1
|
Katayama N, Tabaru K, Nagata T, Yamaguchi M, Suzuki T, Toyao T, Jing Y, Maeno Z, Shimizu KI, Watanabe T, Obora Y. Recyclable and air-stable colloidal manganese nanoparticles catalyzed hydrosilylation of alkenes with tertiary silane. RSC Adv 2025; 15:1776-1781. [PMID: 39835219 PMCID: PMC11744517 DOI: 10.1039/d4ra08380f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
We synthesized N,N-dimethylformamide (DMF)-stabilized manganese nanoparticles (Mn NPs) in a one-step process under air using manganese(ii) chloride as the precursor. The Mn NPs were characterized in terms of particle size, oxidation state, and local structure using annular dark-field scanning transmission electron microscopy (ADF-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). The results indicate that Mn NPs are divalent nanosized particles with Mn-O bonds. The Mn NPs exhibited high catalytic activity, achieving a turnover number (TON) of 15 800, surpassing previous manganese catalysts in alkene hydrosilylation. Furthermore, the Mn NPs maintained their catalytic activity after the reaction, enabling multiple recycling.
Collapse
Affiliation(s)
- Nobuki Katayama
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University Suita Osaka 564-8680 Japan
| | - Kazuki Tabaru
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University Suita Osaka 564-8680 Japan
| | - Tatsuki Nagata
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University Suita Osaka 564-8680 Japan
| | - Miku Yamaguchi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University Suita Osaka 564-8680 Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Centre, SANKEN, The University of Osaka Osaka 567-0047 Ibaraki Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University Sapporo Hokkaido 001-0021 Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University Sapporo Hokkaido 001-0021 Japan
| | - Zen Maeno
- School of Advanced Engineering, Kogakuin University Hachioji Tokyo 192-0015 Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University Sapporo Hokkaido 001-0021 Japan
| | - Takeshi Watanabe
- Japan Synchrotron Radiation Research Institute Sayo-gun Hyogo 679-5198 Japan
| | - Yasushi Obora
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University Suita Osaka 564-8680 Japan
| |
Collapse
|
2
|
Zhu Z, Chan WC, Gao B, Hu G, Zhang P, Fu Y, Ly KS, Lin Z, Quan Y. Borenium-Catalyzed "Boron Walking" for Remote Site-Selective Hydroboration. J Am Chem Soc 2025; 147:880-888. [PMID: 39688469 DOI: 10.1021/jacs.4c13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Remote functionalization through progressive olefin isomerization enables site-selective modification at a distal position, diversifying the synthetic approaches. However, the developed protocols have long relied on transition metal catalysis. Transition metal catalysts are deemed irreplaceable, albeit facing challenges in metal residue and catalyst poisoning. In this work, we present a pioneering approach that employs a borenium ion as a catalyst for site-selective, remote borylation, eliminating the need for metal catalysts. As the reaction progresses, borylation isomers at different positions emerge, gradually and ultimately converging into the predominant α-borylation product. This process is akin to a "walking" of a boron moiety along a carbon skeleton toward an aryl terminus. Detailed mechanistic studies and DFT calculations substantiate the borenium-catalyzed, stepwise migration via a reversible B-H insertion/elimination sequence. This remote borylation exhibits good functional group compatibility, complementing those methods reliant on transition metals. Furthermore, this metal-free protocol permits the convenient synthesis of silyl-remote-boryl compounds, demonstrating an opposite regioselectivity to that observed in transition-metal-catalyzed tandem silylation-borylation reactions. This discovery therefore contributes to site-selective, remote difunctionalization via sequential C-B and C-Si derivatizations, exemplified by the synthesis of amino-remote-alcohol bioactive molecules.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wing Chun Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bin Gao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Guanwen Hu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Peiqi Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yiyi Fu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Kit San Ly
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yangjian Quan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Zhang J, Tian X, Wang Y, Zhang Y, Wang F, Wu L. Borane-Catalyzed Intermolecular Aryl Transfer between Hydrosilanes: Shifting the Equilibrium by Removal of a Gaseous Hydrosilane. J Am Chem Soc 2024; 146:33349-33358. [PMID: 39573901 DOI: 10.1021/jacs.4c07212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The preparation of organosilanes is indeed far from trivial, despite their vast application. Herein, we report a straightforward and general hydrosilane iterative evolution system for the on-demand synthesis of heteroleptic-substituted hydrosilanes. A series of previously difficult-to-prepare hydrosilanes with two or three diverse substituents were readily obtained. Our process is achieved just by using a catalytic amount of BH3 to initiate a selective hydrosilane redistribution process via aryl group migration. Thus, our work represents sporadic examples of the application of hydrosilane redistribution procedures for synthetic applications, whereas hydrosilane redistribution is often found as an unwanted side reaction; its synthetic value has rarely been explored. Furthermore, an unprecedented and challenging cross-redistribution of aryl hydrosilanes with alkyl hydrosilanes is achieved. Mechanistic studies and density functional theory (DFT) calculations revealed that this process was attained via a BH3-catalyzed C-Si bond cleavage and selective intermolecular aryl group migration from aryl hydrosilanes to alkyl hydrosilanes.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ximei Tian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaqiong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yin Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Fang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
4
|
Wang Y, Zhang J, Wang F, Wu L. Titanium-Catalyzed Reaction of Silacyclobutanes with Alkenes: Mimicking the Reactivity and Reversing the Selectivity Towards Late Transition Metals. Angew Chem Int Ed Engl 2024:e202420092. [PMID: 39638775 DOI: 10.1002/anie.202420092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Transition metal-catalyzed ring opening and expansion reactions of silacyclobutanes (SCBs) constitute an atom- and step-economical strategy to construct value-added silicon-containing chemicals. Despite extensive studies, the reaction of SCBs with simple alkenes has only one precedent. Moreover, most reported reactions of SCBs use late transition metals (Pd, Ni, Rh) as catalysts. By contrast, there are no reports of using early transition metals. Herein, we report the first example, to our knowledge, of early-transition-metal-catalyzed reactions of SCBs using earth's second abundant titanium as a catalyst. Notably, orthogonal selectivity was observed. Selective activation of the relatively inert C(sp3)-Si bond was achieved in the case of benzosilacyclobutenes, a selectivity that has rarely been achieved using other metals. Even for silacyclobutanes with C(sp3)-Si bonds only, our titanium system also shows complementary selectivity towards late transition metals to give distinct products. Thus, structurally varied SCBs and alkenes were reacted in our system to afford structurally diverse silicon-containing products that are otherwise difficult to obtain using other transition metals.
Collapse
Affiliation(s)
- Yaqiong Wang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiong Zhang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fang Wang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Lipeng Wu
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
5
|
Yang L, Yi M, Wu X, Lu Y, Zhang Z. Dirhodium(II)/XantPhos Catalyzed Synthesis of β-(E)-Vinylsilanes via Hydrosilylation and Isomerization from Alkynes. Chemistry 2024; 30:e202402406. [PMID: 39187432 DOI: 10.1002/chem.202402406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
A concise hydrosilylation of alkynes for synthesizing β-(E)-vinylsilanes catalyzed by dirhodium(II)/XantPhos has been developed. In this reaction, β-(E)-vinylsilanes were generated from the isomerization of β-(Z)-vinylsilanes catalyzed by dirhodium(II) hydride species rather than the direct insertion of triple bond into M-H or M-Si bond (traditional Chalk-Harrod mechanism or modified Chalk-Harrod mechanism). The hydrosilylation displayed a broad substrate scope for alkynes and tertiary silanes, tolerating diverse functional groups including halides, nitriles, amines, esters, and heterocycles.
Collapse
Affiliation(s)
- Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
7
|
Wang F, Dong G, Yang S, Ji CL, Liu K, Han J, Xie J. Selective Functionalization of Alkenes and Alkynes by Dinuclear Manganese Catalysts. Acc Chem Res 2024; 57:2985-3006. [PMID: 39356824 DOI: 10.1021/acs.accounts.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ConspectusAlkenes and alkynes are fundamental building blocks in organic synthesis due to their commercial availability, bench-stability, and easy preparation. Selective functionalization of alkenes and alkynes is a crucial step for the synthesis of value-added compounds. Precise control over these reactions allows efficient construction of complex molecules with new functionalities. In recent decades, second- and third-row precious transition metal catalysts (palladium, platinum, rhodium, ruthenium) have been pivotal in the development of metal-catalyzed synthetic methodology. These metals exhibit excellent catalytic activity and selectivity, enabling efficient synthesis of functionalized organic molecules. However, recovery and reuse of precious metals have long been a challenge in this field. In recent years, exploration of earth-abundant metal-catalyzed organic reactions has interested both academic and industrial researchers. The development of such catalytic systems offers a promising approach to overcome the limitations of precious metal catalysts. For example, manganese is the third most naturally abundant transition metal with minimal toxicity and excellent biocompatibility. It exhibits good catalytic activity in several organic reactions, including C-H bond functionalization, selective reduction, and radical reactions. This Account outlines our recent progress in dinuclear manganese catalysis for selective functionalization of alkenes and alkynes. We have established the elementary manganese(I)-catalysis in transmetalation with R-B(OH)2. This finding has enabled us to apply the catalyst for the selective 1,2-difunctionalization of structurally diverse alkenes and alkynes. Mechanistic studies suggest a double manganese center synergistic activation model, as superior to Mn(CO)5Br in some cases. In addition, we have developed a ligand-tuned metalloradical strategy of dinuclear manganese catalysts (Mn2(CO)10), bridging the gap between the organometallics and radical chemistry, highlighting the unique radical functionalization of alkenes. Interestingly, using the same starting materials, different ligands can deliver completely different products. Meanwhile, a cooperative catalysis strategy involving manganese and other catalysts (e.g., cobalt, iminium) has also been developed and is briefly discussed. For manganese/iminium synergistic catalysis, a new mechanism for migratory insertion and demetalization-isomerization in synergistic HOMO-LUMO activation was disclosed. This strategy expands the application of low-valent manganese catalysts for enantioselective C-C bond-forming reactions. New reaction discovery is outpacing mechanism studies for dinuclear manganese catalysis, and future studies with time-resolved spectroscopy will improve understanding of the mechanism. Based on these intriguing findings, the precise functionalization of alkenes and alkynes by dinuclear manganese catalysts will expedite a novel activation model to enable late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guichao Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Suqi Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Su XD, Liu Q, Cheng JT, Wang ZX, Chen XY. Near-Infrared-Light-Induced Iron(I) Dimer-Enabled Radical Cascade Reactions of Fluoroalkyl Bromides for the Synthesis of Ring-Fused Quinazolinones. Org Lett 2024; 26:7976-7980. [PMID: 39240022 DOI: 10.1021/acs.orglett.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The use of an earth-abundant and inexpensive iron complex as a catalyst, coupled with near-infrared (NIR) light as the energy source, for radical reactions with alkyl halides has been far less developed. In this study, we report NIR light-mediated iron(I) dimer-catalyzed radical cascade reactions of fluoroalkyl bromides for the synthesis of ring-fused quinazolinones bearing a difluoromethyl group. In this process, the 3-bromo-1,10-phenanthroline ligand facilitates the reactivity of [CpFe(CO)2]2, thereby improving the efficiency of the reaction.
Collapse
Affiliation(s)
- Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Tang Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
9
|
Guo S, Wang W, Zhang Y. Radical-Chain Hydrosilylation of Alkenes Enabled by Triplet Energy Transfer. Chemistry 2024; 30:e202402051. [PMID: 38978189 DOI: 10.1002/chem.202402051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Development of mild, robust and metal-free catalytic approach for the hydrosilylation of alkenes is critical to the advancement of modern organosilicon chemistry given their powerful capacity in the construction of various C-Si bonds. Herein, we wish to disclose a visible light-triggered organophotocatalytic strategy, which proceeds via a triplet energy transfer (EnT)-enabled radical chain pathway. Notably, this redox-neutral protocol is capable of accommodating a broad spectrum of electron-deficient and -rich alkenes with excellent functional group compatibility. Electron-deficient alkenes are more reactive and the reaction could be finished within a couple of minutes even in PBS solution with extremely low concentration, which suggests its click-like potential in organic synthesis. The preparative power of the transformations has been further highlighted in a number of complex settings, including the late-stage functionalization and scale-up experiments. Furthermore, although only highly reactive (TMS)3SiH is suitable hydrosilane substrate, our studies revealed the great reactivity and versatility of (TMS)3Si- group in diverse C-Si and Si-Si bond cleavage-based transformations, enabling the rapid introduction of diverse functional groups and the facile construction of valuable quaternary silicon architectures.
Collapse
Affiliation(s)
- Shixun Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
10
|
Zhang Y, Zang Z, Gao Y, Li W, Zhu T. Hydrosilylation of Arynes with Silanes and Silicon-Based Polymer. Chemistry 2024; 30:e202401440. [PMID: 38870472 DOI: 10.1002/chem.202401440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Benzyne derived from hexadehydrogenated Diels Alder (HDDA) reactions was found to be an efficient hydrosilylation acceptors. Various silanes can react smoothly with HDDA-derived benzyne to give the arylation products. Lewis acid such as boron trifluoride etherate can accelerate these hydrosilylation reactions. Polyhydromethylsiloxane (PHMS), a widely used organosilicon polymer, was also successfully modified using our method. About 5 % of Si-H bonds in the polymer were inserted by benzynes, giving a functional PHMS with much more solubility in methanol and with a blue-emitting fluorescence behavior. Mechanism research shows that the insertion of benzyne into the Si-H bond probably undergoes a synergistic pathway, which is quite different from the traditional radical-initiated hydrosilylation or transition-metal-catalyzed hydrosilylation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Zhenming Zang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Yuan Gao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Wenchang Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Tingshun Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Wang ZL, Wang Y, Sun YC, Zhao JB, Xu YH. Regiodivergent Hydrosilylation of Polar Enynes to Synthesize Site-Specific Silyl-Substituted Dienes. Angew Chem Int Ed Engl 2024; 63:e202405791. [PMID: 38593214 DOI: 10.1002/anie.202405791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Herein, we present catalyst-regulated switchable site-selective hydrosilylation of enynes, which are suitable for a wide range of alkyl and aryl substituted polar enynes and exhibit excellent functional group compatibility. Under the optimized conditions, silyl groups can be precisely installed at various positions of 1,3-dienes. While α- and γ-silylation products were obtained under platinum-catalytic systems, β-silylation products were delivered with [Cp*RuCl]4 as catalyst. This process lead to the formation of 1,3-dienoates with diverse substitutions, which would pose challenges with other methodologies.
Collapse
Affiliation(s)
- Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ying Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu-Chen Sun
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jin-Bo Zhao
- Faculty of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P.R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
12
|
Koo Y, Hong S. Nickel/photoredox-catalyzed three-component silylacylation of acrylates via chlorine photoelimination. Chem Sci 2024; 15:7707-7713. [PMID: 38784747 PMCID: PMC11110154 DOI: 10.1039/d4sc02164a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The extensive utility of organosilicon compounds across a wide range of disciplines has sparked significant interest in their efficient synthesis. Although catalytic 1,2-silyldifunctionalization of alkenes provides a promising method for the assembly of intricate organosilicon frameworks with atom and step economy, its advancement is hindered by the requirement of an external hydrogen atom transfer (HAT) agent in photoredox catalysis. Herein, we disclose an efficient three-component silylacylation of α,β-unsaturated carbonyl compounds, leveraging a synergistic nickel/photoredox catalysis with various hydrosilanes and aroyl chlorides. This method enables the direct conversion of acrylates into valuable building blocks that contain both carbonyl and silicon functionalities through a single, redox-neutral process. Key to this reaction is the precise activation of the Si-H bond, achieved through chlorine radical-induced HAT, enabled by the photoelimination of a Ni-Cl bond. Acyl chlorides serve a dual role, functioning as both acylating agents and chloride donors. Our methodology is distinguished by its mild conditions and extensive substrate adaptability, significantly enhancing the late-stage functionalization of pharmaceuticals.
Collapse
Affiliation(s)
- Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
13
|
Zhao CG, Cai J, Du C, Gao Q, Han J, Xie J. Manganese(I)-Catalyzed Enantioselective C(sp 2)-C(sp 3) Bond-Forming for the Synthesis of Skipped Dienes with Synergistic Aminocatalysis. Angew Chem Int Ed Engl 2024; 63:e202400177. [PMID: 38488857 DOI: 10.1002/anie.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 04/09/2024]
Abstract
Mn(I)-catalyzed enantioselective C-C bond-forming reactions represent a great challenge in homogeneous catalysis primarily due to a limited understanding of its mechanistic principles. Herein, we have developed an interesting catalytic strategy that leverages a synergistic combination of a dimeric manganese(I) catalyst and a chiral aminocatalyst to address this issue. A range of conjugated dienals and trienals can exclusively proceed 1,4-hydroalkenylation by using readily available aromatic and aliphatic alkenyl boronic acids as coupling partners, producing a rich library of skipped diene aldehydes in synthetically useful yields and high levels of enantioselectivities. Notably, downstream transformations of these products can not only afford a concise approach to construct enantioenriched skipped trienes but also realize enantioselective total synthesis of analogues to (-)-Blepharocalyxin D in four steps. DFT calculations suggest the 1,4-hydroalkenylation is kinetically more favorable than 1,6-hydroalkenylation.
Collapse
Affiliation(s)
- Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junzhe Cai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Qiu Z, Deng H, Neumann CN. Site-Isolated Rhodium(II) Metalloradicals Catalyze Olefin Hydrofunctionalization. Angew Chem Int Ed Engl 2024; 63:e202401375. [PMID: 38314637 DOI: 10.1002/anie.202401375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Rh(II) porphyrin complexes display pronounced metal-centered radical character and the ability to activate small molecules under mild conditions, but catalysis with Rh(II) porphyrins is extremely rare. In addition to facile dimerization, Rh(II) porphyrins readily engage in kinetically and thermodynamically facile reactions involving two Rh(II) centers to generate stable Rh(III)-X intermediates that obstruct turnover in thermal catalysis. Here we report site isolation of Rh(II) metalloradicals in a MOF host, which not only protects Rh(II) metalloradicals against dimerization, but also allows them to participate in thermal catalysis. Access to PCN-224 or PCN-222 in which the porphyrin linkers are fully metalated by Rh(II) in the absence of any accompanying Rh(0) nanoparticles was achieved via the first direct MOF synthesis with a linker containing a transition-metal alkyl moiety, followed by Rh(III)-C bond photolysis.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Hao Deng
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Chen P, Tian L, Ji X, Deng GJ, Huang H. Copper-Catalyzed 1,2-Sulfonyletherification of 1,3-Dienes. Org Lett 2024; 26:2939-2944. [PMID: 38602425 DOI: 10.1021/acs.orglett.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A selective three-component 1,2-sulfonyl etherification of aryl 1,3-dienes enabled by copper catalysis to afford biologically interesting alkenyl 1,2-sulfone ether derivatives through C-S and C-O bond formation is described. The protocol proceeds with the sulfonyl chloride and alcohols under simple, mild, and base-free conditions, providing a straightforward route to sulfonylated allyl ether compounds with broad functional group tolerance and excellent chemo- and regioselectivity. Mechanistic studies indicate that the selective alkene difunctionalization includes a key copper-mediated single-electron transfer process.
Collapse
Affiliation(s)
- Pu Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Lin Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
16
|
Kumar Jha R, Rohilla K, Jain S, Parganiha D, Kumar S. Blue-Light Irradiated Mn(0)-Catalyzed Hydroxylation and C(sp 3 )-H Functionalization of Unactivated Alkanes with C(sp 2 )-H Bonds of Quinones for Alkylated Hydroxy Quinones and Parvaquone. Chemistry 2024; 30:e202303537. [PMID: 37991931 DOI: 10.1002/chem.202303537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Site-selective C(sp3 )-H functionalization of unreactive hydrocarbons is always challenging due to its inherited chemical inertness, slightly different reactivity of various C-H bonds, and intrinsically high bond dissociation energies. Here, a site-selective C-H alkylation of naphthoquinone with unactivated hydrocarbons using Mn2 (CO)10 as a catalyst under blue-light (457 nm) irradiation without any external acid or base and pre-functionalization is presented. The selective C-H functionalization of tertiary over secondary and secondary over primary C(sp3 )-H bonds in abundant chemical feedstocks was achieved, and hydroxylation of quinones was realized in situ by employing the developed methodology. This protocol provides a new catalytic system for the direct construction of high-value-added compounds, namely, parvaquone (a commercially available drug used to treat theileriosis) and its derivatives under ambient reaction conditions. Moreover, this operationally simple protocol applies to various linear-, branched-, and cyclo-alkanes with high degrees of site selectivity under blue-light irradiated conditions and could provide rapid and straightforward access to versatile methodologies for upgrading feedstock chemicals. Mechanistic insight by radical trapping, radical scavenging, EPR, and other controlled experiments well corroborated with DFT studies suggest that the reaction proceeds by a radical pathway.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Komal Rohilla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
17
|
Das K, Kundu A, Sarkar K, Adhikari D, Maji B. Catalytic acceptorless dehydrogenative borylation of styrenes enabled by a molecularly defined manganese complex. Chem Sci 2024; 15:1098-1105. [PMID: 38239678 PMCID: PMC10793603 DOI: 10.1039/d3sc05523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 01/22/2024] Open
Abstract
In this study, we employed a 3d metal complex as a catalyst to synthesize alkenyl boronate esters through the dehydrogenative coupling of styrenes and pinacolborane. The process generates hydrogen gas as the sole byproduct without requiring an acceptor, rendering it environmentally friendly and atom-efficient. This methodology demonstrated exceptional selectivity for dehydrogenative borylation over direct hydroboration. Additionally, it exhibited a preference for borylating aromatic alkenes over aliphatic ones. Notably, derivatives of natural products and bioactive molecules successfully underwent diversification using this approach. The alkenyl boronate esters served as precursors for the synthesis of various pharmaceuticals and potential anticancer agents. Our research involved comprehensive experimental and computational studies to elucidate the reaction pathway, highlighting the B-H bond cleavage as the rate-determining step. The catalyst's success was attributed to the hemilability and metal-ligand bifunctionality of the ligand backbone.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali SAS Nagar 140306 India
| | - Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali SAS Nagar 140306 India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| |
Collapse
|
18
|
Zhang T, Yang X, Jin J, Han X, Fang Y, Zhou X, Li Y, Han A, Wang Y, Liu J. Modulating the Electronic Metal-Support Interactions to Anti-Leaching Pt Single Atoms for Efficient Hydrosilylation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304144. [PMID: 38012963 DOI: 10.1002/adma.202304144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Modulating the electronic metal-support interaction (EMSI) of the single-atomic sites against leaching via microenvironment regulation is critical to achieving high activity and stability but remains challenging. Herein, this work selectively confines Pt single atoms on CoFe layered double hydroxide (LDH) by three oxygen atoms around cation vacancy (Pt1 /LDHV ) or one oxygen atom at the regular surface (Pt1 /LDH) via cation vacancy engineering. By characterizing the structural evolution of the obtained catalysts before and after vacancy construction and single-atom anchoring, this work demonstrates how the microenvironments modulate the EMSI and the catalytic performance. Theoretical simulations further reveal a significantly enhanced EMSI effect by the three-coordinated Pt1 atoms on cation vacancies in Pt1 /LDHV , which endows a more prominent anti-leaching feature than the one-coordinated ones on the regular surface. As a result, the Pt1 /LDHV catalyst shows exceptional performance in anti-Markovnikov alkene hydrosilylation, with a turnover frequency of 1.3 × 105 h-1 . More importantly, the enhanced EMSI of Pt1 /LDHV effectively prevented the leaching of Pt atom from the catalyst surface and can be recycled at least ten times with only a 3.4% loss of catalytic efficiency with minimal Pt leaching, and reach a high turnover number of 1.0 × 106 .
Collapse
Affiliation(s)
- Tianyu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jing Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences Institution, Beijing, 100190, China
| | - Xu Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yingyan Fang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xulin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
19
|
Xia S, Li W, Chen H, Zhu C, Han J, Xie J. Gold-Manganese Bimetallic Redox Coupling with Light. J Am Chem Soc 2023. [PMID: 38039269 DOI: 10.1021/jacs.3c08796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
The classical Au(I)/Au(III) redox couple chemistry has been limited to constructing C-C and C-X bonds, and thus, the exploration of the elementary reaction of gold redox coupling is very significant to enrich its organometallic features. Herein, we report the first visible-light-mediated, external oxidant-free Au(I)/Au(III) redox couple using commercially available Mn2(CO)10 to generate Mn-Au(III)-Mn intermediates for bimetallic redox coupling. A wide range of structurally diverse heterodinuclear and polynuclear L-Au(I)-Mn-L' complexes (19 examples, up to >99% yields) are readily constructed, providing a robust strategy for the concise construction of Au-Mn complexes under mild reaction conditions. The mechanistic studies together with DFT calculations support the radical oxidative addition of •Mn(CO)5 to gold and bimetallic reductive elimination mechanisms from highly active Mn-Au(III)-Mn species, representing an important step toward an elementary reaction in gold chemistry research. Furthermore, the resulting Au-Mn complexes exhibit unique catalytic activity, with which divergent reductive coupling of nitroarenes can readily afford azoxybenzenes, azobenzenes, and hydrazobenzenes in moderate to good yields.
Collapse
Affiliation(s)
- Siyu Xia
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongliang Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Biremond T, Riomet M, Jubault P, Poisson T. Photocatalytic and Electrochemical Borylation and Silylation Reactions. CHEM REC 2023; 23:e202300172. [PMID: 37358334 DOI: 10.1002/tcr.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Indexed: 06/27/2023]
Abstract
Due to their high versatility borylated and silylated compounds are inevitable synthons for organic chemists. To escape the classical hydroboration/hydrosilylation paradigm, chemists turned their attention to more modern and green methods such as photoredox chemistry and electrosynthesis. This account focuses on novel methods for the generation of boryl and silyl radicals to forge C-B and C-Si bonds from our group.
Collapse
Affiliation(s)
- Tony Biremond
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Margaux Riomet
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Poisson
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
21
|
Zhao CG, Du C, Guo Z, Li W, Han J, Xie J. Merging Manganese and Iminium Catalysis: Selective Hydroalkenylation of Unsaturated Aldehydes and Ketones. Angew Chem Int Ed Engl 2023; 62:e202312414. [PMID: 37696774 DOI: 10.1002/anie.202312414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
The use of synergistic catalytic strategy can usually circumvent the intrinsic limitations of one catalytic system. In this communication, we disclose a cooperative catalysis strategy of manganese and iminium catalysis to realize selective hydroalkenylation of unsaturated aldehydes and ketones. Its success stems from the LUMO activation of unsaturated carbonyl compounds with secondary amines as the organocatalyst and the synergistic HOMO activation of alkenylboronic acids with Mn2 (CO)8 Br2 . This protocol exhibits several synthetic advances, e.g., simple operation, good functional group compatibility and good regioselectivity. The theoretical calculation indicates the migratory insertion followed by demetallation-isomerization process is kinetically more favorable than Michael-like nucleophilic addition. The use of proline-derived organocatalyst can deliver the desired products in moderate enantioselectivity.
Collapse
Affiliation(s)
- Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenyu Guo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
22
|
Huang Z, Lin Q, Li J, Xu S, Lv S, Xie F, Wang J, Li B. Ruthenium-Catalyzed Dehydrogenative Intermolecular O-H/Si-H/C-H Silylation: Synthesis of ( E)-Alkenyl Silyl-Ether and Silyl-Ether Heterocycle. Molecules 2023; 28:7186. [PMID: 37894665 PMCID: PMC10609488 DOI: 10.3390/molecules28207186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Selective dehydrogenative silylation is one of the most valuable tools for synthesizing organosilicon compounds. In this study, a regio- and stereoselective ruthenium-catalyzed dehydrogenative intermolecular silylation was firstly developed to access (E)-alkenyl silyl-ether derivatives and silyl-ether heterocycles with good functional group tolerance. Furthermore, two pathways for RuH2(CO)(PPh3)3/NBE-catalyzed dehydrogenative intermolecular silylation of alcohols and alkenes as well as intermolecular silylation of naphthol derivatives were investigated with H2SiEt2 as the hydrosilane reagent.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
- Guangdong Wamo New Material Technology Co., Ltd., Jiangmen 529020, China
| | - Qiao Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Jiefang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Shanshan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Shaohuan Lv
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China;
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
23
|
Zhong T, Gu C, Li Y, Huang J, Han J, Zhu C, Han J, Xie J. Manganese/Cobalt Bimetallic Relay Catalysis for Divergent Dehydrogenative Difluoroalkylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202310762. [PMID: 37642584 DOI: 10.1002/anie.202310762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The involvement of manganese radical for halogen atom transfer (XAT) reactions has been esteemed as one reliable method but encountered with limited catalytic models. In this paper, a novel bimetallic relay catalysis of Mn2 (CO)10 and cobaloxime has been developed for divergent dehydrogenative difluoroalkylation of alkenes using commercially available difluoroalkyl bromides. A wide range of structurally diverse terminal, cyclic and internal alkenes as well as tetrasubstituted alkenes are found to be good coupling partners to deliver difluoroalkylated allylic products and difluoromethylated cyclic products, accompanied with the production of H2 as the by-product. This bimetallic relay strategy features broad substrate scope, mild reaction conditions and excellent functional group compatibility. Its success represents an important step-forward to expedite the construction of a rich library of difluoroalkylated products.
Collapse
Affiliation(s)
- Tao Zhong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengyihan Gu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuhang Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
24
|
Zhao S, Ding L, Sun Y, Wang M, Zhao D. Synergistic Palladium/Lewis Acid-Catalyzed Regio- and Stereo-divergent Bissilylation of Alkynoates: Scope, Mechanism, and Origin of Selectivity. Angew Chem Int Ed Engl 2023; 62:e202309169. [PMID: 37477636 DOI: 10.1002/anie.202309169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Transition metal-catalyzed bissilylation reactions of alkynes with disilane reagents have become one of the most straightforward and efficient protocols to rapidly produce structurally diverse alkenyl silicon derivatives. In these reactions, the utilization of unsymmetrical disilane reagents provided the possibilities for reactivity enhancement as well as the synthetic merits in contrast to symmetrical disilane reagents. However, a major yet challenging objective is achieving precise control over the selectivity including the regioselectivity and the cis/trans-selectivity. Herein we realized the first divergent bissilylation of alkynoates with our developed air-stable disilane reagent 8-(2-substituted-1,1,2,2-tetramethyldisilanyl)quinoline (TMDQ) by means of synergistic Pd/Lewis acid catalytic system. The catalytic system precisely dictates the selectivity, resulting in the divergent synthesis of 1,2-bissilyl alkenes. The power of these 1,2-bissilyl alkenes serving as the key synthetic intermediates has been clearly demonstrated by rapid construction of diverse motifs and densely functionalized biologically active compounds. In addition, the origins of the switchable selectivities were well elucidated by experimental and computational studies on the reaction mechanism and were mainly attributed to different ligand steric effects, the use of the specific disilane reagent TMDQ and the different coordination modes of different Lewis acid with alkynoates.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yingman Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
25
|
Ji CL, Zhai X, Fang QY, Zhu C, Han J, Xie J. Photoinduced activation of alkyl chlorides. Chem Soc Rev 2023; 52:6120-6138. [PMID: 37555398 DOI: 10.1039/d3cs00110e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
In recent years, the activation of unactivated alkyl chlorides through light-induced processes has emerged as a promising field in radical chemistry, and has led to new transformations in organic synthesis. Direct utilization of alkyl chlorides as C(sp3)-hybridized electrophiles enables the facile construction of carbon-carbon and carbon-heteroatom bonds. Furthermore, recent studies in medicinal chemistry indicate that their presence is associated with high levels of success in clinical trials. This review summarizes the recent advances in the photoinduced activation of unactivated alkyl chlorides and discusses the mechanistic aspects underlying these reactions. We anticipate that this review will serve as a valuable resource for researchers in the field of unactivated chemical bond functionalization, and inspire considerable developments in organic chemistry, drug synthesis, materials science and other related disciplines.
Collapse
Affiliation(s)
- Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xinyi Zhai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qing-Yun Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
26
|
Pang Y, Chen S, Han J, Zhu C, Zhao CG, Xie J. Dimeric Manganese-Catalyzed Hydroalkenylation of Alkynes with a Versatile Silicon-Based Directing Group. Angew Chem Int Ed Engl 2023; 62:e202306922. [PMID: 37283307 DOI: 10.1002/anie.202306922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
Herein, we present a manganese-catalyzed, branched-selective hydroalkenylation of terminal alkynes, under mild conditions through facile installation of a versatile silanol as a removable directing group. With an alkenyl boronic acid as the coupling partner, this reaction produces stereodefined (E,E)-1,3-dienes with high regio-, chemo- and stereoselectivity. The protocol features mild reaction conditions such as room temperature and an air atmosphere, while maintaining excellent functional group compatibility. The resulting 1,3-dienesilanol products serve as versatile building blocks, as the removal of the silanol group allows for the synthesis of both branched terminal 1,3-dienes for downstream coupling reactions, as well as stereoselective construction of linear (E,E)-1,3-dienes and (E,E,E)- or (E,E,Z)-1,3,5-trienes. In addition, a Diels-Alder cycloaddition can smoothly and selectively deliver silicon-containing pentasubstituted cyclohexene derivatives. Mechanistic investigations, in conjunction with DFT calculations, suggest a bimetallic synergistic activation model to account for the observed enhanced catalytic efficiency and good regioselectivity.
Collapse
Affiliation(s)
- Yubo Pang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuai Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
27
|
Behera RR, Saha R, Kumar AA, Sethi S, Jana NC, Bagh B. Hydrosilylation of Terminal Alkynes Catalyzed by an Air-Stable Manganese-NHC Complex. J Org Chem 2023. [PMID: 37317486 DOI: 10.1021/acs.joc.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, catalysis with base metal manganese has received a significant amount of interest. Catalysis with manganese complexes having N-heterocyclic carbenes (NHCs) is relatively underdeveloped in comparison to the extensively investigated manganese catalysts possessing pincer ligands (particularly phosphine-based ligands). Herein, we describe the synthesis of two imidazolium salts decorated with picolyl arms (L1 and L2) as NHC precursors. Facile coordination of L1 and L2 with MnBr(CO)5 in the presence of a base resulted in the formation manganese(I)-NHC complexes (1 and 2) as an air-stable solid in good isolated yield. Single-crystal X-ray analysis revealed the structure of the cationic complexes [Mn(CO)3(NHC)][PF6] with tridentate N,C,N binding of the NHC ligand in a facile fashion. Along with a few known manganese(I) complexes, these Mn(I)-NHC complexes 1 and 2 were tested for the hydrosilylation of terminal alkynes. Complex 1 was proved to be an effective catalyst for the hydrosilylation of terminal alkynes with good selectivity toward the less thermodynamically stable β-(Z)-vinylsilanes. This method provided good regioselectivity (anti-Markovnikov addition) and stereoselectivity (β-(Z)-product). Experimental evidence suggested that the present hydrosilylation pathway involved an organometallic mechanism with manganese(I)-silyl species as a possible reactive intermediate.
Collapse
Affiliation(s)
- Rakesh R Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Alamsaty Ashis Kumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
28
|
Li BX, Ishida H, Wang C, Uchiyama M. Visible-Light-Driven Silyl or Germyl Radical Generation via Si-C or Ge-C Bond Homolysis. Org Lett 2023; 25:1765-1770. [PMID: 36883960 DOI: 10.1021/acs.orglett.3c00503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
We report a simple, rapid, and selective protocol for visible-light-driven generation of silyl radicals through photoredox-induced Si-C bond homolysis. Irradiating 3-silyl-1,4-cyclohexadienes with blue light in the presence of a commercially available photocatalyst smoothly generated silyl radicals bearing various substituents within 1 h, and these radicals were trapped by a broad range of alkenes to afford products in good yields. This process is also available for efficient generation of germyl radicals.
Collapse
Affiliation(s)
- Bi-Xiao Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Ishida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chao Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan
| |
Collapse
|
29
|
Ye ZH, Gou FH, Wu Y, Li CY, Wang P. Diverse Synthesis of Alkenylsilanes via Pd-Catalyzed Alkenyl C-H Silylation. Org Lett 2023; 25:2145-2150. [PMID: 36921249 DOI: 10.1021/acs.orglett.3c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Here, we disclose a general approach for the diverse synthesis of alkenylsilanes in a highly efficient, stereoselective, and atom-economic manner by leveraging the palladium-catalyzed disilylation reaction of 2-bromostyrene derivatives with hexamethyldisilane, which is suitable for the preparation of a series of disubstituted, trisubstituted, and tetrasubstituted alkenylsilanes. Furthermore, the resulting tetrasubstituted alkenylsilanes could be readily transformed into the corresponding diarylated benzosiloles, which have been proven to be a potential AIE material and a fluorene material.
Collapse
Affiliation(s)
- Zi-Hang Ye
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Fei-Hu Gou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Chuan-Ying Li
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
30
|
Saini P, Dolui P, Nair A, Verma A, Elias AJ. A Bench-stable 8-Aminoquinoline Derived Phosphine-free Manganese (I)-Catalyst for Environmentally Benign C(α)-Alkylation of Oxindoles with Secondary and Primary Alcohols. Chem Asian J 2023; 18:e202201148. [PMID: 36688923 DOI: 10.1002/asia.202201148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Herein, we report a new air-stable phosphine-free 8-AQ (8-aminoquinoline) based Mn(I) carbonyl complex as the catalyst for the C(α)-alkylation of oxindoles with alcohols. The Mn complex [(8-AQ)Mn(CO)3 Br] works effectively as a catalyst for the α-alkylation of oxindoles by both secondary as well as primary alcohols. The procedure has been used for the synthesis of pharmaceutically important recently developed oxindoles such as 3-(4-methoxybenzyl)indolin-2-one, 3-(4-(dimethylamino)benzyl)indolin-2-one, 3-(4-(dimethylamino)phenyl)-5-fluoroindolin-2-one and 3-(benzo[d][1,3]dioxol-5-ylmethyl)indolin-2-one, which are found to be effective in preventing specific types of cell death in neurodegenerative disorders. Control experiments have been carried out to investigate the reaction mechanism and the crucial role of metal-ligand cooperation via -NH2 moiety during catalysis.
Collapse
Affiliation(s)
- Parul Saini
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pritam Dolui
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Abhishek Nair
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashutosh Verma
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anil J Elias
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
31
|
Fan X, Zhang M, Gao Y, Zhou Q, Zhang Y, Yu J, Xu W, Yan J, Liu H, Lei Z, Ter YC, Chanmungkalakul S, Lum Y, Liu X, Cui G, Wu J. Stepwise on-demand functionalization of multihydrosilanes enabled by a hydrogen-atom-transfer photocatalyst based on eosin Y. Nat Chem 2023; 15:666-676. [PMID: 36894703 DOI: 10.1038/s41557-023-01155-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023]
Abstract
Organosilanes are of vital importance for modern human society, having found widespread applications in functional materials, organic synthesis, drug discovery and life sciences. However, their preparation remains far from trivial, and on-demand synthesis of heteroleptic substituted silicon reagents is a formidable challenge. The generation of silyl radicals from hydrosilanes via direct hydrogen-atom-transfer (HAT) photocatalysis represents the most atom-, step-, redox- and catalyst-economic pathway for the activation of hydrosilanes. Here, in view of the green characteristics of neutral eosin Y (such as its abundance, low cost, metal-free nature, absorption of visible light and excellent selectivity), we show that using it as a direct HAT photocatalyst enables the stepwise custom functionalization of multihydrosilanes, giving access to fully substituted silicon compounds. By exploiting this strategy, we realize preferable hydrogen abstraction of Si-H bonds in the presence of active C-H bonds, diverse functionalization of hydrosilanes (for example, alkylation, vinylation, allylation, arylation, deuteration, oxidation and halogenation), and remarkably selective monofunctionalization of di- and trihydrosilanes.
Collapse
Affiliation(s)
- Xuanzi Fan
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Yuanjun Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Qi Zhou
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Yanbin Zhang
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Jiajia Yu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Wengang Xu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Jianming Yan
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Haiwang Liu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Zhexuan Lei
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Yan Chong Ter
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Supphachok Chanmungkalakul
- Fluorescence Research Group, Singapore University of Technology and Design, Singapore, Republic of Singapore
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, Singapore, Republic of Singapore
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
32
|
Wang R, Wang Y, Ding R, Staub PB, Zhao CZ, Liu P, Wang YM. Designed Iron Catalysts for Allylic C-H Functionalization of Propylene and Simple Olefins. Angew Chem Int Ed Engl 2023; 62:e202216309. [PMID: 36622129 PMCID: PMC9974915 DOI: 10.1002/anie.202216309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
Propylene gas is produced worldwide by steam cracking on million-metric-ton scale per year. It serves as a valuable starting material for π-bond functionalization but is rarely applied in transition metal-catalyzed allylic C-H functionalization for fine chemical synthesis. Herein, we report that a newly-developed cationic cyclopentadienyliron dicarbonyl complex allows for the conversion of propylene to its allylic C-C bond coupling products under catalytic conditions. This approach was also found applicable to the allylic functionalization of simple α-olefins with distinctive branched selectivity. Experimental and computational mechanistic studies supported the allylic deprotonation of the metal-coordinated alkene as the turnover-limiting step and led to insights into the multifaceted roles of the newly designed ligand in promoting allylic C-H functionalization with enhanced reactivity and stereoselectivity.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ruiqi Ding
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Parker B Staub
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christopher Z Zhao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
33
|
Zhang G, Tian Y, Zhang C, Li X, Chen F. Decarboxylative C-H silylation of N-heteroarenes with silanecarboxylic acids. Chem Commun (Camb) 2023; 59:2449-2452. [PMID: 36752089 DOI: 10.1039/d2cc06380h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Established decarboxylative Minisci reactions are limited to aliphatic carboxylic acids, as their analogs, silanecarboxylic acids, have been rarely investigated. Herein, we present a new decarboxylative Minisci-type reaction of N-heteroarenes with silanecarboxylic acids under photo- or silver-mediated conditions. This C-H silylation strategy provides efficient access to diverse N-heteroarylsilanes in moderate to excellent yields with high regioselectivity, among which Ag-catalysed decarboxylation of silanecarboxylic acids furnishes an unprecedented method for silyl radical generation.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Ye Tian
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
34
|
Wan Q, Hou ZW, Zhao XR, Xie X, Wang L. Organoelectrophotocatalytic C-H Silylation of Heteroarenes. Org Lett 2023; 25:1008-1013. [PMID: 36735345 DOI: 10.1021/acs.orglett.3c00144] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An organoelectrophotocatalytic approach for the C-H silylation of heteroarenes through dehydrogenation cross-coupling with H2 evolution has been developed. The organoelectrophotocatalytic strategy is carried out under a simple and efficient monocatalytic system by employing 9,10-phenanthrenequinone both as an organocatalyst and as a hydrogen atom transfer (HAT) reagent, which avoids the need for an external HAT reagent, an oxidant, or a metal reagent. A variety of heteroarenes can be compatible in satisfactory yields with excellent regioselectivity.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Xin-Ru Zhao
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Xiaoyu Xie
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
35
|
Lu C, Lin Y, Wang M, Zhou J, Wang S, Jiang H, Kang K, Huang L. Nickel-Catalyzed Ring-Opening of Benzofurans for the Divergent Synthesis of ortho-Functionalized Phenol Derivatives. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Changhui Lu
- The State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yueping Lin
- The State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jiaming Zhou
- The State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuo Wang
- The State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- The State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kai Kang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Liangbin Huang
- The State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
36
|
Ito T, Sunada Y. A Cobalt-Containing Polysilane as an Effective Solid-State Catalyst for the Hydrosilylation of Alkenes. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tatsuyoshi Ito
- Kanagawa Institute of Industrial Science and Technology, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yusuke Sunada
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
37
|
Photoredox/Nickel Cooperatively Catalyzed Radical Allylic Silylation of Allyl Acetates – Scope and Mechanism. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Kobayashi K, Nakazawa H. Research on inorganic activators of dibromo Co-terpyridine complex precatalyst for hydrosilylation. Dalton Trans 2022; 51:18685-18692. [PMID: 36448645 DOI: 10.1039/d2dt03471a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The search for a stable, inexpensive, and easy-to-handle activator toward the catalyst precursor [Co(tpy)Br2] in the hydrosilylation of olefins with hydrosilane revealed that K2CO3 is an effective activator. This inorganic salt is available on substrates with some functional groups and can be readily removed by simple filtration or centrifugation after the reaction. After examining and comparing the activator abilities of various salts, it was proposed that low MX lattice energy, high X-nucleophilicity, and a strong Si-X bond are necessary for an inorganic salt (MX) to be an excellent activator.
Collapse
Affiliation(s)
- Katsuaki Kobayashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Hiroshi Nakazawa
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
39
|
Wang X, Yu ZX, Liu WB. Formal Hydrotrimethylsilylation of Styrenes with Anti-Markovnikov Selectivity Using Hexamethyldisilane. Org Lett 2022; 24:8735-8740. [DOI: 10.1021/acs.orglett.2c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Xin Wang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan, Hubei, 430072, China
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing, 100871, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan, Hubei, 430072, China
| |
Collapse
|
40
|
Torres-Calis A, García JJ. Homogeneous Manganese-Catalyzed Hydrofunctionalizations of Alkenes and Alkynes: Catalytic and Mechanistic Tendencies. ACS OMEGA 2022; 7:37008-37038. [PMID: 36312376 PMCID: PMC9608411 DOI: 10.1021/acsomega.2c05109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many manganese-based homogeneous catalytic precursors have been developed as powerful alternatives in organic synthesis. Among these, the hydrofunctionalizations of unsaturated C-C bonds correspond to outstanding ways to afford compounds with more versatile functional groups, which are commonly used as building blocks in the production of fine chemicals and feedstock for the industrial field. Herein, we present an account of the Mn-catalyzed homogeneous hydrofunctionalizations of alkenes and alkynes with the main objective of finding catalytic and mechanistic tendencies that could serve as a platform for the works to come.
Collapse
|
41
|
Yuan Y, Gu Y, Wang YE, Zheng J, Ji J, Xiong D, Xue F, Mao J. One-Pot Rapid Access to Benzyl Silanes, Germanes, and Stannanes from Toluenes Mediated by a LiN(SiMe 3) 2/CsCl System. J Org Chem 2022; 87:13907-13918. [DOI: 10.1021/acs.joc.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaqi Yuan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yuanyun Gu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiaying Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
42
|
Smith MB. The Backbone of Success of P,N-Hybrid Ligands: Some Recent Developments. Molecules 2022; 27:6293. [PMID: 36234830 PMCID: PMC9614609 DOI: 10.3390/molecules27196293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Organophosphorus ligands are an invaluable family of compounds that continue to underpin important roles in disciplines such as coordination chemistry and catalysis. Their success can routinely be traced back to facile tuneability thus enabling a high degree of control over, for example, electronic and steric properties. Diphosphines, phosphorus compounds bearing two separated PIII donor atoms, are also highly valued and impart their own unique features, for example excellent chelating properties upon metal complexation. In many classical ligands of this type, the backbone connectivity has been based on all carbon spacers only but there is growing interest in embedding other donor atoms such as additional nitrogen (-NH-, -NR-) sites. This review will collate some important examples of ligands in this field, illustrate their role as ligands in coordination chemistry and highlight some of their reactivities and applications. It will be shown that incorporation of a nitrogen-based group can impart unusual reactivities and important catalytic applications.
Collapse
Affiliation(s)
- Martin B Smith
- Department of Chemistry, Loughborough University, Loughborough, Leics LE11 3TU, UK
| |
Collapse
|
43
|
Weber S, Kirchner K. Manganese Alkyl Carbonyl Complexes: From Iconic Stoichiometric Textbook Reactions to Catalytic Applications. Acc Chem Res 2022; 55:2740-2751. [PMID: 36074912 PMCID: PMC9494751 DOI: 10.1021/acs.accounts.2c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The activation of weakly polarized bonds represents a challenging, yet highly valuable process. In this context, precious metal catalysts have been used as reliable compounds for the activation of rather inert bonds for the last several decades. Nevertheless, base-metal complexes including cobalt, iron, or nickel are currently promising candidates for the substitution of noble metals in order to develop more sustainable processes. In the past few years, manganese(I)-based complexes were heavily employed as efficient catalysts for (de)hydrogenation reactions. However, the vast majority of these complexes operate via a metal-ligand bifunctionality as already well implemented for precious metals decades ago. Although high reactivity can be achieved in various reactions, this concept is often not applicable to certain transformations due to outer-sphere mechanisms. In this Account, we outline the potential of alkylated Mn(I)-carbonyl complexes for the activation of nonpolar and moderately polar E-H (E = H, B, C, Si) bonds and disclose our successful approach for the utilization of complexes in the field of homogeneous catalysis. This involves the rational design of manganese complexes for hydrogenation reactions involving ketones, nitriles, carbon dioxide, and alkynes. In addition to that, the reduction of alkenes by dihydrogen could be achieved by a series of well-defined manganese complexes which was not possible before. Furthermore, we elucidate the potential of our Mn-based catalysts in the field of hydrofunctionalization reactions for carbon-carbon multiple bonds. Our investigations unveiled novel insights into reaction pathways of dehydrogenative silylation of alkenes and trans-1,2-diboration of terminal alkynes, which was not yet reported for transition metals. Due to rational catalyst design, these transformations can be achieved under mild reaction conditions. Delightfully, all of the employed complexes are bench-stable compounds. We took advantage of the fact that Mn(I) alkyl complexes are known to undergo migratory insertion of the alkyl group into the CO ligand, yielding an unsaturated acyl intermediate. Hydrogen atom abstraction by the acyl ligand then paves the way to an active species for a variety of catalytic transformations which all proceed via an inner-sphere process. Although these textbook reactions have been well-known for decades, the application in catalytic transformations is still in its infancy. A brief historical overview of alkylated manganese(I)-carbonyl complexes is provided, covering the synthesis and especially iconic stoichiometric transformations, e.g., carbonylation, as intensively examined by Calderazzo, Moss, and others. An outline of potential future applications of defined alkyl manganese complexes will be given, which may inspire researchers for the development of novel (base-)metal catalysts.
Collapse
|
44
|
Chang ASM, Kawamura KE, Henness HS, Salpino VM, Greene JC, Zakharov LN, Cook AK. (NHC)Ni(0)-Catalyzed Branched-Selective Alkene Hydrosilylation with Secondary and Tertiary Silanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alison Sy-min Chang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Kiana E. Kawamura
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Hayden S. Henness
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Victor M. Salpino
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Jack C. Greene
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Lev N. Zakharov
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
45
|
Gan QC, Song ZQ, Tung CH, Wu LZ. Direct C( sp)-H/Si-H Cross-Coupling via Copper Salts Photocatalysis. Org Lett 2022; 24:5192-5196. [PMID: 35801840 DOI: 10.1021/acs.orglett.2c02022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reported herein is the first example of C(sp)-H/Si-H cross-coupling by photocatalysis. In terms of cheap and readily available starting materials, a series of alkynylsilanes are prepared in good to excellent yields upon visible-light irradiation of CuCl and alkynes with silane. The large scale reaction with flow chemistry and late-stage functionalization of natural products shows the potential of the transformation in practical organic synthesis of the alkynylsilanes intermediates.
Collapse
Affiliation(s)
- Qi-Chao Gan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zi-Qi Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
46
|
Copper-catalyzed regio- and stereo-selective hydrosilylation of terminal allenes to access (E)-allylsilanes. Nat Commun 2022; 13:3691. [PMID: 35760931 PMCID: PMC9237096 DOI: 10.1038/s41467-022-31458-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Regioselectivity and stereoselectivity control in hydrosilylation of terminal allenes is challeging. Although the selective synthesis of vinylsilanes, branched allylsilanes or linear (Z)-allylsilanes have been achieved, transition-metal catalyzed hydrosilylation of terminal allenes to access (E)-allylsilane is difficult. Herein, we report a copper-catalyzed selective hydrosilylation reaction of terminal allenes to access (E)-allylsilanes under mild reaction conditions. The reaction shows broad substrate scope, representing an efficient method to prepare trisubstituted (E)-allylsilanes through hydrosilylation reaction of allenes and can also be applied in the synthesis of disubstituted (E)-allylsilanes. The mechanism study reveals that the E-selectivity is kinetically controlled by the catalyst but not by the thermodynamically isomerization of the (Z)-isomer. Regio- and stereoselective transition-metal catalysed hydrosilylation of terminal allenes to access (E)-allylsilanes are challenging organic transformations. Herein, the authors synthesize (E)-allylsilanes via copper-catalyzed hydrosilylation of terminal allenes.
Collapse
|
47
|
Sekine K. Manganese-catalyzed Dehydrogenative Silylation of Alkenes. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
48
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
49
|
Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
He Y, Du C, Han J, Han J, Zhu C, Xie J. Manganese‐Catalyzed Anti‐Markovnikov
Hydroarylation of Enamides: Modular Synthesis of Arylethylamines. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yijie He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 China
| |
Collapse
|