1
|
Saddington A, Yao S, Lorent C, Driess M. Redox non-innocent bis-silylene aluminium complexes with a carborane backbone. Chem Sci 2025; 16:6383-6391. [PMID: 40092600 PMCID: PMC11907707 DOI: 10.1039/d5sc01104c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
The redox non-innocent bis-silylenyl ortho-carborane ligands [SiII(CCcage)SiII] (CCcage = o-C2B10H10, SiII = ArC(NtBu)2Si; Ar = C6H5, p- t BuC6H4), with their particular chelating and electronic properties, have been employed for the synthesis of new donor-stabilized SiII → AlIII complexes, potential precursors to low oxidation state aluminium complexes. Due to the redox non-innocence of the carborane backbone, [AlI2 +] complexes with three ligand oxidation states were characterized: with neutral and radical anionic closo- as well as dianionic nido-C2B10 cores. Reduction at the aluminium center could also be enacted with potassium/naphthalene leading to {K[SiII(CCcage)SiII]Al(C10H8)} derivatives from [1 + 4] cycloaddition reaction. The mechanism of this dearomatization reaction is proposed to occur via the formation of transient low oxidation state aluminium intermediates (radicals and/or aluminylenes) that are trapped by naphthalene.
Collapse
Affiliation(s)
- Artemis Saddington
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 Berlin 10623 Germany
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 Berlin 10623 Germany
| | - Christian Lorent
- Department of Chemistry: Physical and Biophysical Chemistry, Technische Universität Berlin Strasse des 17. Juni 135, Sekr. PC14 Berlin 10623 Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 Berlin 10623 Germany
| |
Collapse
|
2
|
Koike T, Sakurata N, Ishida S, Iwamoto T. Isolable Si=B Analogue of a Vinyl Halide: A Building Block for Facile Access toward Silicon-Boron Multiple Bonded Species. Angew Chem Int Ed Engl 2024; 63:e202411283. [PMID: 39126248 DOI: 10.1002/anie.202411283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Compared to the outstanding development in the synthesis of Si-B single bonded species, borylsilanes and their application to organic synthesis, the chemistry of Si=B double bonded species, borasilenes and boratasilenes have only made little progress, first of all, due to the difficulties in accessing such double bonds. Herein we report the synthesis of the first Si=B analogue of a vinyl halide, a bromoboratasilene, via formal borylene insertion to the coordination sphere of a monoatomic Si(0) complex, using a dihaloborane as the borylene source. The treatment of bromoboratasilene toward neutral or anionic Lewis bases gives access to new boratasilenes, all of which were proved to possess significant Si=B double bond character by XRD analysis and DFT calculations. These results demonstrate exciting strategies to synthesize new types of Si=B double bonded species which should further progress the chemistry of boron, silicon-containing molecules.
Collapse
Affiliation(s)
- Taichi Koike
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Naoki Sakurata
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
3
|
Wu X, Zhang W. A review on aluminum matrix composites' characteristics and applications for automotive sector. Heliyon 2024; 10:e38576. [PMID: 39640838 PMCID: PMC11619995 DOI: 10.1016/j.heliyon.2024.e38576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
In recent years, the auto industry has experienced significant advancements, making research and development (R&D) of vehicle materials increasingly vital. Aluminum matrix composites (AMCs), known for their lightweight, high strength, and excellent corrosion resistance, have demonstrated substantial potential in vehicle aesthetics, interior trim, power systems, and components manufacturing. Currently, aluminum-metal composites (such as Cu and Mg) and aluminum-nonmetal composites (including Si, C, and plastics) are the primary types of AMCs used in automobiles. A thorough investigation into their preparation, process mechanisms, and performance optimization is essential for the broader application of AMCs in new vehicle models. This review summarizes and analyzes the preparation methods, wear mechanism, performance enhancement strategies, strengthening mechanism, and economic impact of AMCs, discussing key influential factors to foster the development of new AMCs. Additionally, by examining the role of aluminum compound packing films in the pouch batteries of Electric Vehicles, also explores the future potential of AMCs within the new energy power sector.
Collapse
Affiliation(s)
- Xiaodong Wu
- Changsha Normal University, Changsha, 410100, China
- State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, China
| | - Wenkang Zhang
- College of Engineering, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
4
|
Chen X, Yang D, Cao F, Mo Z. Multielectron Reduction of Nitrosoarene via Aluminylene-Silylene Cooperation. J Am Chem Soc 2024; 146:29278-29284. [PMID: 39418648 DOI: 10.1021/jacs.4c10323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The cooperative effects of main-group elements pave the way for novel chemical transformations. However, the potential of bimetallic complexes featuring the most abundant aluminum and silicon elements remains largely unexplored. In this study, we present the synthesis and characterization of bis(silylene)-stabilized aluminylene 2. The cooperation between aluminylene and silylene allows for the facile cleavage of the N-O bond in nitrosoarenes, producing an aluminum imide complex 4 and tetracyclic oxazasilaalanes 5 and 6, and also promotes the dearomatization of 2-methylquinoline, yielding a silylalane 7. In addition, 2 is an effective precatalyst for the reductive coupling of nitrosoarenes to azoxyarenes. These results outline an approach for orchestrating aluminum and silicon cooperation to facilitate chemical bond activation.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dezhi Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fanshu Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Feng G, Yamashita M. Synthesis and Reactivity of an Alumanyl-Tin Species to Form an Al,N-Heteroallene Derivative. J Am Chem Soc 2024; 146:28653-28657. [PMID: 39378396 DOI: 10.1021/jacs.4c11586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The molecular chemistry of metal-metal bonds is crucial for understanding the bonding and reactivity of metal-containing molecules as well as solid metals and their alloys, especially with respect to their application as catalysts for organic transformations and industrial processes. Despite the high efficiency of the recently developed nucleophilic alumanyl anions in the synthesis of diverse Al-metal bonds, the bonding between main group metals in a low oxidation state and the Al atom remains largely unexplored. This paper describes the reaction of an alumanyl anion with a chlorostannylene precursor to afford a compound with an unprecedented covalent Al-Sn bond. The lability of the covalent Al-Sn bond renders it reactive toward the insertion of carbodiimide, N2O, and phenylacetylene. Remarkably, the reaction with benzonitrile furnished an unprecedented Al,N-heteroallene species that contains a linear Al═N═C linkage.
Collapse
Affiliation(s)
- Genfeng Feng
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Makoto Yamashita
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1-E1-2 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
6
|
Saddington A, Dong S, Yao S, Zhu J, Driess M. Bis-Silylene-Supported Aluminium Atoms with Aluminylene and Alane Character. Angew Chem Int Ed Engl 2024; 63:e202410790. [PMID: 39024421 DOI: 10.1002/anie.202410790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The suitability of electron-rich bis-silylenes, specifically the neutral chelating [SiII(Xant)SiII] ligand (SiII=PhC(NtBu)2Si, Xant=9,9-dimethylxanthene) and the anionic [SiII(NAcrid)SiII)]- pincer ligand (NAcrid=2,7,9,9-tetramethylacridane), has been successfully probed to stabilize monovalent bis-silylene-supported aluminium complexes (aluminylenes). At first, the unprecedented aluminium(III) iodide precursors [SiII(Xant)SiII]AlI2 + I- 1 and [SiII(NAcrid)SiII)]AlI2 2 were synthesized using AlI3 and [SiII(Xant)SiII] or [SiII(NAcrid)SiII)]Li(OEt2)], respectively, and structurally characterized. While reduction of 1 with KC8 led merely to unidentified products, the dehalogenation of 2 afforded the dimer of the desired {[SiII(NAcrid)SiII)]Al:} aluminylene with a four-membered SiIV 2AlIII 2 ring. Remarkably, the proposed aluminylene intermediates [SiII(Xant)SiII]AlII and {[SiII(NAcrid)SiII)]Al:} could be produced through reaction of 1 and 2 with Collman's reagent, K2Fe(CO)4, and trapped as AlI:→Fe(CO)4 complexes 5 and 6, respectively. While 6 is stable in solution, 5 loses one CO ligand in solution to afford the silylene- and aluminylene-coordinated iron(0) complex 7 from an intramolecular substitution reaction. The electronic structures of the novel compounds were investigated by Density Functional Theory calculations.
Collapse
Affiliation(s)
- Artemis Saddington
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Jun Zhu
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Blvd., Longgang Dist., Shenzhen, Guangdong, 518172, China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
7
|
Groll L, Kelly JA, Inoue S. Reactivity of NHI-Stabilized Heavier Tetrylenes towards CO 2 and N 2 O. Chem Asian J 2024; 19:e202300941. [PMID: 37996985 DOI: 10.1002/asia.202300941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
A heteroleptic amino(imino)stannylene (TMS2 N)(It BuN)Sn: (TMS=trimethylsilyl, It Bu=C[(N-t Bu)CH]2 ) as well as two homoleptic NHI-stabilized tetrylenes, (It BuN)2 E: (NHI=N-heterocyclic imine, E=Ge, Sn) are presented. VT-NMR investigations of (It BuN)2 Sn: (2) reveal an equilibrium between the monomeric stannylene at room temperature and the dimeric form at -80 °C as well as in the solid state. Upon reaction of the homoleptic tetrylenes with CO2 , both compounds insert two equivalents of CO2 , however differing bonding modes can be observed. (It BuN)2 Sn: (2) inserts one equivalent of CO2 into each Sn-N bond, giving carbamato groups coordinated κ2 O,O' to the metal center. With (It BuN)2 Ge: (3), the Ge-N bonds stay intact upon activation, being bridged by one molecule of CO2 respectively, forming 4-membered rings. Furthermore, the reactivity of 2 towards N2 O was investigated, resulting in partial oxidation to form stannylene dimer [((It BuN)3 SnO)(It BuN)Sn:]2 (6).
Collapse
Affiliation(s)
- Lisa Groll
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - John A Kelly
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
8
|
Eisner T, Kostenko A, J Kiefer F, Inoue S. Synthesis and isolation of a cyclic bis-vinyl germylene via a diazoolefin adduct of germylene dichloride. Chem Commun (Camb) 2024; 60:558-561. [PMID: 38090978 DOI: 10.1039/d3cc05090d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Since the successful isolation of various stable diazoolefins, an array of complexes containing these promising ligands have been synthesized. We herein report the synthesis, characterization, and structures of neutral group 14 diazoolefin complexes and the subsequent transformation into a new cyclic bis-vinyl germylene.
Collapse
Affiliation(s)
- Teresa Eisner
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstr. 4, 85748, Garching b, München, Germany.
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstr. 4, 85748, Garching b, München, Germany.
| | - Fiona J Kiefer
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstr. 4, 85748, Garching b, München, Germany.
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstr. 4, 85748, Garching b, München, Germany.
| |
Collapse
|
9
|
Guo L, Zhang J, Cui C. Synthesis and Reactivity of Aluminum Disilacyclopropenes. Cyclic AlSi 2 Delocalized 2π Systems. J Am Chem Soc 2023; 145:27911-27915. [PMID: 38096128 DOI: 10.1021/jacs.3c09358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The synthesis, structures, and reactivity of the first unsaturated AlSi2 three-membered ring systems were described. Reactions of dilithiodisilene [(NHB)LiSi═SiLi(NHB)] (1, NHB = diazaborolyl) with aluminum halides AlCl3, Ar(SiMe3)NAlCl2 (Ar = 2,6-iPr2C6H3), Cp*AlBr2 (Cp* = C5Me5), and TipAlBr2·Et2O (Tip = 2,4,6-iPr3C6H2) led to the formation of AlSi2 three-membered ring species, solvated (NHBSi)2AlCl(OEt2) (2) and solvent-free (NHBSi)2AlN(SiMe3) Ar (3), (NHBSi)2AlCp* (4), and (NHBSi)2AlTip (5), in good yields. X-ray diffraction studies and DFT calculations disclosed delocalized AlSi2 2π electron systems. Methanolysis of 4a resulted in cleavage of the Al-Si σ and Si-Si π bonds, giving trihydrodisilane (NHB)H(MeO)SiSiH2 (NHB) (6). Reaction of 4b with 4 equiv of N2O and H2C═CH2 resulted in the insertion of four oxygen atoms and four H2C═CH2 π bonds into all of the Al-Si and Si-Si bonds, yielding the O- and CH2CH2-bridged polycyclic species 7 and 8, demonstrating the synergistic reactivity of the Al-Si and Si-Si bonds in the AlSi2 ring system.
Collapse
Affiliation(s)
- Lulu Guo
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
| |
Collapse
|