity, especially for the low-vibrational states. The rotational excitation of products is affected by nonadiabatic coupling effects. The maximum accessible rotational state of the products is higher when nonadiabatic effects are included than when they are omitted. At low collision energies, the product angular distributions are influenced by the resonances. Nonadiabatic results reveal a more pronounced backward scattering of the products than adiabatic results. As collision energy increases, the stripping mechanism gradually becomes dominant, and both adiabatic and nonadiabatic results exhibit significant forward-scattering characteristics.
Collapse
Affiliation(s)
- Yuwen Bai
- School
of Strengthening Basic Disciplines, Shanxi
Institute of Energy, Jinzhong 030600, China
| | - Bayaer Buren
- School
of Science, Shenyang University of Technology, Shenyang 110870, China
| | - Zijiang Yang
- School
of Physics and Electronic Technology, Liaoning
Normal University, Dalian 116029, China
| |
Collapse
|
2
|
Sahoo J, Goswami S, Mahapatra S. Unraveling the effect of reagent vibrational excitation on the scattering mechanism of the benchmark H + H 2 → H 2 + H hydrogen exchange reaction in the coupled 1 2E' ground electronic manifold. Phys Chem Chem Phys 2024; 27:138-155. [PMID: 39629597 DOI: 10.1039/d4cp03433c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The hydrogen exchange reaction, H + H2 → H2 + H, along with its isotopic variants, has been the cornerstone for the development of new and novel dynamical mechanisms of gas-phase bimolecular reactions since the 1930s. The dynamics of this reaction are theoretically investigated in this work to elucidate the effect of reagent vibrational excitation on differential cross sections (DCSs) in a nonadiabatic situation. The dynamical calculations are carried out using a time-dependent quantum mechanical method, both on the lower adiabatic potential energy surface and employing a two-state coupled diabatic theoretical model to explicitly include all the nonadiabatic couplings present in the 12E' ground electronic manifold of the H3 system. Towards this effort, the Boothroyd-Keogh-Martin-Peterson (BKMP2) surface of the lower adiabatic component is coupled with the double many-body expansion (DMBE) surface of the upper one. The smooth variation of energy along the D3h seam of the conical intersections is explicitly confirmed. The coupled two-state calculations are performed only for H2 (v = 3-4, j = 0), as the minimum of the conical intersections becomes energetically accessible for these vibrational levels in the considered energy range. Initial state-selected total and state-to-state DCSs are calculated to elucidate various mechanistic aspects of reagent vibrational excitation. The latter enhances the forward scattering and makes the backward scattering less prominent. Important roles of collision energy in the vibrational energy disposal of both forward- and backward-scattered products are examined. Analysis of the state-to-state DCSs of the vibrationally excited reagents reveals an important correlation among scattering angle, and the product rotational angular momentum and its helicity state. Such an analysis establishes a novel mechanism for the forward scattering of the reaction.
Collapse
Affiliation(s)
- Jayakrushna Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| | - Sugata Goswami
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| | - S Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
3
|
Ibele LM, Sangiogo Gil E, Villaseco Arribas E, Agostini F. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys Chem Chem Phys 2024; 26:26693-26718. [PMID: 39417703 DOI: 10.1039/d4cp02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This perspective offers an overview of the applications of the exact factorization of the electron-nuclear wavefunction to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact factorization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes involving the electronic ground and excited states as well as their coupling through the nuclear motion. Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent performance in describing a variety of excited-state processes, as this perspective illustrates. We conclude with a discussion on the authors' point of view on the future of the exact factorization.
Collapse
Affiliation(s)
- Lea Maria Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Evaristo Villaseco Arribas
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| |
Collapse
|
4
|
Schatz GC, Wodtke AM, Yang X. Spiers Memorial Lecture: New directions in molecular scattering. Faraday Discuss 2024; 251:9-62. [PMID: 38764350 DOI: 10.1039/d4fd00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The field of molecular scattering is reviewed as it pertains to gas-gas as well as gas-surface chemical reaction dynamics. We emphasize the importance of collaboration of experiment and theory, from which new directions of research are being pursued on increasingly complex problems. We review both experimental and theoretical advances that provide the modern toolbox available to molecular-scattering studies. We distinguish between two classes of work. The first involves simple systems and uses experiment to validate theory so that from the validated theory, one may learn far more than could ever be measured in the laboratory. The second class involves problems of great complexity that would be difficult or impossible to understand without a partnership of experiment and theory. Key topics covered in this review include crossed-beams reactive scattering and scattering at extremely low energies, where quantum effects dominate. They also include scattering from surfaces, reactive scattering and kinetics at surfaces, and scattering work done at liquid surfaces. The review closes with thoughts on future promising directions of research.
Collapse
Affiliation(s)
- George C Schatz
- Dept of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Alec M Wodtke
- Institute for Physical Chemistry, Georg August University, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Natural Sciences, Goettingen, Germany.
- International Center for the Advanced Studies of Energy Conversion, Georg August University, Goettingen, Germany
| | - Xueming Yang
- Dalian Institute for Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Gao C, Gao Q, Zhao C, Huo Y, Zhang Z, Yang J, Jia C, Guo X. Technologies for investigating single-molecule chemical reactions. Natl Sci Rev 2024; 11:nwae236. [PMID: 39224448 PMCID: PMC11367963 DOI: 10.1093/nsr/nwae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Single molecules, the smallest independently stable units in the material world, serve as the fundamental building blocks of matter. Among different branches of single-molecule sciences, single-molecule chemical reactions, by revealing the behavior and properties of individual molecules at the molecular scale, are particularly attractive because they can advance the understanding of chemical reaction mechanisms and help to address key scientific problems in broad fields such as physics, chemistry, biology and materials science. This review provides a timely, comprehensive overview of single-molecule chemical reactions based on various technical platforms such as scanning probe microscopy, single-molecule junction, single-molecule nanostructure, single-molecule fluorescence detection and crossed molecular beam. We present multidimensional analyses of single-molecule chemical reactions, offering new perspectives for research in different areas, such as photocatalysis/electrocatalysis, organic reactions, surface reactions and biological reactions. Finally, we discuss the opportunities and challenges in this thriving field of single-molecule chemical reactions.
Collapse
Affiliation(s)
- Chunyan Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yani Huo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zhizhuo Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Li S, Shu Y, Lu Z, Luo C, Wu F, Chen W, Yuan D, Wang X. High-Resolution Crossed-Beam Dynamics Studies of the D + Para-H 2 → HD + H Reaction at 1.21 eV. J Phys Chem A 2024; 128:4467-4473. [PMID: 38783510 DOI: 10.1021/acs.jpca.4c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Understanding kinetic isotope effects is important in the study of the reaction dynamics of elementary chemical reactions, particularly those involving hydrogen atoms and molecules. As one of the isotopic variants of the hydrogen exchange reaction, the D + para-H2 reaction has attracted much attention. However, experimental studies of this reaction have been limited primarily due to its strong experimental background noise. In this study, by using the velocity map ion imaging method and the near-threshold ionization technique, together with improvements on the vacuum condition in the vicinity of the collision zone, background noise was reduced significantly, and quantum state-resolved differential cross sections (DCSs) for the D + para-H2 reaction at a collision energy of 1.21 eV were acquired in a crossed molecular beams experiment. Interestingly, clear rotational state-dependent angular distributions were noticed in the quantum state-resolved DCSs. The most intense peak's positions for HD (v', j') products shift to different scattering directions as the product's ro-vibrational quantum number increases. Two different microscopic reaction mechanisms are found to be involved in this reaction for HD products in different vibrational states. The results show a direct correlation between the scattering angle and the product's rotational quantum number, revealing that the contributions of impact parameters are strongly influenced by the corresponding centrifugal barrier.
Collapse
Affiliation(s)
- Shihao Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yiyang Shu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhibing Lu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chang Luo
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fuyan Wu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wentao Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Daofu Yuan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
7
|
Wang Y, Wang W, Dai D, Huang J, Xiao C. Strong Angular Oscillation of Rotationally Resolved Differential Cross Section in the H + HD → H 2 + D Reaction at the Collision Energy of 2.07 eV: Evidence of Geometric Phase Effects. J Phys Chem A 2024; 128:4007-4013. [PMID: 38733363 DOI: 10.1021/acs.jpca.4c01949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Geometric phase (GP) effects in chemical reactions are subtle quantum phenomena that are challenging to identify. In this work, we report a joint experimental and theoretical study of the H + HD → H2 + D reaction at a collision energy of 2.07 eV, which is far below the energy of the conical intersection of 2.53 eV. The rotationally state-resolved differential cross sections were measured by a crossed-beam experiment with the scheme of D-atom Rydberg tagging time-of-flight detection. Experimental angular distributions of three rotational states of H2 products exhibit notable variation near the backward scattering direction. Time-dependent quantum mechanics calculations (TDQMs) were carried out at the same collision energy, with and without the inclusion of GP. The experimental angular distributions are in good agreement with TDQM results with the inclusion of GP but do not agree with TDQM results without the inclusion of GP. This work demonstrates the existence of GP effects at energy far below the conical intersection.
Collapse
Affiliation(s)
- Yufeng Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wei Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiayu Huang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Department of Physics, Dalian University of Technology, Dalian 116024, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
8
|
Wang R, Zhao H, Sun Z. Reactant-Product Decoupling Technique Using the Intermediate Coordinate Method. J Phys Chem A 2024; 128:3726-3741. [PMID: 38666315 DOI: 10.1021/acs.jpca.4c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although the reactant-product decoupling (RPD) technique was proposed over two decades ago, it remains an efficient approach for calculating product state-resolved information on some simple direct reactions using the quantum wave packet method. In the past, usually the RPD technique employed the collocation method to transform the wave function between reactant and product arrangements, which requires quite large computational efforts. In this work, the intermediate coordinate (IC) method is employed to realize the RPD technique. Numerical examples demonstrate that this new IC RPD (IRPD) technique has superior computational efficiency compared with the original method employing the collocation method. Especially, the new IRPD technique significantly saves disk space and computer memory. To illustrate the features of our new method, the total reaction probabilities of the H + H2, H + Br2, and F + H2 reactions with J = 0 and the differential cross sections of the H + H2 and F + H2 reactions at a series of collision energy are calculated and presented. With this efficient and effective new RPD technique, the Li + HF reaction, which involves sharp resonances with long-range wave functions in the van der Waals wells in both the reactant and product arrangements, is also calculated with several J at the product state-resolved level to reveal the ability of the RPD technique for describing resonance wave functions. With these numerical examples, it is found that, for the reaction with resonances, the RPD approach should be applied carefully. Otherwise, it is very possible that the resonances could disappear with the application of the RPD technique.
Collapse
Affiliation(s)
- Ransheng Wang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Plomp V, Wang XD, Kłos J, Dagdigian PJ, Lique F, Onvlee J, van de Meerakker SY. Imaging Resonance Effects in C + H 2 Collisions Using a Zeeman Decelerator. J Phys Chem Lett 2024; 15:4602-4611. [PMID: 38640083 PMCID: PMC11071073 DOI: 10.1021/acs.jpclett.3c03379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
An intriguing phenomenon in molecular collisions is the occurrence of scattering resonances, which originate from bound and quasi-bound states supported by the interaction potential at low collision energies. The resonance effects in the scattering behavior are extraordinarily sensitive to the interaction potential, and their observation provides one of the most stringent tests for theoretical models. We present high-resolution measurements of state-resolved angular scattering distributions for inelastic collisions between Zeeman-decelerated C(3P1) atoms and para-H2 molecules at collision energies ranging from 77 cm-1 down to 0.5 cm-1. Rapid variations in the angular distributions were observed, which can be attributed to the consecutive reduction of contributing partial waves and effects of scattering resonances. The measurements showed excellent agreement with distributions predicted by ab initio quantum scattering calculations. However, discrepancies were found at specific collision energies, which most likely originate from an incorrectly predicted quasi-bound state. These observations provide exciting prospects for further high-precision and low-energy investigations of scattering processes that involve paramagnetic species.
Collapse
Affiliation(s)
- Vikram Plomp
- Radboud
University, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Xu-Dong Wang
- Radboud
University, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jacek Kłos
- University
of Maryland, Department of Physics,
Joint Quantum Institute, College
Park, Maryland 20742, United States of America
| | - Paul J. Dagdigian
- Johns
Hopkins University, Department of Chemistry, Baltimore, Maryland 21218, United States
of America
| | - François Lique
- Université
de Rennes, Institut de Physique
de Rennes, 263 avenue
du Général Leclerc, Rennes CEDEX 35042, France
| | - Jolijn Onvlee
- Radboud
University, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
Ibele LM, Agostini F. Exploring Exact-Factorization-Based Trajectories for Low-Energy Dynamics near a Conical Intersection. J Phys Chem A 2024. [PMID: 38660710 DOI: 10.1021/acs.jpca.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We study low-energy dynamics generated by a two-dimensional two-state Jahn-Teller Hamiltonian in the vicinity of a conical intersection using quantum wave packet and trajectory dynamics. Recently, these dynamics were studied by comparing the adiabatic representation and the exact factorization, with the purpose to highlight the different nature of topological-phase and geometric-phase effects arising in the two theoretical representations of the same problem. Here, we employ the exact factorization to understand how to accurately model low-energy dynamics in the vicinity of a conical intersection using an approximate description of the nuclear motion that uses trajectories. We find that since nonadiabatic effects are weak but non-negligible, the trajectory-based description that invokes the classical approximation struggles to capture the correct behavior.
Collapse
Affiliation(s)
- Lea M Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
11
|
Zhao H, Sun Z. Theoretical Development of the Interaction-Asymptotic Region Decomposition Method for Tetratomic Reactive Scattering. J Chem Theory Comput 2024; 20:1802-1810. [PMID: 38262035 DOI: 10.1021/acs.jctc.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
An accurate and efficient time-dependent wave packet method is proposed for solving the product state-resolved reaction probabilities of the tetratomic reactive system. In this method, the entire scattering process is divided into the interaction region and multiple asymptotic regions, sharing the same spirit as the interaction-asymptotic region decomposition (IARD) approach in a triatomic reactive scattering process. The hyperspherical coordinate is adopted in the interaction region, while the corresponding Jacobi coordinate is employed in each asymptotic region. Therefore, in this IARD method, the "coordinate problem", the difficulty of expressing the wave function in the entire region using a single coordinate system, can be effectively avoided, and only a very small number of the grid points (or the basis functions) are required. For the numerical illustration, the typical tetratomic reaction H2 + OH with zero total angular momentum is calculated, and compared with other quantum wave packet methods. Our proposed IARD method for the tetratomic reactive system is much more efficient and accurate.
Collapse
Affiliation(s)
- Hailin Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China 116023
| | - Zhigang Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China 116023
| |
Collapse
|
12
|
Li S, Huang J, Lu Z, Shu Y, Chen W, Yuan D, Wang T, Fu B, Zhang Z, Wang X, Zhang DH, Yang X. Observation of geometric phase effect through backward angular oscillations in the H + HD → H 2 + D reaction. Nat Commun 2024; 15:1698. [PMID: 38402199 PMCID: PMC11258225 DOI: 10.1038/s41467-024-45843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024] Open
Abstract
Quantum interference between reaction pathways around a conical intersection (CI) is an ultrasensitive probe of detailed chemical reaction dynamics. Yet, for the hydrogen exchange reaction, the difference between contributions of the two reaction pathways increases substantially as the energy decreases, making the experimental observation of interference features at low energy exceedingly challenging. We report in this paper a combined experimental and theoretical study on the H + HD → H2 + D reaction at the collision energy of 1.72 eV. Although the roaming insertion pathway constitutes only a small fraction (0.088%) of the overall contribution, angular oscillatory patterns arising from the interference of reaction pathways were clearly observed in the backward scattering direction, providing direct evidence of the geometric phase effect at an energy of 0.81 eV below the CI. Furthermore, theoretical analysis reveals that the backward interference patterns are mainly contributed by two distinct groups of partial waves (J ~ 10 and J ~ 19). The well-separated partial waves and the geometric phase collectively influence the quantum reaction dynamics.
Collapse
Affiliation(s)
- Shihao Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jiayu Huang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Zhibing Lu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yiyang Shu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Wentao Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Daofu Yuan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Wang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Hefei National Laboratory, Hefei, 230088, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China.
- Hefei National Laboratory, Hefei, 230088, China.
| |
Collapse
|
13
|
Xiahou C, Connor JNL, De Fazio D, Sokolovski D. A single resonance Regge pole dominates the forward-angle scattering of the state-to-state F + H 2 → FH + H reaction at Etrans = 62.09 meV. Phys Chem Chem Phys 2024; 26:3647-3666. [PMID: 38224460 DOI: 10.1039/d3cp04734b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The aim of the present paper is to bring clarity, through simplicity, to the important and long-standing problem: does a resonance contribute to the forward-angle scattering of the F + H2 reaction? We reduce the problem to its essentials and present a well-defined, yet rigorous and unambiguous, investigation of structure in the differential cross sections (DCSs) of the following three state-to-state reactions at a translational energy of 62.09 meV: F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 0, 1, 2, mf = 0) + H, where vi, ji, mi and vf, jf, mf are the initial and final vibrational, rotational and helicity quantum numbers respectively. Firstly, we carry out quantum-scattering calculations for the Fu-Xu-Zhang potential energy surface, obtaining accurate numerical scattering matrix elements for indistinguishable H2. The calculations use a time-independent method, with hyperspherical coordinates and an enhanced Numerov method. Secondly, the following theoretical techniques are employed to analyse structures in the DCSs: (a) full and Nearside-Farside (NF) partial wave series (PWS) and local angular momentum theory, including resummations of the full PWS up to second order. (b) The recently introduced "CoroGlo" test, which lets us distinguish between glory and corona scattering at forward angles for a Legendre PWS. (c) Six asymptotic (semiclassical) forward-angle glory theories and three asymptotic farside rainbow theories, valid for rainbows at sideward-scattering angles. (d) Complex angular momentum (CAM) theories of forward and backward scattering, with the Regge pole positions and residues computed by Thiele rational interpolation. Thirdly, our conclusions for the three PWS DCSs are: (a) the forward-angle peaks arise from glory scattering. (b) A broad (hidden) farside rainbow is present at sideward angles. (c) A single Regge pole contributes to the DCS across the whole angular range, being most prominent at forward angles. This proves that a resonance contributes to the DCSs for the three transitions. (d) The diffraction oscillations in the DCSs arise from NF interference, in particular, interference between the Regge pole and direct subamplitudes.
Collapse
Affiliation(s)
- Chengkui Xiahou
- School of Pharmacy, Qilu Medical University, Zibo Economic Zone, Zibo City 255300, Shandong, People's Republic of China
| | - J N L Connor
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK.
| | - Dario De Fazio
- Istituto di Struttura della Materia-Consiglio Nazionale delle Ricerche, 00016 Roma, Italy
| | - Dmitri Sokolovski
- Department of Physical Chemistry, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| |
Collapse
|
14
|
Ibele LM, Sangiogo Gil E, Curchod BFE, Agostini F. On the Nature of Geometric and Topological Phases in the Presence of Conical Intersections. J Phys Chem Lett 2023; 14:11625-11631. [PMID: 38100675 DOI: 10.1021/acs.jpclett.3c02672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The observable nature of topological phases related to conical intersections in molecules is studied. Topological phases should be ubiquitous in molecular processes, but their elusive character has often made them a topic of discussion. To shed some light on this issue, we simulate the dynamics governed by a Jahn-Teller Hamiltonian and analyze it employing two theoretical representations of the molecular wave function: the adiabatic and the exact factorization. We find fundamental differences between effects related to topological phases arising exclusively in the adiabatic representation, and thus not related to any physical observable, and geometric phases within the exact factorization that can be connected to an observable quantity. We stress that while the topological phase of the adiabatic representation is an intrinsic property of the Hamiltonian, the geometric phase of the exact factorization depends on the dynamics that the system undergoes and is connected to the circulation of the nuclear momentum field.
Collapse
Affiliation(s)
- Lea M Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
15
|
Sahoo J, Mahapatra S. Electronic nonadiabatic effects in the state-to-state dynamics of the H + H 2 → H 2 + H exchange reaction with a vibrationally excited reagent. Phys Chem Chem Phys 2023; 25:28309-28325. [PMID: 37840347 DOI: 10.1039/d3cp02409a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Out of the many major breakthroughs that the hydrogen-exchange reaction has led to, electronic nonadiabatic effects that are mainly due to the geometric phase has intrigued many. In this work we investigate such effects in the state-to-state dynamics of the H + H2 (v = 3, 4, j = 0) → H2 (v', j') + H reaction with a vibrationally excited reagent at energies corresponding to thermal conditions. The dynamical calculations are performed by a time-dependent quantum mechanical method both on the lower adiabatic potential energy surface (PES) and also using a two-states coupled diabatic theoretical model to explicitly include all the nonadiabatic couplings present in the 1E' ground electronic manifold of the H3 system. The nonadiabatic couplings are considered here up to the quadratic term; however, the effect of the latter on the reaction dynamics is found to be very small. Adiabatic population analysis showed a minimal participation of the upper adiabatic surface even for the vibrationally excited reagent. A strong nonadiabatic effect appears in the state-to-state reaction probabilities and differential cross sections (DCSs). This effect is manifested as "out-of-phase" oscillations in the DCSs between the results of the uncoupled and coupled surface situations. The oscillations persist as a function of both scattering angle and collision energy in both the backward and forward scattering regions. The origins of these oscillations are examined in detail. The oscillations that appear in the forward direction are found to be different from those due to glory scattering, where the latter showed a negligibly small nonadiabatic effect. The nonadiabatic effects are reduced to a large extent when summed over all product quantum states, in addition to the cancellation due to integration over the scattering angle and partial wave summation.
Collapse
Affiliation(s)
- Jayakrushna Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India.
| | - S Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
16
|
State-to-state reactive dynamics of H+HD→H2+D at 2.20 eV. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
17
|
He C, Luo Y, Doddipatla S, Yang Z, Millar TJ, Sun R, Kaiser RI. Gas-phase formation of silicon monoxide via non-adiabatic reaction dynamics and its role as a building block of interstellar silicates. Phys Chem Chem Phys 2022; 24:19761-19772. [PMID: 35971984 DOI: 10.1039/d2cp02188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silicon monoxide (SiO) is classified as a key precursor and fundamental molecular building block to interstellar silicate nanoparticles, which play an essential role in the synthesis of molecular building blocks connected to the Origins of Life. In the cold interstellar medium, silicon monoxide is of critical importance in initiating a series of elementary chemical reactions leading to larger silicon oxides and eventually to silicates. To date, the fundamental formation mechanisms and chemical dynamics leading to gas phase silicon monoxide have remained largely elusive. Here, through a concerted effort between crossed molecular beam experiments and electronic structure calculations, it is revealed that instead of forming highly-stable silicon dioxide (SiO2), silicon monoxide can be formed via a barrierless, exoergic, single-collision event between ground state molecular oxygen and atomic silicon involving non-adiabatic reaction dynamics through various intersystem crossings. Our research affords persuasive evidence for a likely source of highly rovibrationally excited silicon monoxide in cold molecular clouds thus initiating the complex chain of exoergic reactions leading ultimately to a population of silicates at low temperatures in our Galaxy.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Yuheng Luo
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Tom J Millar
- School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Rui Sun
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
18
|
Luo C, Tan Y, Li S, Lu Z, Shu Y, Chen W, Yuan D, Yang X, Wang X. Crossed Molecular Beam Study of the H + HD → H 2 + D Reaction at 0.60 and 1.26 eV Using the Near-Threshold Ionization Velocity Map Ion Imaging. J Phys Chem A 2022; 126:4444-4450. [PMID: 35792496 DOI: 10.1021/acs.jpca.2c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By using the 1 + 1' near-threshold ionization velocity map ion imaging technique, state-to-state reactive differential cross sections have been measured for the H + HD → H2 + D reaction. High-resolution images of the D products, with the rotational states of the H2 co-products clearly resolved, were acquired at the collision energies of 0.60 and 1.26 eV, respectively. It is found that the angular distribution is predominantly backward-scattering at the collision energy of 0.60 eV. However, at 1.26 eV, where the collision energy is higher, the angular distribution becomes forward-backward-scattering. Notably, at both collision energies, the main peaks of backward-scattered products gradually shift from backward toward sideways direction as the rotational quantum number of H2 increases. Moreover, in the forward direction, fast angular oscillations, which are induced by specific partial waves have also been observed at 1.26 eV. These features show a strong correlation between the product states and angular distributions and also indicate the unique role of partial waves in quantum reactive scattering.
Collapse
Affiliation(s)
- Chang Luo
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yuxin Tan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shihao Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhibing Lu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yiyang Shu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wentao Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Daofu Yuan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
He C, Goettl SJ, Yang Z, Kaiser RI, Nikolayev AA, Azyazov VN, Mebel AM. Gas-Phase Preparation of Subvalent Germanium Monoxide (GeO, X 1Σ+) via Non-Adiabatic Reaction Dynamics in the Exit Channel. J Phys Chem Lett 2022; 13:4589-4597. [PMID: 35584300 DOI: 10.1021/acs.jpclett.2c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The subvalent germanium monoxide (GeO, X1Σ+) molecule has been prepared via the elementary reaction of atomic germanium (Ge, 3Pj) and molecular oxygen (O2, X3Σg-) with each reactant in its electronic ground state by means of single-collision conditions. The merging of electronic structure calculations with crossed beam experiments suggests that the formation of germanium monoxide (GeO, X1Σ+) commences on the singlet surface through unimolecular decomposition of a linear singlet collision complex (GeOO, i1, C∞v, 1Σ+) via intersystem crossing (ISC) yielding nearly exclusively germanium monoxide (GeO, X1Σ+) along with atomic oxygen in its electronic ground state [p1, O(3P)]. These results provide a sophisticated reaction mechanism of the germanium-oxygen system and demonstrate the efficient "heavy atom effect" of germanium in ISC yielding (nearly) exclusive singlet germanium monoxide and triplet atomic oxygen compared to similar systems (carbon dioxide and dinitrogen monoxide), in which non-adiabatic reaction dynamics represent only minor channels.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Shane J Goettl
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Anatoliy A Nikolayev
- Samara National Research University, Samara 443086, Russia
- Lebedev Physical Institute, Samara 443011, Russia
| | - Valeriy N Azyazov
- Samara National Research University, Samara 443086, Russia
- Lebedev Physical Institute, Samara 443011, Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
20
|
da Silva H, Kendrick BK, Balakrishnan N. On the use of stereodynamical effects to control cold chemical reactions: The H + D2 ⟷ D + HD case study. J Chem Phys 2022; 156:044305. [DOI: 10.1063/5.0078168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- H. da Silva
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA
| | - B. K. Kendrick
- Theoretical Division (T-1, MS B221), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - N. Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA
| |
Collapse
|
21
|
Accurate Quantum Dynamics of the Simplest Isomerization System Involving Double-H Transfer. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
22
|
Product Vibrational State Distributions of the F CH 3OH Reaction on a Full-Dimensional Accurate Potential Energy Surface. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
23
|
Plomp V, Wang XD, Lique F, Kłos J, Onvlee J, van de Meerakker SYT. High-Resolution Imaging of C + He Collisions using Zeeman Deceleration and Vacuum-Ultraviolet Detection. J Phys Chem Lett 2021; 12:12210-12217. [PMID: 34928163 PMCID: PMC8724800 DOI: 10.1021/acs.jpclett.1c03643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 05/25/2023]
Abstract
High-resolution measurements of angular scattering distributions provide a sensitive test for theoretical descriptions of collision processes. Crossed beam experiments employing a decelerator and velocity map imaging have proven successful to probe collision cross sections with extraordinary resolution. However, a prerequisite to exploit these possibilities is the availability of a near-threshold state-selective ionization scheme to detect the collision products, which for many species is either absent or inefficient. We present the first implementation of recoil-free vacuum ultraviolet (VUV) based detection in scattering experiments involving a decelerator and velocity map imaging. This allowed for high-resolution measurements of state-resolved angular scattering distributions for inelastic collisions between Zeeman-decelerated carbon C(3P1) atoms and helium atoms. We fully resolved diffraction oscillations in the angular distributions, which showed excellent agreement with the distributions predicted by quantum scattering calculations. Our approach offers exciting prospects to investigate a large range of scattering processes with unprecedented precision.
Collapse
Affiliation(s)
- Vikram Plomp
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Xu-Dong Wang
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - François Lique
- Université
de Rennes, Institut de Physique de Rennes, 263 avenue du Général
Leclerc, Rennes 35042 CEDEX, France
| | - Jacek Kłos
- University
of Maryland, Department of Physics, Joint
Quantum Institute, College Park, Maryland 20742, United States of America
| | - Jolijn Onvlee
- Radboud
University, Institute for Molecules and
Materials, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
24
|
Cao J, Wu Y, Bian W. Ring polymer molecular dynamics of the C(1D)+H2 reaction on the most recent potential energy surfaces. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jianwei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanan Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xingan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xueming Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Center for Advanced Light Source, Southern University of Science and Technology, Shenzhen 518055, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
26
|
Xiahou C, Connor JNL. Nearside-Farside Analysis of the Angular Scattering for the State-to-State H + HD → H 2 + D Reaction: Nonzero Helicities. J Phys Chem A 2021; 125:8734-8750. [PMID: 34549958 PMCID: PMC8503886 DOI: 10.1021/acs.jpca.1c06195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We theoretically
analyze the differential cross sections (DCSs)
for the state-to-state reaction, H + HD(vi = 0, ji = 0, mi = 0) → H2(vf = 0, jf = 1,2,3, mf = 1,..,jf) + D, over the whole
range of scattering angles, where v, j, and m are the vibrational, rotational, and helicity
quantum numbers for the initial and final states. The analysis extends
and complements previous calculations for the same state-to-state
reaction, which had jf = 0,1,2,3 and mf = 0, as reported by XiahouC.; ConnorJ. N. L.Phys. Chem. Chem. Phys.2021, 23, 13349–1336934096934. Motivation comes from the state-of-the-art experiments and simulations
of Yuan et al.Nature Chem.2018, 10, 653–65829686377 who have measured, for the first time, fast oscillations
in the small-angle region of the degeneracy-averaged DCSs for jf = 1 and 3 as well as slow oscillations in
the large-angle region. We start with the partial wave series (PWS)
for the scattering amplitude expanded in a basis set of reduced rotation
matrix elements. Then our main theoretical tools are two variants
of Nearside-Farside (NF) theory applied to six transitions: (1) We
apply unrestricted, restricted, and restrictedΔ NF decompositions
to the PWS including resummations. The restricted and restrictedΔ
NF DCSs correctly go to zero in the forward and backward directions
when mf > 0, unlike the unrestricted
NF
DCSs, which incorrectly go to infinity. We also exploit the Local
Angular Momentum theory to provide additional insights into the reaction
dynamics. Properties of reduced rotation matrix elements of the second
kind play an important role in the NF analysis, together with their
caustics. (2) We apply an approximate N theory at intermediate and
large angles, namely, the Semiclassical Optical Model of Herschbach.
We show there are two different reaction mechanisms. The fast oscillations
at small angles (sometimes called Fraunhofer diffraction/oscillations)
are an NF interference effect. In contrast, the slow oscillations
at intermediate and large angles are an N effect, which arise from
a direct scattering, and are a “distorted mirror image”
mechanism. We also compare these results with the experimental data.
Collapse
Affiliation(s)
- Chengkui Xiahou
- School of Pharmacy, Qilu Medical University, Zibo Economic Zone, Zibo City 255300, Shandong, People's Republic of China
| | - J N L Connor
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
27
|
Auerbach DJ, Tully JC, Wodtke AM. Chemical dynamics from the gas‐phase to surfaces. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/ntls.10005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel J. Auerbach
- Institut für physikalische Chemie Georg‐August Universität Göttingen Göttingen Germany
- Abteilung für Dynamik an Oberflächen Max‐Planck‐Institut für biophysikalische Chemie Göttingen Germany
| | - John C. Tully
- Department of Chemistry Yale University New Haven Connecticut USA
| | - Alec M. Wodtke
- Institut für physikalische Chemie Georg‐August Universität Göttingen Göttingen Germany
- Abteilung für Dynamik an Oberflächen Max‐Planck‐Institut für biophysikalische Chemie Göttingen Germany
| |
Collapse
|
28
|
Bünermann O, Kandratsenka A, Wodtke AM. Inelastic Scattering of H Atoms from Surfaces. J Phys Chem A 2021; 125:3059-3076. [PMID: 33779163 PMCID: PMC8154602 DOI: 10.1021/acs.jpca.1c00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/09/2021] [Indexed: 11/29/2022]
Abstract
We have developed an instrument that uses photolysis of hydrogen halides to produce nearly monoenergetic hydrogen atom beams and Rydberg atom tagging to obtain accurate angle-resolved time-of-flight distributions of atoms scattered from surfaces. The surfaces are prepared under strict ultrahigh vacuum conditions. Data from these experiments can provide excellent benchmarks for theory, from which it is possible to obtain an atomic scale understanding of the underlying dynamical processes governing H atom adsorption. In this way, the mechanism of adsorption on metals is revealed, showing a penetration-resurfacing mechanism that relies on electronic excitation of the metal by the H atom to succeed. Contrasting this, when H atoms collide at graphene surfaces, the dynamics of bond formation involving at least four carbon atoms govern adsorption. Future perspectives of H atom scattering from surfaces are also outlined.
Collapse
Affiliation(s)
- Oliver Bünermann
- Institute
for Physical Chemistry, Georg-August-University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Alexander Kandratsenka
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Alec M. Wodtke
- Institute
for Physical Chemistry, Georg-August-University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Zhao H, Xie D, Sun Z. Interaction-Asymptotic Region Decomposition Method for a Triatomic Reactive Scattering with Symmetry Adoption. J Phys Chem A 2021; 125:2460-2471. [DOI: 10.1021/acs.jpca.0c11438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hailin Zhao
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
30
|
Cao J, Wu Y, Ma H, Shen Z, Bian W. Dynamics and kinetics of the Si( 1D) + H 2/D 2 reactions on a new global ab initio potential energy surface. Phys Chem Chem Phys 2021; 23:6141-6153. [PMID: 33684184 DOI: 10.1039/d0cp05540a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent studies on the exothermic complex-forming reactions have improved our understanding of complex-forming reactions greatly, however, so far a similar level of study on endothermic ones has been rather limited. In this work, the endothermic complex-forming reaction Si(1D) + H2 → SiH + H and its deuterated isotopic variant are investigated by quantum dynamics (QD) and ring polymer molecular dynamics (RPMD) calculations on a new global ab initio potential energy surface (PES) for the ground electronic state, which is constructed based on 8996 symmetry unique points computed at the icMRCI+Q/aug-cc-pVQZ level. The PES reproduces our ab initio data very well in the dynamically important regions, on which the ro-vibrational energy levels of SiH2 are calculated and general good agreement with experiment is obtained. The integral cross sections and product angular and state distributions are computed in a wide range of collision energies, and interesting dynamics behaviors are revealed. The rate coefficients are also investigated, which display an exponential rise from 2.09 × 10-20 to 6.00 × 10-12 cm3 s-1 for the Si(1D) + H2 reaction as the temperature increases from 300 to 1500 K, in contrast to the nearly temperature-independent behavior of exothermic complex-forming reactions. In addition, the applicability of the RPMD approach is demonstrated, and the kinetic isotope effect is investigated, the ratio of which decreases from 7.89 (300 K) to 1.70 (1500 K). The effects of tunneling and initial rotational excitation are also discussed.
Collapse
Affiliation(s)
- Jianwei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanan Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Ma
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhitao Shen
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Chen W, Wang R, Yuan D, Zhao H, Luo C, Tan Y, Li S, Zhang DH, Wang X, Sun Z, Yang X. Quantum interference between spin-orbit split partial waves in the F + HD → HF + D reaction. Science 2021; 371:936-940. [PMID: 33632844 DOI: 10.1126/science.abf4205] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/14/2021] [Indexed: 11/02/2022]
Abstract
The effect of electron spin-orbit interactions on chemical reaction dynamics has been a topic of much research interest. Here we report a combined experimental and theoretical study on the effect of electron spin and orbital angular momentum in the F + HD → HF + D reaction. Using a high-resolution imaging technique, we observed a peculiar horseshoe-shaped pattern in the product rotational-state-resolved differential cross sections around the forward-scattering direction. The unusual dynamics pattern could only be explained properly by highly accurate quantum dynamics theory when full spin-orbit characteristics were considered. Theoretical analysis revealed that the horseshoe pattern was largely the result of quantum interference between spin-orbit split-partial-wave resonances with positive and negative parities, providing a distinctive example of how spin-orbit interaction can effectively influence reaction dynamics.
Collapse
Affiliation(s)
- Wentao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Ransheng Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Daofu Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chang Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yuxin Tan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Shihao Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xingan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
32
|
Zhao H, Xie D, Sun Z. Interaction-Asymptotic Region Decomposition Method for an Insertion Reaction: Application to the S( 1D) + H 2 Reaction. J Phys Chem A 2021; 125:2007-2018. [PMID: 33625216 DOI: 10.1021/acs.jpca.1c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With adjusting principal axes hyperspherical (APH) coordinate in the interaction region, and the Jacobi coordinates in the asymptotic regions, an efficient multidomain interaction-asymptotic region decomposition (IARD) method has been developed to solve the "coordinate problem" in a product-state-resolved reactive scattering calculation using the quantum wave packet method. Although the APH coordinate treats with all three channels equally, and is efficient for describing the interaction region for some direct reactions, it is inefficient for describing the insertion-type reaction due to the singularity problem, such as the S(1D) + H2 reaction. To deal with this issue, in this work, the channel-dependent Delves hyperspherical (DH) coordinate is proposed to describe the interaction region using the IARD method. The proposed DH-IARD method was applied to calculate the product-state-resolved reaction probabilities of the H + HD reaction, and the differential and integral cross sections of the typical insertion reaction S(1D) + H2. It is found that the new DH-IARD method is much more efficient than the previous APH-IARD method for dealing with insertion reactions. The partial wave resonance structures were observed in the integral cross section. It is found that at a low collision energy, the position of the initial wave packet has to be put far away. Otherwise, the partial wave resonance structures could not be correctly reproduced due to the reef well arising with a large total angular momentum J.
Collapse
Affiliation(s)
- Hailin Zhao
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
33
|
Xu A, Ma YJ, Yan D, Li FF, Liu JX, Wang FY. Advanced techniques for quantum-state specific reaction dynamics of gas phase metal atoms. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ang Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Yu-jie Ma
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Dong Yan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Fang-fang Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Jia-xing Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Feng-yan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| |
Collapse
|
34
|
Xiahou C, Connor JNL. Glories, hidden rainbows and nearside-farside interference effects in the angular scattering of the state-to-state H + HD → H 2 + D reaction. Phys Chem Chem Phys 2021; 23:13349-13369. [PMID: 34096934 DOI: 10.1039/d1cp00942g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yuan et al. [Nat. Chem., 2018, 10, 653] have reported state-of-the-art measurements of differential cross sections (DCSs) for the H + HD → H2 + D reaction, measuring for the first time fast oscillations in the small-angle forward region of the DCSs. We theoretically analyse the angular scattering dynamics in order to quantitatively understand the physical content of structure in the DCSs. We study the H + HD(vi = 0, ji = 0, mi = 0) → H2(vf = 0, jf = 0,1,2,3, mf = 0) + D reaction for the whole range of scattering angles from θR = 0° to θR = 180°, where v, j, m are the vibrational, rotational and helicity quantum numbers respectively for the initial and final states. The restriction to mf = 0 arises because states with mf ≠ 0 have DCSs that are identically zero in the forward (θR = 0°) and backward (θR = 180°) directions. We use accurate quantum scattering matrix elements computed by Yuan et al. at a translational energy of 1.35 eV for the BKMP2 potential energy surface. The following theoretical techniques are employed to analyse the DCSs: (a) full and nearside-farside (NF) partial wave series (PWS) and local angular momentum theory, including resummations of the full PWS up to third order. We also use window representations of the scattering matrix, which give rise to truncated PWS, (b) six asymptotic (semiclassical) small-angle glory theories and four N rainbow theories, (c) we introduce "CoroGlo" tests, which let us distinguish between glory and corona scattering at small angles for Legendre PWS, (d) the semiclassical optical model (SOM) of Herschbach is employed to understand structure in the DCSs at intermediate and large angles. Our conclusions are: (a) the small-angle peaks in the DCSs arise mainly from glory scattering. For the 000 → 020 transition, there is also a contribution from a broad, or hidden, N rainbow, (b) at larger angles, the fast oscillations in the DCSs arise from NF interference, (c) the N scattering in the fast oscillation region contains a hidden rainbow for the 000, 020, 030 cases. For the 000 → 020 transition, the rainbow extends up to θR ≈ 60°; for the 000 and 030 cases, the angular ranges containing a N rainbow are smaller, (d) at intermediate and backward angles, the slowly varying DCSs, which merge into slow oscillations, are explained by the SOM. Physically it shows this structure in a DCS arises from direct scattering and is a distorted mirror image of the corresponding probability versus total angular momentum quantum number plot.
Collapse
Affiliation(s)
- Chengkui Xiahou
- School of Pharmacy, Qilu Medical University, Zibo Economic Zone, Zibo City 255300, Shandong, People's Republic of China
| | - J N L Connor
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
35
|
Sathyamurthy N, Mahapatra S. Time-dependent quantum mechanical wave packet dynamics. Phys Chem Chem Phys 2020; 23:7586-7614. [PMID: 33306771 DOI: 10.1039/d0cp03929b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starting from a model study of the collinear (H, H2) exchange reaction in 1959, the time-dependent quantum mechanical wave packet (TDQMWP) method has come a long way in dealing with systems as large as Cl + CH4. The fast Fourier transform method for evaluating the second order spatial derivative of the wave function and split-operator method or Chebyshev polynomial expansion for determining the time evolution of the wave function for the system have made the approach highly accurate from a practical point of view. The TDQMWP methodology has been able to predict state-to-state differential and integral reaction cross sections accurately, in agreement with available experimental results for three dimensional (H, H2) collisions, and identify reactive scattering resonances too. It has become a practical computational tool in predicting the observables for many A + BC exchange reactions in three dimensions and a number of larger systems. It is equally amenable to determining the bound and quasi-bound states for a variety of molecular systems. Just as it is able to deal with dissociative processes (without involving basis set expansion), it is able to deal with multi-mode nonadiabatic dynamics in multiple electronic states with equal ease. We present an overview of the method and its strength and limitations, citing examples largely from our own research groups.
Collapse
|
36
|
Yuan D, Huang Y, Chen W, Zhao H, Yu S, Luo C, Tan Y, Wang S, Wang X, Sun Z, Yang X. Observation of the geometric phase effect in the H+HD→H 2+D reaction below the conical intersection. Nat Commun 2020; 11:3640. [PMID: 32686682 PMCID: PMC7371868 DOI: 10.1038/s41467-020-17381-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/26/2020] [Indexed: 11/24/2022] Open
Abstract
It has long been known that there is a conical intersection (CI) between the ground and first excited electronic state in the H3 system. Its associated geometric phase (GP) effect has been theoretically predicted to exist below the CI since a long time. However, the experimental evidence has not been established yet and its dynamical origin is waiting to be elucidated. Here we report a combined crossed molecular beam and quantum reactive scattering dynamics study of the H+HD → H2+D reaction at 2.28 eV, which is well below the CI. The GP effect is clearly identified by the observation of distinct oscillations in the differential cross section around the forward direction. Quantum dynamics theory reveals that the GP effect arises from the phase alteration of a small part of the wave function, which corresponds to an unusual roaming-like abstraction pathway, as revealed by quasi-classical trajectory calculations. The geometric phase effect associated with a conical intersection between the ground and first excited electronic state has been predicted in the H3 system below the conical intersection energy. The authors, by a crossed molecular beam technique and quantum dynamic calculations, provide experimental evidence and insight into its origin.
Collapse
Affiliation(s)
- Daofu Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yin Huang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wentao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, China
| | - Chang Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yuxin Tan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Siwen Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Xingan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
37
|
Zhou B, Yang B, Balakrishnan N, Kendrick BK, Stancil PC. Prediction of a Feshbach Resonance in the Below-the-Barrier Reactive Scattering of Vibrationally Excited HD with H. J Phys Chem Lett 2020; 11:4970-4975. [PMID: 32512999 DOI: 10.1021/acs.jpclett.0c01294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantum reactive scattering calculations on the vibrational quenching of HD due to collisions with H were carried out employing an accurate potential energy surface. The state-to-state cross sections for the chemical reaction HD(v = 1, j = 0) + H → D + H2(v' = 0, j') at collision energies between 1 and 10 000 cm-1 are presented, and a Feshbach resonance in the low-energy regime, below the reaction barrier, is observed for the first time. The resonance is attributed to coupling with the vibrationally adiabatic potential correlating to the v = 1, j = 1 level of the HD molecule, and it is dominated by the contribution from a single partial wave. The properties of the resonance, such as its dynamic behavior, phase behavior, and lifetime, are discussed.
Collapse
Affiliation(s)
- Boyi Zhou
- Department of Physics and Astronomy and Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, United States
- Key Laboratory of Materials Modification by Laser, Electron, and lon Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China
| | - Benhui Yang
- Department of Physics and Astronomy and Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, United States
| | - N Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| | - B K Kendrick
- Theoretical Division (T-1, MS B221), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - P C Stancil
- Department of Physics and Astronomy and Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
38
|
Xie Y, Zhao H, Wang Y, Huang Y, Wang T, Xu X, Xiao C, Sun Z, Zhang DH, Yang X. Quantum interference in H + HD → H2 + D between direct abstraction and roaming insertion pathways. Science 2020; 368:767-771. [DOI: 10.1126/science.abb1564] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/26/2020] [Indexed: 11/02/2022]
Abstract
Understanding quantum interferences is essential to the study of chemical reaction dynamics. Here, we provide an interesting case of quantum interference between two topologically distinct pathways in the H + HD → H2 + D reaction in the collision energy range between 1.94 and 2.21 eV, manifested as oscillations in the energy dependence of the differential cross section for the H2 (v′ = 2, j′ = 3) product (where v′ is the vibrational quantum number and j′ is the rotational quantum number) in the backward scattering direction. The notable oscillation patterns observed are attributed to the strong quantum interference between the direct abstraction pathway and an unusual roaming insertion pathway. More interestingly, the observed interference pattern also provides a sensitive probe of the geometric phase effect at an energy far below the conical intersection in this reaction, which resembles the Aharonov–Bohm effect in physics, clearly demonstrating the quantum nature of chemical reactivity.
Collapse
Affiliation(s)
- Yurun Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yufeng Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yin Huang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Xu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
39
|
Yuan D, Chen W, Luo C, Tan Y, Li S, Huang Y, Sun Z, Yang X, Wang X. Imaging the State-to-State Dynamics of the H + D 2 → HD + D Reaction at 1.42 eV. J Phys Chem Lett 2020; 11:1222-1227. [PMID: 31967829 DOI: 10.1021/acs.jpclett.9b03820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-resolution state-resolved differential cross sections (DCSs) are of great importance in understanding quantum reaction dynamics, and they are the most detailed observables that can be experimentally measured. Here we report a synergic crossed molecular beam and quantum reaction dynamics study on the H + D2 reaction. With the time-sliced velocity map ion imaging (VMI) technique and the near-threshold ionization scheme, we acquired the product rovibrational state-resolved DCSs of the H + D2 (v = 0, j = 0) → HD (v', j') + D reaction at a collision energy of 1.42 eV. For HD products with small j' quantum numbers, significant forward scattering with clear angular oscillations was observed. The forward scattering disappears for the rotational states with large j' quantum numbers. Interestingly, as the j' number increases, the peak of the DCS shifts from backward to sideways systematically. The experimental observation agrees very well with theoretical quantum mechanical dynamics results, which reveals that the systematic shift of the peak in the DCS from backward scattering to sideways scattering can be understood very well with the strong correlation between the product rotational quantum number j' and the specific partial waves (J = 3-12), whereas the forward angular oscillations are from the coherent summation of larger partial waves.
Collapse
Affiliation(s)
- Daofu Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , China
| | - Wentao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , China
| | - Chang Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , China
| | - Yuxin Tan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , China
| | - Shihao Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , China
| | - Yin Huang
- State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
- College of Science , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Xingan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
40
|
Li H, Suits AG. Universal crossed beam imaging studies of polyatomic reaction dynamics. Phys Chem Chem Phys 2020; 22:11126-11138. [DOI: 10.1039/d0cp00522c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crossed-beam imaging studies of polyatomic reactions show surprising dynamics not anticipated by extrapolation from smaller model systems.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Chemistry
- University of Missouri
- Columbia
- USA
| | | |
Collapse
|
41
|
Xiahou C, Shan X, Connor JNL. Application of the Partial Wave QP Decomposition to the Angular Scattering of the State-to-State F + H 2 Reaction at Etrans = 0.04088 eV. J Phys Chem A 2019; 123:10500-10513. [PMID: 31714765 DOI: 10.1021/acs.jpca.9b07959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We analyze the physical content of structures present in the product differential cross sections (DCSs) of the benchmark F + H2(vi, ji, mi) → FH(vf, jf, mf) + H reaction, where v, j, and m are the vibrational, rotational, and helicity quantum numbers, respectively, for the initial and final states. We analyze three state-to-state transitions: 000 → 300, 000 → 310, and 000 → 320. Accurate quantum S matrix elements are employed at a translational energy of 0.04088 eV for the Fu-Xu-Zhang potential energy surface. Our analysis of the DCSs uses a new technique called the QP decomposition; it makes an exact decomposition of the scattering (S) matrix into a Q part and a P part. The P part consists of a partial wave (PW) sum of Regge poles (involving both positions and residues) together with a rapidly oscillating quadratic phase. The Q part of the decomposition is then constructed exactly by subtracting the rapidly oscillating phase and the PW Regge pole sum from the input PW S matrix. In practice, it is convenient to make a small modification, which we call the QmodPmod decomposition. All our calculations use only integer values of the total angular momentum quantum number, namely, J = 0, 1, 2,... We find that the QmodPmod decomposition is successful and physically meaningful, in that the properties of Qmod matrix are simpler than those of the input S matrix. We then carry out a QmodPmod analysis of the DCSs, which provides novel insights into interference structures present in the angular scattering. In particular, we find for all three reactions that Regge resonances contribute across the whole angular range of the DCSs, being particularly pronounced at small angles. The techniques of nearside-farside decomposition and local angular momentum analysis for resummed Legendre PW series are also employed to provide additional insights into the angular scattering.
Collapse
Affiliation(s)
- Chengkui Xiahou
- School of Pharmacy , Qilu Medical University , Zibo Economic Zone , Zibo City 255300 , Shandong , People's Republic of China
| | - Xiao Shan
- Department of Chemistry , The University of Manchester , Manchester M13 9PL , United Kingdom
| | - J N L Connor
- Department of Chemistry , The University of Manchester , Manchester M13 9PL , United Kingdom
| |
Collapse
|
42
|
Jambrina PG, González-Sánchez L, Aldegunde J, Sáez-Rábanos V, Aoiz FJ. Competing Dynamical Mechanisms in Inelastic Collisions of H + HF. J Phys Chem A 2019; 123:9079-9088. [PMID: 31549832 DOI: 10.1021/acs.jpca.9b07272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics of inelastic collisions between HF and H has been investigated in detail by means of time-independent quantum mechanical calculations on the LWA-78 potential energy surface ( Li , G. ; et al. J. Chem. Phys. 2007 , 127 , 174302 ). Reaction probabilities, differential cross sections, and three-vector correlations have been calculated and analyzed. Our results show that there are two competing collision mechanisms that correlate with low and high impact parameters and show very different stereodynamical preferences. The mechanism promoted by high impact parameters is the only one present at low collision energies. We also observe the presence of an apparent threshold in the inelastic cross section for relatively high initial HF rotational quantum numbers, which is associated with the larger energy difference between adjacent rotational quantum states with increasing rotation.
Collapse
Affiliation(s)
- Pablo G Jambrina
- Departamento de Química Física, Facultad de Química , University of Salamanca , 37008 Salamanca , Spain
| | - Lola González-Sánchez
- Departamento de Química Física, Facultad de Química , University of Salamanca , 37008 Salamanca , Spain
| | - Jesús Aldegunde
- Departamento de Química Física, Facultad de Química , University of Salamanca , 37008 Salamanca , Spain
| | - V Sáez-Rábanos
- Departamento de Sistemas y Recursos Naturales, E.T.S. de Ingeniría de Montes, Forestal y del Medio Natural , Universidad Politécnica de Madrid , 28040 Madrid , Spain
| | - F Javier Aoiz
- Departamento de Química Física, Facultad de Química , Universidad Complutense , 28040 Madrid , Spain
| |
Collapse
|
43
|
Zhao H, Umer U, Hu X, Xie D, Sun Z. An interaction-asymptotic region decomposition method for general state-to-state reactive scatterings. J Chem Phys 2019; 150:134105. [DOI: 10.1063/1.5085651] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Umair Umer
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
44
|
|
45
|
Wu Y, Cao J, Ma H, Zhang C, Bian W, Nunez-Reyes D, Hickson KM. Conical intersection-regulated intermediates in bimolecular reactions: Insights from C( 1D) + HD dynamics. SCIENCE ADVANCES 2019; 5:eaaw0446. [PMID: 31032418 PMCID: PMC6486230 DOI: 10.1126/sciadv.aaw0446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
The importance of conical intersections (CIs) in electronically nonadiabatic processes is well known, but their influence on adiabatic dynamics has been underestimated. Here, through combined experimental and theoretical studies, we show that CIs induce a barrier and regulate conversion from a precursor metastable intermediate (CI-R) to a deep well one. This results in bond-selective activation, influencing the adiabatic dynamics markedly in the C(1D) + HD reaction. Theory is validated by experiment; quantum dynamics calculations on highly accurate ab initio potential energy surfaces yield rate coefficients and product branching ratios in excellent agreement with the experiment. Quasi-classical trajectory calculations reveal that the CI-R intermediate leads to unusual reaction mechanisms (designated as C─H activation complex conversion and cyclic complex), which are responsible for large branching ratios. We also reveal that CI-R intermediates exist in other reactive systems, and the dynamical effects uncovered here may have general significance.
Collapse
Affiliation(s)
- Yanan Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Ma
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunfang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dianailys Nunez-Reyes
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| | - Kevin M. Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| |
Collapse
|
46
|
Sang JW, Yuan DF, Chen WT, Yu SR, Luo C, Wang SW, Wang T, Yang XM, Wang XA. High resolution crossed molecular beams study of the H+HD→H2+D reaction. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1901010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ji-wei Sang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Dao-fu Yuan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wen-tao Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Sheng-rui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Chang Luo
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Si-wen Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Tao Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue-ming Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing-an Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
47
|
Han S, Zheng X, Ndengué S, Song Y, Dawes R, Xie D, Zhang J, Guo H. Dynamical interference in the vibronic bond breaking reaction of HCO. SCIENCE ADVANCES 2019; 5:eaau0582. [PMID: 30613767 PMCID: PMC6314872 DOI: 10.1126/sciadv.aau0582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
First-principles treatments of quantum molecular reaction dynamics have reached the level of quantitative accuracy even in cases with strong non-Born-Oppenheimer effects. This achievement permits the interpretation of puzzling experimental phenomena related to dynamics governed by multiple coupled potential energy surfaces. We present a combined experimental and theoretical study of the photodissociation of formyl radical (HCO). Oscillations observed in the distribution of product states are found to arise from the interference of matter waves-a manifestation analogous to Young's double-slit experiment.
Collapse
Affiliation(s)
- Shanyu Han
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xianfeng Zheng
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Steve Ndengué
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Yu Song
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS), University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingsong Zhang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
48
|
Yuan D, Guan Y, Chen W, Zhao H, Yu S, Luo C, Tan Y, Xie T, Wang X, Sun Z, Zhang DH, Yang X. Observation of the geometric phase effect in the H + HD → H2+ D reaction. Science 2018; 362:1289-1293. [DOI: 10.1126/science.aav1356] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/02/2018] [Indexed: 11/02/2022]
Abstract
Theory has established the importance of geometric phase (GP) effects in the adiabatic dynamics of molecular systems with a conical intersection connecting the ground- and excited-state potential energy surfaces, but direct observation of their manifestation in chemical reactions remains a major challenge. Here, we report a high-resolution crossed molecular beams study of the H + HD → H2+ D reaction at a collision energy slightly above the conical intersection. Velocity map ion imaging revealed fast angular oscillations in product quantum state–resolved differential cross sections in the forward scattering direction for H2products at specific rovibrational levels. The experimental results agree with adiabatic quantum dynamical calculations only when the GP effect is included.
Collapse
|
49
|
Zhao H, Hu X, Xie D, Sun Z. Quantum wavepacket method for state-to-state reactive cross sections in hyperspherical coordinates. J Chem Phys 2018; 149:174103. [DOI: 10.1063/1.5042066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
50
|
Xie C, Zhu X, Yarkony DR, Guo H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices. J Chem Phys 2018; 149:144107. [DOI: 10.1063/1.5054310] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Xiaolei Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|