1
|
Lian W, Huang Y, Yin Q, Guo Z, Xu Y, Miao T. Syntheses of heterometallic organic frameworks catalysts via multicomponent postmodification: For improving CO 2 photoreduction efficiency. J Colloid Interface Sci 2024; 675:94-103. [PMID: 38968640 DOI: 10.1016/j.jcis.2024.06.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/07/2024]
Abstract
To enhance the economic viability of photocatalytic materials for carbon capture and conversion, the challenge of employing expensive photosensitizer must be overcome. This study aims to improve the visible light utilization with zirconium-based metal-organic frameworks (Zr-MOFs) by employing a multi-component post-synthetic modification (PSM) strategy. An economical photosensitiser and copper ions are introduced into MOF 808 to enhance its photoreduction properties. Notably, the PSM of MOF 808 shows the highest CO yield up to 236.5 μmol g-1 h-1 with aHCOOH production of 993.6 μmol g-1 h-1 under non-noble metal, and its mechanistic insight for CO2 reaction is discussed in detail. The research results have important reference value for the potential application of photocatalytic metal-organic frameworks.
Collapse
Affiliation(s)
- Wanqi Lian
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Ying Huang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Qiaoqiao Yin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Zhicheng Guo
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Yun Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tifang Miao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
2
|
Fu H, Xu Z, Yang Z, Lei J. Low-potential anodic electrochemiluminescence of terbium metal-organic frameworks for selective microRNA-155 detection. Biosens Bioelectron 2024; 264:116675. [PMID: 39151262 DOI: 10.1016/j.bios.2024.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
High excitation potential is recognized as a harmful factor for the biological activity of biomacromolecules, such as proteins and nucleic acids, in electrochemiluminescence (ECL) biosensing. Developing low-potential ECL luminophores is vital for improving ECL accuracy in actual sample sensing. In this work, based on porous metal-organic framework (MOF) structure with multiple active sites and energy transfer between the excited ligands and Ln nodes, we designed a series of Ln-MOFs and observed ECL emission at low potential, providing a novel method to realize low-potential ECL. The MOF nanoemitters were prepared using 1,3,5-tri (4-carboxyphenyl)benzene ligand and several lanthanide ions as nodes through mild hydrothermal reaction. Interestingly, strong ECL emission at +0.75 V of peak potential was observed in the ECL-potential curve of Tb-based MOF using 2,2',2″-nitrilotriethanol as coreactant, which was beneficial for reducing background interference in biosensing, and this ECL emission was attributed to the energy transfer between Tb and excited ligand. This low-potential ECL was then applied to construct an ECL biosensor with newly developed Cas12a-based method for selective detection of microRNA-155 without the help of strand displacement or reverse transcription. For this ECL system, the limit of detection was 0.78 nM, and the overall detection time was 2.5 h. The Ln-MOF nanoemitter provides a robust ECL platform to selectively detect various targets by integrating new bio-related techniques.
Collapse
Affiliation(s)
- Haomin Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhou Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Chatterjee T, Guha P, Dutta B, Khan S, Siddiqui MR, Wabaidur SM, Hedayetullah Mir M, Mafiz Alam S. Structural Characteristics and DNA Groove Binding Abilities of Two Zinc-Based Isoreticular MOFs. Chem Asian J 2024:e202400922. [PMID: 39412201 DOI: 10.1002/asia.202400922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Indexed: 11/14/2024]
Abstract
In this study, we have synthesized two zinc(II)-based metal-organic frameworks (MOFs) designated as [Zn(4-nvp)(bdc)] ⋅ (MeOH) (1) and [Zn2(4-nvp)2(bpdc)2] ⋅ (DMF) (2) [4-nvp=4-(1-naphthylvinyl) pyridine, H2bdc=1,4-benzendicarboxylic acid and H2bpdc=4,4'-biphenyldicarboxylic acid]. Single-crystal X-ray diffraction (SCXRD) of both compounds unveiled an interesting paddle-wheel [Zn2(O2C-C)4] secondary building block (SBB) composed of dinuclear Zn (II) centers and four dicarboxylate groups with a (4,4) square grid topology. These SBBs are interconnected giving rise to an infinite 2D layer architecture. Notably, the grid structure is composed of MeOH molecules in compound 1 and DMF molecules in compound 2, both of them arranged in a free lattice. In both compounds, 3D supramolecular architecture is ultimately formed through the stacking of 2D layers. Since the length of the bpdc ligand is higher than that of the bdc ligand, the solvent-accessible void volume is comparatively higher for compound 2. To corroborate all non-bonded interactions, Hirshfeld analysis was carried out for synthesized compounds. DNA binding application was extensively investigated through docking study. Results indicated that the synthesized compounds have strong affinities towards DNA via DNA groove binding. Henceforth, the synthesized compounds 1 and 2 would open the door for their potential applications as particular protein binders and bioactive substances.
Collapse
Affiliation(s)
- Taposi Chatterjee
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 160, India
- Department of Basic Science & Humanities, Techno International New Town, Kolkata, 700 156, India
| | - Priyam Guha
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 160, India
| | - Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 160, India
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 160, India
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saikh M Wabaidur
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Seikh Mafiz Alam
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 160, India
| |
Collapse
|
4
|
Li P, Lian H, Zhang Y, Yi L, Yao J, Liu P, Li LL, Liu X, Wang H. Peptide-Guided Metal-Organic Frameworks Spatial Assembly Sustain Long-Lived Charge-Separated State to Improve Photocatalytic Performance. ACS NANO 2024. [PMID: 39276094 DOI: 10.1021/acsnano.4c05370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The controlled fabrication of spatial architectures using metal-organic framework (MOF)-based particles offers opportunities for enhancing photocatalytic performances. The understanding of the contribution of assembly to a precise photocatalytic mechanism, particularly from the perspective of charge separation and extraction dynamics, still poses challenges. The present report presents a facile approach for the spatial assembly of zinc imidazolate MOF (ZIF-8), guided by β-turn peptides (SAZH). We investigated the dynamics of photoinduced carriers using transient absorption spectroscopy. The presence of a long-lived internal charge-separated state in SAZH confirms its role as an intersystem crossing state. The formation of an assembly interface facilitates efficient electron transfer from SAZH to O2, resulting in approximately 2.6 and 2 times higher concentrations of superoxide (·O2-) and hydrogen peroxide (H2O2), respectively, compared to those achieved with ZIF-8. The medical dressing fabricated from SAZH demonstrated exceptional biocompatibility and exhibited an outstanding performance in promoting wound restoration. It rapidly achieved hemostasis during the bleeding phase, followed by a nearly 100% photocatalytic killing efficiency against the infected site during the subsequent inflammatory phase. Our findings reveal a pivotal dynamic mechanism underlying the photocatalytic activity of control-assembled ZIF-8, providing valuable guidelines for the design of highly efficient MOF photocatalysts.
Collapse
Affiliation(s)
- Ping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hao Lian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yutong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Jiahui Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Penghui Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| |
Collapse
|
5
|
Zhang R, Daglar H, Tang C, Li P, Feng L, Han H, Wu G, Limketkai BN, Wu Y, Yang S, Chen AXY, Stern CL, Malliakas CD, Snurr RQ, Stoddart JF. Balancing volumetric and gravimetric capacity for hydrogen in supramolecular crystals. Nat Chem 2024:10.1038/s41557-024-01622-w. [PMID: 39227421 DOI: 10.1038/s41557-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
The storage of hydrogen is key to its applications. Developing adsorbent materials with high volumetric and gravimetric storage capacities, both of which are essential for the efficient use of hydrogen as a fuel, is challenging. Here we report a controlled catenation strategy in hydrogen-bonded organic frameworks (RP-H100 and RP-H101) that depends on multiple hydrogen bonds to guide catenation in a point-contact manner, resulting in high volumetric and gravimetric surface areas, robustness and ideal pore diameters (~1.2-1.9 nm) for hydrogen storage. This approach involves assembling nine imidazole-annulated triptycene hexaacids into a secondary hexagonal superstructure containing three open channels through which seven of the hexagons interpenetrate to form a seven-fold catenated superstructure. RP-H101 exhibits high deliverable volumetric (53.7 g l-1) and gravimetric (9.3 wt%) capacities for hydrogen under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar). This work illustrates the virtues of supramolecular crystals as promising candidates for hydrogen storage.
Collapse
Affiliation(s)
- Ruihua Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Hilal Daglar
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Chun Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Penghao Li
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Liang Feng
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Han Han
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Guangcheng Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Yong Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Shuliang Yang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | | | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| | - J Fraser Stoddart
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- H2MOF Inc., Irvine, CA, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Wang K, Hou B, Dong J, Niu H, Liu Y, Cui Y. Controlling the Degree of Interpenetration in Chiral Three-Dimensional Covalent Organic Frameworks via Steric Tuning. J Am Chem Soc 2024; 146:21466-21475. [PMID: 39046143 DOI: 10.1021/jacs.4c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Network interpenetration plays a crucial role in functionalizing porous framework materials. However, controlling the degree of interpenetration in covalent organic frameworks (COFs) to influence their pore sizes, shapes, and functionalities still remains a significant challenge. Here, we demonstrate a steric tuning strategy to control the degree of COF interpenetration and modulate their physicochemical properties. By imine condensations of 1,1'-bi-2-naphthol-derived tetraaldehydes bearing different alkyl substituents with the monomer tetra(p-aminophenyl)-methane, we synthesized and characterized a family of two-component and three-component chiral COFs with different interpenetrated dia networks. The alkyl groups are periodically appended on the pore walls, and their types/contents that can be synthetically tuned control the interpenetration degree of COFs by minimizing repulsive interactions between the alkyl groups. Specifically, the COF with -OH groups adopts an interpenetrated dia-c5 topology, those with -OMe/-OEt groups take an interpenetrated dia-c4 topology, whereas those with the bulky -OnPr/-OnBu groups exhibit a noninterpenetrated dia-c1 topology. The multivariate COFs with both -OH and -OnBu groups display either a noninterpenetrated or dia-c5 topology, depending on the proportion of -OnBu groups. The extent of interpenetration in COFs significantly affects their porosity, thermal stability, and chemical stability, resulting in varying selective performances in the adsorption and separation of dyes and asymmetric catalysis. This work highlights the potential of using steric hindrance to tune and control interpenetration, porosity, stability, and functionalities of COFs materials, broadening the range of their applications.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Materials Science & Engineering, Anhui University, Hefei 230601, P. R. China
| | - Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Helin Niu
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
7
|
Liang RR, Yang Y, Han Z, Bakhmutov VI, Rushlow J, Fu Y, Wang KY, Zhou HC. Zirconium-Based Metal-Organic Frameworks with Free Hydroxy Groups for Enhanced Perfluorooctanoic Acid Uptake in Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407194. [PMID: 38896032 DOI: 10.1002/adma.202407194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a highly recalcitrant organic pollutant, and its bioaccumulation severely endangers human health. While various methods are developed for PFOA removal, the targeted design of adsorbents with high efficiency and reusability remains largely unexplored. Here the rational design and synthesis of two novel zirconium-based metal‒organic frameworks (MOFs) bearing free ortho-hydroxy sites, namely noninterpenetrated PCN-1001 and twofold interpenetrated PCN-1002, are presented. Single crystal analysis of the pure ligand reveals that intramolecular hydrogen bonding plays a pivotal role in directing the formation of MOFs with free hydroxy groups. Furthermore, the transformation from PCN-1001 to PCN-1002 is realized. Compared to PCN-1001, PCN-1002 displays higher chemical stability due to interpenetration, thereby demonstrating an exceptional PFOA adsorption capacity of up to 632 mg g-1 (1.53 mmol g-1), which is comparable to the reported record values. Moreover, PCN-1002 shows rapid kinetics, high selectivity, and long-life cycles in PFOA removal tests. Solid-state nuclear magnetic resonance results and density functional theory calculations reveal that multiple hydrogen bonds between the free ortho-hydroxy sites and PFOA, along with Lewis acid-base interaction, work collaboratively to enhance PFOA adsorption.
Collapse
Affiliation(s)
- Rong-Ran Liang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | | | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
8
|
Xiao Z, Shan S, Wang Y, Zheng H, Li K, Yang X, Zou B. Harvesting Multicolor Photoluminescence in Nonaromatic Interpenetrated Metal-Organic Framework Nanocrystals via Pressure-Modulated Carbonyls Aggregation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403281. [PMID: 38661081 DOI: 10.1002/adma.202403281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Interpenetrated metal-organic frameworks (MOFs) with nonaromatic ligands provide a unique platform for adsorption, catalysis, and sensing applications. However, nonemission and the lack of optical property tailoring make it challenging to fabricate smart responsive devices with nonaromatic interpenetrated MOFs based on ligand-centered emission. In this paper, the pressure-induced aggregation effect is introduced in nonaromatic interpenetrated Zn4O(ADC)4(Et3N)6 (IRMOF-0) nanocrystals (NCs), where carbonyl groups aggregation results in O─O distances smaller than the sum of the van der Waals radii (3.04 Å), triggering the photoluminescence turn-on behavior. It is noteworthy that the IRMOF-0 NCs display an ultrabroad emission tunability of 130 nm from deep blue (440 nm) to yellow (570 nm) upon release to ambient conditions at different pressures. The eventual retention of through-space n-π* interactions in different degrees via pressure treatment is primarily responsible for achieving a controllable multicolor emission behavior in initially nonemissive IRMOF-0 NCs. The fabricated multicolor phosphor-converted light-emitting diodes based on the pressure-treated IRMOF-0 NCs exhibit excellent thermal, chromaticity, and fatigue stability. The proposed strategy not only imparts new vitality to nonaromatic interpenetrated MOFs but also offers new perspectives for advancements in the field of multicolor displays and daylight illumination.
Collapse
Affiliation(s)
- Zhihao Xiao
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, 130012, China
| | - Shuo Shan
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, 130012, China
| | - Yixuan Wang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, 130012, China
| | - Haiyan Zheng
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, China
| | - Kuo Li
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, China
| | - Xinyi Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Yang XX, Li N, Li C, Jin ZB, Ma ZZ, Gu ZG, Zhang J. Chiral Liquid Crystalline Metal-Organic Framework Thin Films for Highly Circularly Polarized Luminescence. J Am Chem Soc 2024; 146:16213-16221. [PMID: 38814730 DOI: 10.1021/jacs.4c04125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Combining metal-organic frameworks (MOFs) with liquid crystals to construct liquid crystalline MOFs (LCMOF) offers the advantage of endowing and enhancing their functionality, yet it remains a challenging task. Herein, we report chiral liquid crystalline MOF (CLCMOF) thin films by cross-linking the chiral liquid crystals (CLC) with MOF thin films to realize highly circular polarization luminescence (CPL) performance with photo and thermal switching. By layer by layer cross-linking stilbene-containing CLC with stilbene-based MOF (CLC/MOF) thin film, the CLCMOF thin films were successfully obtained after UV irradiation due to the abundant [2 + 2] photocycloaddition. The resulted CLCMOF thin films have strong chirality, obvious photochromic fluorescent, and strong CPL performance (the asymmetry factor reaches to 0.4). Furthermore, due to the photochromic fluorescent MOF and thermotropic CLC, the CPL can be reversed and red-shifted after heating and UV irradiation treatment, showing photo- and thermal CPL switching. Such MOF-based CPL thin films with photo/thermal CPL switching were prepared to patterns and codes for the demonstration of potential application in advanced information anticounterfeit and encryption. This study not only opens a strategy for developing chiral thin films combining MOFs and liquid crystals but also offers a new route to achieve CPL switching in optical applications.
Collapse
Affiliation(s)
- Xue-Xian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
| | - Na Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
| | - Chong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
| | - Zhi-Bin Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Zhou Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wang J, Wa Q, Diao Q, Liu F, Hao F, Xiong Y, Wang Y, Zhou J, Meng X, Guo L, Fan Z. Atomic Design of Copper Active Sites in Pristine Metal-Organic Coordination Compounds for Electrocatalytic Carbon Dioxide Reduction. SMALL METHODS 2024:e2400432. [PMID: 38767183 DOI: 10.1002/smtd.202400432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/16/2024] [Indexed: 05/22/2024]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2RR) has emerged as a promising and sustainable approach to cut carbon emissions by converting greenhouse gas CO2 to value-added chemicals and fuels. Metal-organic coordination compounds, especially the copper (Cu)-based coordination compounds, which feature well-defined crystalline structures and designable metal active sites, have attracted much research attention in electrocatalytic CO2RR. Herein, the recent advances of electrochemical CO2RR on pristine Cu-based coordination compounds with different types of Cu active sites are reviewed. First, the general reaction pathways of electrocatalytic CO2RR on Cu-based coordination compounds are briefly introduced. Then the highly efficient conversion of CO2 on various kinds of Cu active sites (e.g., single-Cu site, dimeric-Cu site, multi-Cu site, and heterometallic site) is systematically discussed, along with the corresponding catalytic reaction mechanisms. Finally, some existing challenges and potential opportunities for this research direction are provided to guide the rational design of metal-organic coordination compounds for their practical application in electrochemical CO2RR.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Qi Diao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
11
|
Chen C, Shen L, Lin H, Zhao D, Li B, Chen B. Hydrogen-bonded organic frameworks for membrane separation. Chem Soc Rev 2024; 53:2738-2760. [PMID: 38333989 DOI: 10.1039/d3cs00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a new class of crystalline porous materials that are formed through the interconnection of organic or metal-organic building units via intermolecular hydrogen bonds. The remarkable flexibility and reversibility of hydrogen bonds, coupled with the customizable nature of organic units, endow HOFs with mild synthesis conditions, high crystallinity, solvent processability, and facile self-healing and regeneration properties. Consequently, these features have garnered significant attention across various fields, particularly in the realm of membrane separation. Herein, we present an overview of the recent advances in HOF-based membranes, including their advanced fabrication strategies and fascinating applications in membrane separation. To attain the desired HOF-based membranes, careful consideration is dedicated to crucial factors such as pore size, stability, hydrophilicity/hydrophobicity, and surface charge of the HOFs. Additionally, diverse preparation methods for HOF-based membranes, including blending, in situ growth, solution-processing, and electrophoretic deposition, have been analyzed. Furthermore, applications of HOF-based membranes in gas separation, water treatment, fuel cells, and other emerging application areas are presented. Finally, the challenges and prospects of HOF-based membranes are critically pointed out.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dieling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
12
|
Cui X, Wu M, Liu X, He B, Zhu Y, Jiang Y, Yang Y. Engineering organic polymers as emerging sustainable materials for powerful electrocatalysts. Chem Soc Rev 2024; 53:1447-1494. [PMID: 38164808 DOI: 10.1039/d3cs00727h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cost-effective and high-efficiency catalysts play a central role in various sustainable electrochemical energy conversion technologies that are being developed to generate clean energy while reducing carbon emissions, such as fuel cells, metal-air batteries, water electrolyzers, and carbon dioxide conversion. In this context, a recent climax in the exploitation of advanced earth-abundant catalysts has been witnessed for diverse electrochemical reactions involved in the above mentioned sustainable pathways. In particular, polymer catalysts have garnered considerable interest and achieved substantial progress very recently, mainly owing to their pyrolysis-free synthesis, highly tunable molecular composition and microarchitecture, readily adjustable electrical conductivity, and high stability. In this review, we present a timely and comprehensive overview of the latest advances in organic polymers as emerging materials for powerful electrocatalysts. First, we present the general principles for the design of polymer catalysts in terms of catalytic activity, electrical conductivity, mass transfer, and stability. Then, the state-of-the-art engineering strategies to tailor the polymer catalysts at both molecular (i.e., heteroatom and metal atom engineering) and macromolecular (i.e., chain, topology, and composition engineering) levels are introduced. Particular attention is paid to the insightful understanding of structure-performance correlations and electrocatalytic mechanisms. The fundamentals behind these critical electrochemical reactions, including the oxygen reduction reaction, hydrogen evolution reaction, CO2 reduction reaction, oxygen evolution reaction, and hydrogen oxidation reaction, as well as breakthroughs in polymer catalysts, are outlined as well. Finally, we further discuss the current challenges and suggest new opportunities for the rational design of advanced polymer catalysts. By presenting the progress, engineering strategies, insightful understandings, challenges, and perspectives, we hope this review can provide valuable guidelines for the future development of polymer catalysts.
Collapse
Affiliation(s)
- Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Xueqin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Bing He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yunhai Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yalong Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
13
|
Gadzikwa T. Interweaving different metal-organic frameworks. Nat Chem 2023; 15:1324-1326. [PMID: 37770599 DOI: 10.1038/s41557-023-01335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Affiliation(s)
- Tendai Gadzikwa
- Department of Chemistry, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
14
|
Crom AB, Strozier JL, Tatebe CJ, Carey CA, Feldblyum JI, Genna DT. Deinterpenetration of IRMOF-9. Chemistry 2023:e202302856. [PMID: 37713237 DOI: 10.1002/chem.202302856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
One of the iconic characteristics of metal-organic frameworks (MOFs) is the possesssion of guest-accessible pores. Increasing pore size has a direct and often beneficial impact on a MOF's adsorption and separation properties. However, as pore size increases, the resulting void spaces are often filled by interpenetrated frameworks, where one or more networks crystallize within the pore system of another identical network, reducing the MOF's free volume and pore size. Furthermore, due to the thermodynamic favorability of interpenetration during solvothermal synthesis, techniques to synthetically differentiate interpenetrated from non-interpenetrated MOFs are paramount. This study reports the synthesis of deinterpenetrated IRMOF-9 via halide mediated deinterpenetrative conversion of Zn4 O-derived IRMOF-9. IRMOF-9, when treated with ethylammonium bromide, is quasi-selectively etched, revealing the non-interpenetrated analogue, IRMOF-10 (deinterpenetrated IRMOF-9), which can be isolated prior to complete dissolution by the bromide solution. Dye adsorption, surface area and pore size distribution analysis, and powder X-ray diffraction are consistent with successful deinterpenetration.
Collapse
Affiliation(s)
- Audrey B Crom
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Joseph L Strozier
- Department of Chemistry WBSH5053, Youngstown State University, Youngstown, OH 44555, USA
| | - Caleb J Tatebe
- Department of Chemistry WBSH5053, Youngstown State University, Youngstown, OH 44555, USA
| | - Cassidy A Carey
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jeremy I Feldblyum
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Douglas T Genna
- Department of Chemistry WBSH5053, Youngstown State University, Youngstown, OH 44555, USA
| |
Collapse
|