1
|
Płachno BJ, Kapusta M, Feldo M, Świątek P. Cell Wall Microdomains Analysis in the Quadrifids of Utricularia dichotoma. Int J Mol Sci 2025; 26:832. [PMID: 39859547 PMCID: PMC11766393 DOI: 10.3390/ijms26020832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Carnivorous plants have fascinated botanists and ecologists with their various unusual adaptations in organ structure, physiology, and complex interactions with other organisms since the time of Charles Darwin. Species of the genus Utricularia (bladderworts, family Lentibulariaceae) are carnivorous plants that prey mainly on invertebrates using traps (bladders) of leaf origin. In the traps, there are glandular trichomes called quadrifids, which produce digestive enzymes and absorb the products of prey digestion. These quadrifids are unique due to their highly complex glandular cell structure; hence, they are an excellent model for studying the cell wall and its specialization. The main aim of the study was to investigate the presence and distribution of homogalacturonans (HGs) and hemicelluloses in the cell walls of trichome cells and especially in cell wall ingrowths in the quadrifid cells. The following antibodies were used against the wall components: anti-HGs (homogalacturonans) -JIM5 (low methylesterified HGs), JIM7 (highly esterified HGs), LM19 (low methylesterified HGs), CCRC-M38 (a fully de-esterified HG), LM5 (galactan); anti-hemicelluloses-LM25 (galactoxyloglucan; XXLLG, XXLG, XXXG modules of xyloglucans), LM15 (xyloglucan), CCRC-M138 (xylan), LM11 (heteroxylan); and anti-mannans: LM20 (heteromannan) and LM22 (heteromannan). The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. In quadrifid cells, we found differences in the presence of the epitope detected by the LM5 antibody in the cell walls. In addition, cell wall ingrowths represented distinct microdomains of the cell wall in terms of the occurrence of wall components (they were methylesterified and demethylesterified homogalacturonan-poor). Hemicelluloses (galactoxyloglucan and xyloglucan) and arabinogalactans co-occur in cell wall ingrowths. Also, a part of the cell wall of the pedestal cell, which forms a Casparian strip, represented a distinct microdomain. We did not detect epitopes recognized by LM11, LM20 and LM22 antibodies. Our research shows that several cell wall microdomains occur in the cell walls of quadrifid cells. They differ depending on the presence and distribution of low methylesterified HGs, highly esterified HGs, fully de-esterified HGs, galactan (the epitope detected by the LM5 antibody), xyloglucan, galactoxyloglucan, and xylan (the epitope detected by the CCRC-M138 antibody).
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 16 Staszica St., 20-081 Lublin, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
2
|
Fischer K, Valentin Jordbræk S, Olsen S, Bockwoldt M, Schwacke R, Usadel B, Krause K. Taken to extremes: Loss of plastid rpl32 in Streptophyta and Cuscuta's unconventional solution for its replacement. Mol Phylogenet Evol 2024:108243. [PMID: 39581358 DOI: 10.1016/j.ympev.2024.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
The evolution of plant genomes is riddled with exchanges of genetic material within one plant (endosymbiotic gene transfer/EGT) and between unrelated plants (horizontal gene transfer/HGT). These exchanges have left their marks on plant genomes. Parasitic plants with their special evolutionary niche provide ample examples for these processes because they are under a reduced evolutionary pressure to maintain autotrophy and thus to conserve their plastid genomes. On the other hand, the close physical connections with different hosts enabled them to acquire genetic material from other plants. Based on an analysis of an extensive dataset including the parasite Cuscuta campestris and other parasitic plant species, we identified a unique evolutionary history of rpl32 genes coding for an essential plastid ribosomal subunit in Cuscuta. Our analysis suggests that the gene was most likely sequestered by HGT from a member of the Oxalidales order serving as host to an ancestor of the Cuscuta subgenus Grammica. Oxalidales had suffered an ancestral EGT of rpl32 predating the evolution of the genus Cuscuta. The HGT subsequently relieved the plastid rpl32 from its evolutionary constraint and led to its loss from the plastid genome. The HGT-based acquisition in Cuscuta is supported by a high sequence similarity of the mature L32 protein between species of the subgenus Grammica and representatives of the Oxalidales, and by a surprisingly conserved transit peptide, whose functionality in Cuscuta was experimentally verified. The findings are discussed in view of an overall pattern of EGT events for plastid ribosomal subunits in Streptophyta.
Collapse
Affiliation(s)
- Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mathias Bockwoldt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rainer Schwacke
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), CEPLAS, Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), CEPLAS, Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany; Faculty of Mathematics and Natural Sciences, Institute for Biological Data Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
3
|
Parker J. Organ Evolution: Emergence of Multicellular Function. Annu Rev Cell Dev Biol 2024; 40:51-74. [PMID: 38960448 DOI: 10.1146/annurev-cellbio-111822-121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Instances of multicellularity across the tree of life have fostered the evolution of complex organs composed of distinct cell types that cooperate, producing emergent biological functions. How organs originate is a fundamental evolutionary problem that has eluded deep mechanistic and conceptual understanding. Here I propose a cell- to organ-level transitions framework, whereby cooperative division of labor originates and becomes entrenched between cell types through a process of functional niche creation, cell-type subfunctionalization, and irreversible ratcheting of cell interdependencies. Comprehending this transition hinges on explaining how these processes unfold molecularly in evolving populations. Recent single-cell transcriptomic studies and analyses of terminal fate specification indicate that cellular functions are conferred by modular gene expression programs. These discrete components of functional variation may be deployed or combined within cells to introduce new properties into multicellular niches, or partitioned across cells to establish division of labor. Tracing gene expression program evolution at the level of single cells in populations may reveal transitions toward organ complexity.
Collapse
Affiliation(s)
- Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| |
Collapse
|
4
|
Xu S, Shao S, Feng X, Li S, Zhang L, Wu W, Liu M, Tracy ME, Zhong C, Guo Z, Wu CI, Shi S, He Z. Adaptation in Unstable Environments and Global Gene Losses: Small but Stable Gene Networks by the May-Wigner Theory. Mol Biol Evol 2024; 41:msae059. [PMID: 38507653 PMCID: PMC10991078 DOI: 10.1093/molbev/msae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Sen Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Lingjie Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cairong Zhong
- Institute of Wetland Research, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Scacchi E, Paszkiewicz G, Thi Nguyen K, Meda S, Burian A, de Back W, Timmermans MCP. A diffusible small-RNA-based Turing system dynamically coordinates organ polarity. NATURE PLANTS 2024; 10:412-422. [PMID: 38409292 DOI: 10.1038/s41477-024-01634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
The formation of a flat and thin leaf presents a developmentally challenging problem, requiring intricate regulation of adaxial-abaxial (top-bottom) polarity. The patterning principles controlling the spatial arrangement of these domains during organ growth have remained unclear. Here we show that this regulation in Arabidopsis thaliana is achieved by an organ-autonomous Turing reaction-diffusion system centred on mobile small RNAs. The data illustrate how Turing dynamics transiently instructed by prepatterned information is sufficient to self-sustain properly oriented polarity in a dynamic, growing organ, presenting intriguing parallels to left-right patterning in the vertebrate embryo. Computational modelling demonstrates that this self-organizing system continuously adapts to coordinate the robust planar polarity of a flat leaf while affording flexibility to generate the tissue patterns of evolutionarily diverse organ shapes. Our findings identify a small-RNA-based Turing network as a dynamic regulator of organ polarity that accounts for leaf shape diversity at the level of the individual organ, plant or species.
Collapse
Affiliation(s)
- Emanuele Scacchi
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany.
| | - Gael Paszkiewicz
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Khoa Thi Nguyen
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Shreyas Meda
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Agata Burian
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Walter de Back
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | |
Collapse
|
6
|
Zhang Z, Liu Z, Wu H, Xu Z, Zhang H, Qian W, Gao W, She H. Genome-Wide Identification and Characterization of MYB Gene Family and Analysis of Its Sex-Biased Expression Pattern in Spinacia oleracea L. Int J Mol Sci 2024; 25:795. [PMID: 38255867 PMCID: PMC10815031 DOI: 10.3390/ijms25020795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The members of the myeloblastosis (MYB) family of transcription factors (TFs) participate in a variety of biological regulatory processes in plants, such as circadian rhythm, metabolism, and flower development. However, the characterization of MYB genes across the genomes of spinach Spinacia oleracea L. has not been reported. Here, we identified 140 MYB genes in spinach and described their characteristics using bioinformatics approaches. Among the MYB genes, 54 were 1R-MYB, 80 were 2R-MYB, 5 were 3R-MYB, and 1 was 4R-MYB. Almost all MYB genes were located in the 0-30 Mb region of autosomes; however, the 20 MYB genes were enriched at both ends of the sex chromosome (chromosome 4). Based on phylogeny, conserved motifs, and the structure of genes, 2R-MYB exhibited higher conservation relative to 1R-MYB genes. Tandem duplication and collinearity of spinach MYB genes drive their evolution, enabling the functional diversification of spinach genes. Subcellular localization prediction indicated that spinach MYB genes were mainly located in the nucleus. Cis-acting element analysis confirmed that MYB genes were involved in various processes of spinach growth and development, such as circadian rhythm, cell differentiation, and reproduction through hormone synthesis. Furthermore, through the transcriptome data analysis of male and female flower organs at five different periods, ten candidate genes showed biased expression in spinach males, suggesting that these genes might be related to the development of spinach anthers. Collectively, this study provides useful information for further investigating the function of MYB TFs and novel insights into the regulation of sex determination in spinach.
Collapse
Affiliation(s)
- Zhilong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Hao Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| |
Collapse
|
7
|
Pavlovič A, Koller J, Vrobel O, Chamrád I, Lenobel R, Tarkowski P. Is the co-option of jasmonate signalling for botanical carnivory a universal trait for all carnivorous plants? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:334-349. [PMID: 37708289 PMCID: PMC10735409 DOI: 10.1093/jxb/erad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
The carnivorous plants in the order Caryophyllales co-opted jasmonate signalling from plant defence to botanical carnivory. However, carnivorous plants have at least 11 independent origins, and here we ask whether jasmonate signalling has been co-opted repeatedly in different evolutionary lineages. We experimentally wounded and fed the carnivorous plants Sarracenia purpurea (order Ericales), Cephalotus follicularis (order Oxalidales), Drosophyllum lusitanicum (order Caryophyllales), and measured electrical signals, phytohormone tissue level, and digestive enzymes activity. Coronatine was added exogenously to confirm the role of jasmonates in the induction of digestive process. Immunodetection of aspartic protease and proteomic analysis of digestive fluid was also performed. We found that prey capture induced accumulation of endogenous jasmonates only in D. lusitanicum, in accordance with increased enzyme activity after insect prey or coronatine application. In C. follicularis, the enzyme activity was constitutive while in S. purpurea was regulated by multiple factors. Several classes of digestive enzymes were identified in the digestive fluid of D. lusitanicum. Although carnivorous plants from different evolutionary lineages use the same digestive enzymes, the mechanism of their regulation differs. All investigated genera use jasmonates for their ancient role, defence, but jasmonate signalling has been co-opted for botanical carnivory only in some of them.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Koller
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Center of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| | - Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Center of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
8
|
Procko C, Chory J. Carnivorous plant evolution: is a killer defense always the best option? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:9-12. [PMID: 38128899 PMCID: PMC10735428 DOI: 10.1093/jxb/erad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This article comments on:Pavlovič A, Koller J, Vrobel O, Chamrád I, Lenobel R, and Tarkowski P. 2024. Is the co-option of jasmonate signalling for botanical carnivory a universal trait for all carnivorous plants? Journal of Experimental Botany 75, 334–349.
Collapse
Affiliation(s)
- Carl Procko
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
9
|
Zou Y, Wang J, Peng D, Zhang X, Tembrock LR, Yang J, Zhao J, Liao H, Wu Z. Multi-integrated genomic data for Passiflora foetida provides insights into genome size evolution and floral development in Passiflora. MOLECULAR HORTICULTURE 2023; 3:27. [PMID: 38105261 PMCID: PMC10726625 DOI: 10.1186/s43897-023-00076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Passiflora is a plant genus known for its extremely distinctive and colorful flowers and a wide range of genome size variation. However, how genome characteristics are related to flower traits among Passiflora species remains poorly understood. Here, we assembled a chromosome-scale genome of P. foetida, which belongs to the same subgenus as the commercial passionfruit P. edulis. The genome of P. foetida is smaller (424.16 Mb) and contains fewer copies of long terminal repeat retrotransposons (LTR-RTs). The disparity in LTR-RTs is one of the main contributors to the differences in genome sizes between these two species and possibly in floral traits. Additionally, we observed variation in insertion times and copy numbers of LTR-RTs across different transposable element (TE) lineages. Then, by integrating transcriptomic data from 33 samples (eight floral organs and flower buds at three developmental stages) with phylogenomic and metabolomic data, we conducted an in-depth analysis of the expression, phylogeny, and copy number of MIKC-type MADS-box genes and identified essential biosynthetic genes responsible for flower color and scent from glandular bracts and other floral organs. Our study pinpoints LRT-RTs as an important player in genome size variation in Passiflora species and provides insights into future genetic improvement.
Collapse
Affiliation(s)
- Yi Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Jianli Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Hong Liao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| |
Collapse
|
10
|
Zhou L, He Z, Zhang K, Wang X. Analysis of Nuclear Dynamics in Nematode-Trapping Fungi Based on Fluorescent Protein Labeling. J Fungi (Basel) 2023; 9:1183. [PMID: 38132784 PMCID: PMC10744682 DOI: 10.3390/jof9121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Nematophagous fungi constitute a category of fungi that exhibit parasitic behavior by capturing, colonizing, and poisoning nematodes, which are critical factors in controlling nematode populations in nature, and provide important research materials for biological control. Arthrobotrys oligospora serves as a model strain among nematophagous fungi, which begins its life as conidia, and then its hyphae produce traps to capture nematodes, completing its lifestyle switch from saprophytic to parasitic. There have been many descriptions of the morphological characteristics of A. oligospora lifestyle changes, but there have been no reports on the nuclear dynamics in this species. In this work, we constructed A. oligospora strains labeled with histone H2B-EGFP and observed the nuclear dynamics from conidia germination and hyphal extension to trap formation. We conducted real-time imaging observations on live cells of germinating and extending hyphae and found that the nucleus was located near the tip. It is interesting that the migration rate of this type of cell nucleus is very fast, and we speculate that this may be related to the morphological changes involved in the transformation to a predatory lifestyle. We suggest that alterations in nuclear shape and fixation imply the immediate disruption of the interaction with cytoskeletal mechanisms during nuclear migration. In conclusion, these findings suggest that the signal initiating nuclear migration into fungal traps is generated at the onset of nucleus entry into a trap cell. Our work provides a reference for analysis of the dynamics of nucleus distribution and a means to visualize protein localization and interactions in A. oligospora.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (L.Z.); (Z.H.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650500, China
| | - Zhiwei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (L.Z.); (Z.H.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650500, China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (L.Z.); (Z.H.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650500, China
| | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (L.Z.); (Z.H.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650500, China
| |
Collapse
|
11
|
A decaploid pitcher plant genome reveals a novel role for recessive subgenomes. NATURE PLANTS 2023; 9:1950-1951. [PMID: 37996655 DOI: 10.1038/s41477-023-01563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
|
12
|
Saul F, Scharmann M, Wakatake T, Rajaraman S, Marques A, Freund M, Bringmann G, Channon L, Becker D, Carroll E, Low YW, Lindqvist C, Gilbert KJ, Renner T, Masuda S, Richter M, Vogg G, Shirasu K, Michael TP, Hedrich R, Albert VA, Fukushima K. Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis. NATURE PLANTS 2023; 9:2000-2015. [PMID: 37996654 DOI: 10.1038/s41477-023-01562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/09/2023] [Indexed: 11/25/2023]
Abstract
Subgenome dominance after whole-genome duplication generates distinction in gene number and expression at the level of chromosome sets, but it remains unclear how this process may be involved in evolutionary novelty. Here we generated a chromosome-scale genome assembly of the Asian pitcher plant Nepenthes gracilis to analyse how its novel traits (dioecy and carnivorous pitcher leaves) are linked to genomic evolution. We found a decaploid karyotype and a clear indication of subgenome dominance. A male-linked and pericentromerically located region on the putative sex chromosome was identified in a recessive subgenome and was found to harbour three transcription factors involved in flower and pollen development, including a likely neofunctionalized LEAFY duplicate. Transcriptomic and syntenic analyses of carnivory-related genes suggested that the paleopolyploidization events seeded genes that subsequently formed tandem clusters in recessive subgenomes with specific expression in the digestive zone of the pitcher, where specialized cells digest prey and absorb derived nutrients. A genome-scale analysis suggested that subgenome dominance likely contributed to evolutionary innovation by permitting recessive subgenomes to diversify functions of novel tissue-specific duplicates. Our results provide insight into how polyploidy can give rise to novel traits in divergent and successful high-ploidy lineages.
Collapse
Affiliation(s)
- Franziska Saul
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Mathias Scharmann
- Institute for Biochemistry and Biology (IBB), University of Potsdam, Potsdam, Germany
| | - Takanori Wakatake
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Sitaram Rajaraman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Louisa Channon
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Emily Carroll
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yee Wen Low
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
| | | | - Kadeem J Gilbert
- Department of Plant Biology & W.K. Kellogg Biological Station & Program in Ecology, Evolution, and Behavior, Michigan State University, Hickory Corners, MI, USA
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Sachiko Masuda
- Riken Center for Sustainable Resource Science, Yokohama, Japan
| | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Gerd Vogg
- Botanical Garden, University of Würzburg, Würzburg, Germany
| | - Ken Shirasu
- Riken Center for Sustainable Resource Science, Yokohama, Japan
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
13
|
Płachno BJ. Carnivorous Plant Biology: From Gene to Traps. Int J Mol Sci 2023; 24:16179. [PMID: 38003369 PMCID: PMC10671293 DOI: 10.3390/ijms242216179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Carnivorous plants (approximately 850 species) are specific mixotrophic plants which all perform photosynthesis but need mainly nitrogen and phosphorous from animal or protist bodies [...].
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| |
Collapse
|
14
|
Płachno BJ, Kapusta M, Stolarczyk P, Świątek P, Lichtscheidl I. Differences in the Occurrence of Cell Wall Components between Distinct Cell Types in Glands of Drosophyllum lusitanicum. Int J Mol Sci 2023; 24:15045. [PMID: 37894725 PMCID: PMC10606540 DOI: 10.3390/ijms242015045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Carnivorous plants are mixotrophs that have developed the ability to lure, trap, and digest small organisms and utilize components of the digested bodies. Leaves of Drosophyllum lusitanicum have two kinds of glands (emergences): stalked mucilage glands and sessile digestive glands. The stalked mucilage glands perform the primary role in prey lure and trapping. Apart from their role in carnivory, they absorb water condensed from oceanic fog; thus, plants can survive in arid conditions. To better understand the function of carnivorous plant emergences, the molecular composition of their cell walls was investigated using immunocytochemical methods. In this research, Drosophyllum lusitanicum was used as a study system to determine whether cell wall immunocytochemistry differs between the mucilage and digestive glands of other carnivorous plant species. Light and electron microscopy were used to observe gland structure. Fluorescence microscopy revealed the localization of carbohydrate epitopes associated with the major cell wall polysaccharides and glycoproteins. The mucilage gland (emergence) consists of a glandular head, a connecting neck zone, and stalk. The gland head is formed by an outer and inner layer of glandular (secretory) cells and supported by a layer of endodermoid (barrier) cells. The endodermoid cells have contact with a core of spongy tracheids with spiral-shaped thickenings. Lateral tracheids are surrounded by epidermal and parenchymal neck cells. Different patterns of cell wall components were found in the various cell types of the glands. Cell walls of glandular cells generally are poor in both low and highly esterified homogalacturonans (HGs) but enriched with hemicelluloses. Cell walls of inner glandular cells are especially rich in arabinogalactan proteins (AGPs). The cell wall ingrowths in glandular cells are significantly enriched with hemicelluloses and AGPs. In the case of cell wall components, the glandular cells of Drosophyllum lusitanicum mucilage glands are similar to the glandular cells of the digestive glands of Aldrovanda vesiculosa and Dionaea muscipula.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| | - Irene Lichtscheidl
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria;
| |
Collapse
|
15
|
Liu S, Smith SD. Replicated radiations in the South American marsh pitcher plants (Heliamphora) lead to convergent carnivorous trap morphologies. AMERICAN JOURNAL OF BOTANY 2023; 110:e16230. [PMID: 37807697 DOI: 10.1002/ajb2.16230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 10/10/2023]
Abstract
PREMISE The evolution of carnivorous pitcher traps across multiple angiosperm lineages represents a classic example of morphological convergence. Nevertheless, no comparative study to-date has examined pitcher evolution from a quantitative morphometric perspective. METHODS In the present study, we used comparative morphometric approaches to quantify the shape space occupied by Heliamphora pitchers and to trace evolutionary trajectories through this space to examine patterns of divergence and convergence within the genus. We also investigated pitcher development, and, how the packing of pitchers is affected by crowding, a common condition in their natural environments. RESULTS Our results showed that Heliamphora pitchers have diverged along three main axes in morphospace: (1) pitcher curvature; (2) nectar spoon elaboration; and (3) pitcher stoutness. Both curvature and stoutness are correlated with pitcher size, suggesting structural constraints in pitcher morphological evolution. Among the four traits (curvature, spoon elaboration, stoutness, and size), all but curvature lacked phylogenetic signal and showed marked convergence across the phylogeny. We also observed tighter packing of pitchers in crowded conditions, and this effect was most pronounced in curved, slender pitchers. CONCLUSIONS Overall, our study demonstrates that diversification and convergent evolution of carnivory-related traits extends to finer evolutionary timescales, reinforcing the notion that ecological specialization may not necessarily be an evolutionary dead end.
Collapse
Affiliation(s)
- Sukuan Liu
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, Boulder, Colorado, 80309, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, Boulder, Colorado, 80309, USA
| |
Collapse
|
16
|
Fleck SJ, Jobson RW. Molecular Phylogenomics Reveals the Deep Evolutionary History of Carnivory across Land Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3356. [PMID: 37836100 PMCID: PMC10574757 DOI: 10.3390/plants12193356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Plastid molecular phylogenies that broadly sampled angiosperm lineages imply that carnivorous plants evolved at least 11 times independently in 13 families and 6 orders. Within and between these clades, the different prey capture strategies involving flypaper and pitfall structures arose in parallel with the subsequent evolution of snap traps and suction bladders. Attempts to discern the deep ontological history of carnivorous structures using multigene phylogenies have provided a plastid-level picture of sister relationships at the family level. Here, we present a molecular phylogeny of the angiosperms based on nuclear target sequence capture data (Angiosperms-353 probe set), assembled by the Kew Plant Trees of Life initiative, which aims to complete the tree of life for plants. This phylogeny encompasses all carnivorous and protocarnivorous families, although certain genera such as Philcoxia (Plantaginaceae) are excluded. This study offers a novel nuclear gene-based overview of relationships within and between carnivorous families and genera. Consistent with previous broadly sampled studies, we found that most carnivorous families are not affiliated with any single family. Instead, they emerge as sister groups to large clades comprising multiple non-carnivorous families. Additionally, we explore recent genomic studies across various carnivorous clades that examine the evolution of the carnivorous syndrome in relation to whole-genome duplication, subgenome dominance, small-scale gene duplication, and convergent evolution. Furthermore, we discuss insights into genome size evolution through the lens of carnivorous plant genomes.
Collapse
Affiliation(s)
- Steven J. Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Richard W. Jobson
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| |
Collapse
|
17
|
Cao Y, Almeida-Silva F, Zhang WP, Ding YM, Bai D, Bai WN, Zhang BW, Van de Peer Y, Zhang DY. Genomic Insights into Adaptation to Karst Limestone and Incipient Speciation in East Asian Platycarya spp. (Juglandaceae). Mol Biol Evol 2023; 40:msad121. [PMID: 37216901 PMCID: PMC10257982 DOI: 10.1093/molbev/msad121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
When challenged by similar environmental conditions, phylogenetically distant taxa often independently evolve similar traits (convergent evolution). Meanwhile, adaptation to extreme habitats might lead to divergence between taxa that are otherwise closely related. These processes have long existed in the conceptual sphere, yet molecular evidence, especially for woody perennials, is scarce. The karst endemic Platycarya longipes and its only congeneric species, Platycarya strobilacea, which is widely distributed in the mountains in East Asia, provide an ideal model for examining the molecular basis of both convergent evolution and speciation. Using chromosome-level genome assemblies of both species, and whole-genome resequencing data from 207 individuals spanning their entire distribution range, we demonstrate that P. longipes and P. strobilacea form two species-specific clades, which diverged around 2.09 million years ago. We find an excess of genomic regions exhibiting extreme interspecific differentiation, potentially due to long-term selection in P. longipes, likely contributing to the incipient speciation of the genus Platycarya. Interestingly, our results unveil underlying karst adaptation in both copies of the calcium influx channel gene TPC1 in P. longipes. TPC1 has previously been identified as a selective target in certain karst-endemic herbs, indicating a convergent adaptation to high calcium stress among karst-endemic species. Our study reveals the genic convergence of TPC1 among karst endemics and the driving forces underneath the incipient speciation of the two Platycarya lineages.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wei-Ping Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ya-Mei Ding
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Dan Bai
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
18
|
Winkelmann T, Bringmann G, Herwig A, Hedrich R. Carnivory on demand: phosphorus deficiency induces glandular leaves in the African liana Triphyophyllum peltatum. THE NEW PHYTOLOGIST 2023. [PMID: 37191044 DOI: 10.1111/nph.18960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
Triphyophyllum peltatum, a rare tropical African liana, is unique in its facultative carnivory. The trigger for carnivory is yet unknown, mainly because the plant is difficult to propagate and cultivate. This study aimed at identifying the conditions that result in the formation of carnivorous leaves. In vitro shoots were subjected to abiotic stressors in general and deficiencies of the major nutrients nitrogen, potassium and phosphorus in particular, to trigger carnivorous leaves' development. Adventitious root formation was improved to allow verification of the trigger in glasshouse-grown plants. Among all the stressors tested, only under phosphorus deficiency, the formation of carnivorous leaves was observed. These glandular leaves fully resembled those found under natural growing conditions including the secretion of sticky liquid by mature capture organs. To generate plants for glasshouse experiments, a pulse of 55.4 μM α-naphthaleneacetic acid was essential to achieve 90% in vitro rooting. This plant material facilitated the confirmation of phosphorus starvation to be essential and sufficient for carnivory induction, also under ex vitro conditions. Having established the cultivation of T. peltatum and the induction of carnivory, future gene expression profiles from phosphorus starvation-induced leaves will provide important insight to the molecular mechanism of carnivory on demand.
Collapse
Affiliation(s)
- Traud Winkelmann
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anne Herwig
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Rainer Hedrich
- Department of Molecular Plant-Physiology and Biophysics - Botany I, University of Würzburg, Biocentre, Julius-von-Sachs-Institute for Biosciences, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| |
Collapse
|
19
|
Li YX, Chen A, Leu WM. Sessile Trichomes Play Major Roles in Prey Digestion and Absorption, While Stalked Trichomes Function in Prey Predation in Byblis guehoi. Int J Mol Sci 2023; 24:ijms24065305. [PMID: 36982381 PMCID: PMC10048915 DOI: 10.3390/ijms24065305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
Carnivorous plants in the genus Byblis obtain nutrients by secreting viscous glue drops and enzymes that trap and digest small organisms. Here, we used B. guehoi to test the long-held theory that different trichomes play different roles in carnivorous plants. In the leaves of B. guehoi, we observed a 1:2.5:14 ratio of long-stalked, short-stalked, and sessile trichomes. We demonstrated that the stalked trichomes play major roles in the production of glue droplets, while the sessile trichomes secrete digestive enzymes, namely proteases and phosphatases. In addition to absorbing digested small molecules via channels/transporters, several carnivorous plants employ a more efficient system: endocytosis of large protein molecules. By feeding B. guehoi fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) to monitor protein transport, we found that sessile trichomes exhibited more endocytosis than long- and short-stalked trichomes. The uptaken FITC-BSA was delivered to the neighboring short epidermal cells in the same row as the sessile trichomes, then to the underlying mesophyll cells; however, no signals were detected in the parallel rows of long epidermis cells. The FITC control could be taken up by sessile trichomes but not transported out. Our study shows that B. guehoi has developed a well-organized system to maximize its food supply, consisting of stalked trichomes for prey predation and sessile trichomes for prey digestion. Moreover, the finding that sessile trichomes transfer large, endocytosed protein molecules to the underlying mesophyll, and putatively to the vascular tissues, but not laterally to the terminally differentiated epidermis, indicates that the nutrient transport system has evolved to maximize efficiency.
Collapse
Affiliation(s)
- You-Xian Li
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Alvin Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wei-Ming Leu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Yu M, Arai N, Ochiai T, Ohyama T. Expression and function of an S1-type nuclease in the digestive fluid of a sundew, Drosera adelae. ANNALS OF BOTANY 2023; 131:335-346. [PMID: 36546767 PMCID: PMC9992940 DOI: 10.1093/aob/mcac150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants trap and digest insects and similar-sized animals. Many studies have examined enzymes in the digestive fluids of these plants and have gradually unveiled the origins and gene expression of these enzymes. However, only a few attempts have been made at characterization of nucleases. This study aimed to reveal gene expression and the structural, functional and evolutionary characteristics of an S1-type nuclease (DAN1) in the digestive fluid of an Australian sundew, Drosera adelae, whose trap organ shows unique gene expression and related epigenetic regulation. METHODS Organ-specificity in Dan1 expression was examined using glandular tentacles, laminas, roots and inflorescences, and real-time PCR. The methylation status of the Dan1 promoter in each organ was clarified by bisulphite sequencing. The structural characteristics of DAN1 were studied by a comparison of primary structures of S1-type nucleases of three carnivorous and seven non-carnivorous plants. DAN1 was prepared using a cell-free protein synthesis system. Requirements for metal ions, optimum pH and temperature, and substrate preference were examined using conventional methods. KEY RESULTS Dan1 is exclusively expressed in the glandular tentacles and its promoter is almost completely unmethylated in all organs. This is in contrast to the S-like RNase gene da-I of Dr. adelae, which shows similar organ-specific expression, but is controlled by a promoter that is specifically unmethylated in the glandular tentacles. Comparison of amino acid sequences of S1-type nucleases identifies seven and three positions where amino acid residues are conserved only among the carnivorous plants and only among the non-carnivorous plants, respectively. DAN1 prefers a substrate RNA over DNA in the presence of Zn2+, Mn2+ or Ca2+ at an optimum pH of 4.0. CONCLUSIONS Uptake of phosphates from prey is suggested to be the main function of DAN1, which is very different from the known functions of S1-type nucleases. Evolution has modified the structure and expression of Dan1 to specifically function in the digestive fluid.
Collapse
Affiliation(s)
- Meng Yu
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Arai
- Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
| | - Tadahiro Ochiai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
21
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
22
|
Baharin A, Ting TY, Goh HH. Omics Approaches in Uncovering Molecular Evolution and Physiology of Botanical Carnivory. PLANTS (BASEL, SWITZERLAND) 2023; 12:408. [PMID: 36679121 PMCID: PMC9867145 DOI: 10.3390/plants12020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Systems biology has been increasingly applied with multiple omics for a holistic comprehension of complex biological systems beyond the reductionist approach that focuses on individual molecules. Different high-throughput omics approaches, including genomics, transcriptomics, metagenomics, proteomics, and metabolomics have been implemented to study the molecular mechanisms of botanical carnivory. This covers almost all orders of carnivorous plants, namely Caryophyllales, Ericales, Lamiales, and Oxalidales, except Poales. Studies using single-omics or integrated multi-omics elucidate the compositional changes in nucleic acids, proteins, and metabolites. The omics studies on carnivorous plants have led to insights into the carnivory origin and evolution, such as prey capture and digestion as well as the physiological adaptations of trap organ formation. Our understandings of botanical carnivory are further enhanced by the discoveries of digestive enzymes and transporter proteins that aid in efficient nutrient sequestration alongside dynamic molecular responses to prey. Metagenomics studies revealed the mutualistic relationships between microbes and carnivorous plants. Lastly, in silico analysis accelerated the functional characterization of new molecules from carnivorous plants. These studies have provided invaluable molecular data for systems understanding of carnivorous plants. More studies are needed to cover the diverse species with convergent evolution of botanical carnivory.
Collapse
|
23
|
Detecting macroevolutionary genotype-phenotype associations using error-corrected rates of protein convergence. Nat Ecol Evol 2023; 7:155-170. [PMID: 36604553 PMCID: PMC9834058 DOI: 10.1038/s41559-022-01932-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
On macroevolutionary timescales, extensive mutations and phylogenetic uncertainty mask the signals of genotype-phenotype associations underlying convergent evolution. To overcome this problem, we extended the widely used framework of non-synonymous to synonymous substitution rate ratios and developed the novel metric ωC, which measures the error-corrected convergence rate of protein evolution. While ωC distinguishes natural selection from genetic noise and phylogenetic errors in simulation and real examples, its accuracy allows an exploratory genome-wide search of adaptive molecular convergence without phenotypic hypothesis or candidate genes. Using gene expression data, we explored over 20 million branch combinations in vertebrate genes and identified the joint convergence of expression patterns and protein sequences with amino acid substitutions in functionally important sites, providing hypotheses on undiscovered phenotypes. We further extended our method with a heuristic algorithm to detect highly repetitive convergence among computationally non-trivial higher-order phylogenetic combinations. Our approach allows bidirectional searches for genotype-phenotype associations, even in lineages that diverged for hundreds of millions of years.
Collapse
|
24
|
Mu H, Wang B, Yuan F. Bioinformatics in Plant Breeding and Research on Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 11:3118. [PMID: 36432847 PMCID: PMC9696050 DOI: 10.3390/plants11223118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In the context of plant breeding, bioinformatics can empower genetic and genomic selection to determine the optimal combination of genotypes that will produce a desired phenotype and help expedite the isolation of these new varieties. Bioinformatics is also instrumental in collecting and processing plant phenotypes, which facilitates plant breeding. Robots that use automated and digital technologies to collect and analyze different types of information to monitor the environment in which plants grow, analyze the environmental stresses they face, and promptly optimize suboptimal and adverse growth conditions accordingly, have helped plant research and saved human resources. In this paper, we describe the use of various bioinformatics databases and algorithms and explore their potential applications in plant breeding and for research on plant disease resistance.
Collapse
Affiliation(s)
| | | | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
25
|
Freund M, Graus D, Fleischmann A, Gilbert KJ, Lin Q, Renner T, Stigloher C, Albert VA, Hedrich R, Fukushima K. The digestive systems of carnivorous plants. PLANT PHYSIOLOGY 2022; 190:44-59. [PMID: 35604105 PMCID: PMC9434158 DOI: 10.1093/plphys/kiac232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands.
Collapse
Affiliation(s)
- Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Dorothea Graus
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Andreas Fleischmann
- Botanische Staatssammlung München and GeoBio-Center LMU, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kadeem J Gilbert
- Department of Plant Biology & W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
| | - Qianshi Lin
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, University of Würzburg, Würzburg, Germany
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Agrawal A, Pareek A, Dkhar J. Genetic Basis of Carnivorous Leaf Development. FRONTIERS IN PLANT SCIENCE 2022; 12:825289. [PMID: 35095989 PMCID: PMC8792892 DOI: 10.3389/fpls.2021.825289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Plant carnivory is often manifested as dramatic changes in the structure and morphology of the leaf. These changes appear to begin early in leaf development. For example, the development of the Sarracenia purpurea leaf primordium is associated with the formation of an adaxial ridge, whose growth along with that of the leaf margin resulted in a hollow structure that later developed into a pitcher. In Nepenthes khasiana, pitcher formation occurs during the initial stages of leaf development, although this has not been shown at the primordial stage. The formation of the Utricularia gibba trap resulted from the growth of the dome-shaped primordium in both the longitudinal and transverse directions. Recent research has begun to unfold the genetic basis of the development of the carnivorous leaf. We review these findings and discuss them in relation to the flat-shaped leaves of the model plant Arabidopsis.
Collapse
Affiliation(s)
- Arpita Agrawal
- Plant EvoDevo Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Jeremy Dkhar
- Plant EvoDevo Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
27
|
Bittleston LS, Benson EL, Bernardin JR, Pierce NE. Characterization and Comparison of Convergence Among Cephalotus follicularis Pitcher Plant-Associated Communities With Those of Nepenthes and Sarracenia Found Worldwide. FRONTIERS IN PLANT SCIENCE 2022; 13:887635. [PMID: 35734258 PMCID: PMC9207445 DOI: 10.3389/fpls.2022.887635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 05/09/2023]
Abstract
The Albany pitcher plant, Cephalotus follicularis, has evolved cup-shaped leaves and a carnivorous habit completely independently from other lineages of pitcher plants. It is the only species in the family Cephalotaceae and is restricted to a small region of Western Australia. Here, we used metabarcoding to characterize the bacterial and eukaryotic communities living in C. follicularis pitchers at two different sites. Bacterial and eukaryotic communities were correlated in both richness and composition; however, the factors associated with richness were not the same across bacteria and eukaryotes, with bacterial richness differing with fluid color, and eukaryotic richness differing with the concentration of DNA extracted from the fluid, a measure roughly related to biomass. For turnover in composition, the variation in both bacterial and eukaryotic communities primarily differed with fluid acidity, fluid color, and sampling site. We compared C. follicularis-associated community diversity with that of Australian Nepenthes mirabilis, as well as a global comparison of Southeast Asian Nepenthes and North American Sarracenia. Our results showed similarity in richness with communities from other pitcher plants, and specific bacterial taxa shared among all three independent lineages of pitcher plants. Overall, we saw convergence in richness and particular clades colonizing pitcher plants around the world, suggesting that these highly specialized habitats select for certain numbers and types of inhabitants.
Collapse
Affiliation(s)
- Leonora S. Bittleston
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- *Correspondence: Leonora S. Bittleston,
| | - Elizabeth L. Benson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Jessica R. Bernardin
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
28
|
Böhm J, Scherzer S. Signaling and transport processes related to the carnivorous lifestyle of plants living on nutrient-poor soil. PLANT PHYSIOLOGY 2021; 187:2017-2031. [PMID: 35235668 PMCID: PMC8890503 DOI: 10.1093/plphys/kiab297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/04/2021] [Indexed: 05/29/2023]
Abstract
In Eukaryotes, long-distance and rapid signal transmission is required in order to be able to react fast and flexibly to external stimuli. This long-distance signal transmission cannot take place by diffusion of signal molecules from the site of perception to the target tissue, as their speed is insufficient. Therefore, for adequate stimulus transmission, plants as well as animals make use of electrical signal transmission, as this can quickly cover long distances. This update summarises the most important advances in plant electrical signal transduction with a focus on the carnivorous Venus flytrap. It highlights the different types of electrical signals, examines their underlying ion fluxes and summarises the carnivorous processes downstream of the electrical signals.
Collapse
Affiliation(s)
- Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
29
|
Oborník M, Dorrell RG, Tikhonenkov DV. Editorial: Mixotrophic, Secondary Heterotrophic, and Parasitic Algae. FRONTIERS IN PLANT SCIENCE 2021; 12:798555. [PMID: 34899815 PMCID: PMC8655977 DOI: 10.3389/fpls.2021.798555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Miroslav Oborník
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Richard G. Dorrell
- Département de Biologie, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Denis V. Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russia
| |
Collapse
|
30
|
Jakšová J, Adamec L, Petřík I, Novák O, Šebela M, Pavlovič A. Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants (Aldrovanda, Utricularia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:459-465. [PMID: 34166972 DOI: 10.1016/j.plaphy.2021.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Terrestrial carnivorous plants of genera Drosera, Dionaea and Nepenthes within the order Caryophyllales employ jasmonates for the induction of digestive processes in their traps. Here, we focused on two aquatic carnivorous plant genera with different trapping mechanism from distinct families and orders: Aldrovanda (Droseraceae, Caryophyllales) with snap-traps and Utricularia (Lentibulariaceae, Lamiales) with suction traps. Using phytohormone analyses and simple biotest, we asked whether the jasmonates are involved in the activation of carnivorous response similar to that known in traps of terrestrial genera of Droseraceae (Drosera, Dionaea). The results showed that Utricularia, in contrast with Aldrovanda, does not use jasmonates for activation of carnivorous response and is the second genus in Lamiales, which has not co-opted jasmonate signalling for botanical carnivory. On the other hand, the nLC-MS/MS analyses revealed that both genera secreted digestive fluid containing cysteine protease homologous to dionain although the mode of its regulation may differ. Whereas in Utricularia the cysteine protease is present constitutively in digestive fluid, it is induced by prey and exogenous application of jasmonic acid in Aldrovanda.
Collapse
Affiliation(s)
- Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Department of Experimental and Functional Morphology, Dukelská135, CZ-379 82, Třeboň, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, and Centre of the Region Haná for Biotechnological and Agricultural Research, CATRIN, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
31
|
Adamec L, Matušíková I, Pavlovič A. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. ANNALS OF BOTANY 2021; 128:241-259. [PMID: 34111238 PMCID: PMC8389183 DOI: 10.1093/aob/mcab071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.
Collapse
Affiliation(s)
- Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 01 Třeboň, Czech Republic
| | - Ildikó Matušíková
- University of Ss. Cyril and Methodius, Department of Ecochemistry and Radioecology, J. Herdu 2, SK-917 01 Trnava, Slovak Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
32
|
Basic β-1,3-Glucanase from Drosera binata Exhibits Antifungal Potential in Transgenic Tobacco Plants. PLANTS 2021; 10:plants10081747. [PMID: 34451792 PMCID: PMC8401921 DOI: 10.3390/plants10081747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
The basic β-1,3-glucanase of the carnivorous plant Drosera binata was tested as a purified protein, as well as under the control of a double CaMV35S promoter in transgenic tobacco for its capability to inhibit the growth of Trichoderma viride, Rhizoctonia solani, Alternaria solani, and Fusarium poae in an in-vitro assay. The purified protein inhibited tested phytopathogens but not the saprophytic fungus T. viride. Out of the analysed transgenic plants, lines 13, 16, 19, and 22 exhibited high DbGluc1 transcript abundance normalised to the actin transcript. Because of DbGluc1 transgene expression, lines 13 and 16 showed a 1.7-fold increase and lines 19 and 22 showed more than a 2-fold increase in total β-1,3-glucanase activity compared to the non-transgenic control. In accordance with the purified β-1,3-glucanase in-vitro antifungal assay, crude protein extracts of lines 19 and 22 significantly inhibited the growth of phytopathogens (14–34%). Further analyses revealed that the complementary action of transgenic β-1,3-glucanase and 20% higher activity of endogenous chitinase(s) in these lines were crucial for maximising the antifungal efficiency of crude protein extracts.
Collapse
|
33
|
Lin Q, Ané C, Givnish TJ, Graham SW. A new carnivorous plant lineage ( Triantha) with a unique sticky-inflorescence trap. Proc Natl Acad Sci U S A 2021; 118:e2022724118. [PMID: 34373325 PMCID: PMC8379919 DOI: 10.1073/pnas.2022724118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carnivorous plants consume animals for mineral nutrients that enhance growth and reproduction in nutrient-poor environments. Here, we report that Triantha occidentalis (Tofieldiaceae) represents a previously overlooked carnivorous lineage that captures insects on sticky inflorescences. Field experiments, isotopic data, and mixing models demonstrate significant N transfer from prey to Triantha, with an estimated 64% of leaf N obtained from prey capture in previous years, comparable to levels inferred for the cooccurring round-leaved sundew, a recognized carnivore. N obtained via carnivory is exported from the inflorescence and developing fruits and may ultimately be transferred to next year's leaves. Glandular hairs on flowering stems secrete phosphatase, as seen in all carnivorous plants that directly digest prey. Triantha is unique among carnivorous plants in capturing prey solely with sticky traps adjacent to its flowers, contrary to theory. However, its glandular hairs capture only small insects, unlike the large bees and butterflies that act as pollinators, which may minimize the conflict between carnivory and pollination.
Collapse
Affiliation(s)
- Qianshi Lin
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- UBC Botanical Garden, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
- Department of Statistics, University of Wisconsin-Madison, Madison WI 53706
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- UBC Botanical Garden, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
34
|
Gilbert KJ, Renner T. Acid or base? How do plants regulate the ecology of their phylloplane? AOB PLANTS 2021; 13:plab032. [PMID: 34285793 PMCID: PMC8286713 DOI: 10.1093/aobpla/plab032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/25/2021] [Indexed: 05/29/2023]
Abstract
Plants interface with and modify the external environment across their surfaces, and in so doing, can control or mitigate the impacts of abiotic stresses and also mediate their interactions with other organisms. Botanically, it is known that plant roots have a multi-faceted ability to modify rhizosphere conditions like pH, a factor with a large effect on a plant's biotic interactions with microbes. But plants can also modify pH levels on the surfaces of their leaves. Plants can neutralize acid rain inputs in a period of hours, and either acidify or alkalinize the pH of neutral water droplets in minutes. The pH of the phylloplane-that is, the outermost surface of the leaf-varies across species, from incredibly acidic (carnivorous plants: as low as pH 1) to exceptionally alkaline (species in the plant family, Malvaceae, up to pH 11). However, most species mildly acidify droplets on the phylloplane by 1.5 orders of magnitude in pH. Just as rhizosphere pH helps shape the plant microbiome and is known to influence belowground interactions, so too can phylloplane pH influence aboveground interactions in plant canopies. In this review, we discuss phylloplane pH regulation from the physiological, molecular, evolutionary, and ecological perspectives and address knowledge gaps and identify future research directions.
Collapse
Affiliation(s)
- Kadeem J Gilbert
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| |
Collapse
|
35
|
Hedrich R, Fukushima K. On the Origin of Carnivory: Molecular Physiology and Evolution of Plants on an Animal Diet. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:133-153. [PMID: 33434053 DOI: 10.1146/annurev-arplant-080620-010429] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Charles Darwin recognized that carnivorous plants thrive in nutrient-poor soil by capturing animals. Although the concept of botanical carnivory has been known for nearly 150 years, its molecular mechanisms and evolutionary origins have not been well understood until recently. In the last decade, technical advances have fueled the genome and transcriptome sequencings of active and passive hunters, leading to a better understanding of the traits associated with the carnivorous syndrome, from trap leaf development and prey digestion to nutrient absorption, exemplified, for example, by the Venus flytrap (Dionaea muscipula), pitcher plant (Cephalotus follicularis), and bladderwort (Utricularia gibba). The repurposing of defense-related genes is an important trend in the evolution of plant carnivory. In this review, using the Venus flytrap as a representative of the carnivorous plants, we summarize the molecular mechanisms underlying their ability to attract, trap, and digest prey and discuss the origins of plant carnivory in relation to their genomic evolution.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany; ,
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany; ,
| |
Collapse
|
36
|
Waters JM, McCulloch GA. Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Mol Ecol 2021; 30:4162-4172. [PMID: 34133810 DOI: 10.1111/mec.16018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Biologists have long been intrigued by apparently predictable and repetitive evolutionary trajectories inferred across a variety of lineages and systems. In recent years, high-throughput sequencing analyses have started to transform our understanding of such repetitive shifts. While researchers have traditionally categorized such shifts as either "convergent" or "parallel," based on relatedness of the lineages involved, emerging genomic insights provide an opportunity to better describe the actual evolutionary mechanisms at play. A synthesis of recent genomic analyses confirms that convergence is the predominant driver of repetitive evolution among species, whereas repeated sorting of standing variation is the major driver of repeated shifts within species. However, emerging data reveal numerous notable exceptions to these expectations, with recent examples of de novo mutations underpinning convergent shifts among even very closely related lineages, while repetitive sorting processes have occurred among even deeply divergent taxa, sometimes via introgression. A number of very recent analyses have found evidence for both processes occurring on different scales within taxa. We suggest that the relative importance of convergent versus sorting processes depends on the interplay between gene flow among populations, and phylogenetic relatedness of the lineages involved.
Collapse
|
37
|
Shchennikova AV, Beletsky AV, Filyushin MA, Slugina MA, Gruzdev EV, Mardanov AV, Kochieva EZ, Ravin NV. Nepenthes × ventrata Transcriptome Profiling Reveals a Similarity Between the Evolutionary Origins of Carnivorous Traps and Floral Organs. FRONTIERS IN PLANT SCIENCE 2021; 12:643137. [PMID: 34122470 PMCID: PMC8194089 DOI: 10.3389/fpls.2021.643137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The emergence of the carnivory syndrome and traps in plants is one of the most intriguing questions in evolutionary biology. In the present study, we addressed it by comparative transcriptomics analysis of leaves and leaf-derived pitcher traps from a predatory plant Nepenthes ventricosa × Nepenthes alata. Pitchers were collected at three stages of development and a total of 12 transcriptomes were sequenced and assembled de novo. In comparison with leaves, pitchers at all developmental stages were found to be highly enriched with upregulated genes involved in stress response, specification of shoot apical meristem, biosynthesis of sucrose, wax/cutin, anthocyanins, and alkaloids, genes encoding digestive enzymes (proteases and oligosaccharide hydrolases), and flowering-related MADS-box genes. At the same time, photosynthesis-related genes in pitchers were transcriptionally downregulated. As the MADS-box genes are thought to be associated with the origin of flower organs from leaves, we suggest that Nepenthes species could have employed a similar pathway involving highly conserved MADS-domain transcription factors to develop a novel structure, pitcher-like trap, for capture and digestion of animal prey during the evolutionary transition to carnivory. The data obtained should clarify the molecular mechanisms of trap initiation and development and may contribute to solving the problem of its emergence in plants.
Collapse
|
38
|
Introgression is widespread in the radiation of carnivorous Nepenthes pitcher plants. Mol Phylogenet Evol 2021; 163:107214. [PMID: 34052438 DOI: 10.1016/j.ympev.2021.107214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022]
Abstract
Introgression and hybridization are important processes in plant evolution, but they are difficult to study from a phylogenetic perspective, because they conflict with the bifurcating evolutionary history typically depicted in phylogenetic models. The role of hybridization in plant evolution is best documented in the form of allo-polyploidizations. In contrast, homoploid hybridization and introgression are less explored, although they may be crucial in adaptive radiations. Here we employ genome-wide data (ddRAD-seq, transcriptomes) to investigate the evolutionary history of Nepenthes, a radiation of c. 160 species of iconic carnivorous plants mainly from tropical Asia. Our data indicates that the main radiation is only c. 5 million years old, and confirms previous bifurcating phylogenies. However, due to a greatly expanded number of loci, we were able test for the first time the long-standing hypotheses of introgression and historical hybridization. The genus presents one very clear case of organellar capture between two distantly related but sympatric groups. Furthermore, all Nepenthes species show introgression signals in their nuclear genomes, as uncovered by a general survey of ABBA-BABA-like statistics. The ancestor of the rapid main radiation shows ancestry from two deeply diverged lineages, as indicated by phylogenetic network analyses. All major clades of the main radiation show further introgression both within and between each other, as suggested by admixture graphs. Our study supports the hypothesis that rapid adaptive radiations are hotspots of introgression in the tree of life, and highlights the need to consider non-treelike processes in evolutionary studies of Nepenthes in particular.
Collapse
|
39
|
Okubo S, Terauchi K, Okada S, Saito Y, Yamaura T, Misaka T, Nakajima KI, Abe K, Asakura T. De novo transcriptome analysis and comparative expression profiling of genes associated with the taste-modifying protein neoculin in Curculigo latifolia and Curculigo capitulata fruits. BMC Genomics 2021; 22:347. [PMID: 33985426 PMCID: PMC8120819 DOI: 10.1186/s12864-021-07674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Curculigo latifolia is a perennial plant endogenous to Southeast Asia whose fruits contain the taste-modifying protein neoculin, which binds to sweet receptors and makes sour fruits taste sweet. Although similar to snowdrop (Galanthus nivalis) agglutinin (GNA), which contains mannose-binding sites in its sequence and 3D structure, neoculin lacks such sites and has no lectin activity. Whether the fruits of C. latifolia and other Curculigo plants contain neoculin and/or GNA family members was unclear. Results Through de novo RNA-seq assembly of the fruits of C. latifolia and the related C. capitulata and detailed analysis of the expression patterns of neoculin and neoculin-like genes in both species, we assembled 85,697 transcripts from C. latifolia and 76,775 from C. capitulata using Trinity and annotated them using public databases. We identified 70,371 unigenes in C. latifolia and 63,704 in C. capitulata. In total, 38.6% of unigenes from C. latifolia and 42.6% from C. capitulata shared high similarity between the two species. We identified ten neoculin-related transcripts in C. latifolia and 15 in C. capitulata, encoding both the basic and acidic subunits of neoculin in both plants. We aligned these 25 transcripts and generated a phylogenetic tree. Many orthologs in the two species shared high similarity, despite the low number of common genes, suggesting that these genes likely existed before the two species diverged. The relative expression levels of these genes differed considerably between the two species: the transcripts per million (TPM) values of neoculin genes were 60 times higher in C. latifolia than in C. capitulata, whereas those of GNA family members were 15,000 times lower in C. latifolia than in C. capitulata. Conclusions The genetic diversity of neoculin-related genes strongly suggests that neoculin genes underwent duplication during evolution. The marked differences in their expression profiles between C. latifolia and C. capitulata may be due to mutations in regions involved in transcriptional regulation. Comprehensive analysis of the genes expressed in the fruits of these two Curculigo species helped elucidate the origin of neoculin at the molecular level. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07674-3.
Collapse
Affiliation(s)
- Satoshi Okubo
- The Yamashina Botanical Research Institute, Nippon Shinyaku Co., Ltd., Oyake Sakanotsuji-cho 39, Yamashina-ku, Kyoto, 607-8182, Japan
| | - Kaede Terauchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoshikazu Saito
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takao Yamaura
- The Yamashina Botanical Research Institute, Nippon Shinyaku Co., Ltd., Oyake Sakanotsuji-cho 39, Yamashina-ku, Kyoto, 607-8182, Japan
| | - Takumi Misaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ken-Ichiro Nakajima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Present address: Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Keiko Abe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Tomiko Asakura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
40
|
de Vries S, de Vries J. Plant Genome Evolution: Meat Lovers Expanded Gene Families for Carnivory and Dropped the Rest. Curr Biol 2021; 30:R700-R702. [PMID: 32574630 DOI: 10.1016/j.cub.2020.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Every textbook says that land plants are primary producers and, as such, are eaten. A couple of plants, however, refuse to stay within the boundaries of their trophic level - the carnivorous plants. Now, a new genomic study pinpoints the genetic chassis that underpins carnivory in Venus flytrap, waterwheel plant, and sundew.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Jan de Vries
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Göttingen, Germany; University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
41
|
Kocáb O, Bačovčinová M, Bokor B, Šebela M, Lenobel R, Schöner CR, Schöner MG, Pavlovič A. Enzyme activities in two sister-species of carnivorous pitcher plants (Nepenthes) with contrasting nutrient sequestration strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:113-121. [PMID: 33581619 DOI: 10.1016/j.plaphy.2021.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The carnivorous pitcher plants of the genus Nepenthes usually attract, capture and digest arthropod prey to obtain mineral nutrients. But few members of the genus have evolved specialized nutrient sequestration strategies to acquire nitrogen from the faeces and urine of mutualistic mammals, which they attract. Because the plants obtain significant amounts of nitrogen in a more available form, we hypothesized that they have relaxed the production of digestive enzymes. If so, species that digest mammal faeces should show fewer digestive enzymes than closely related species that rely on arthropods. We tested this hypothesis by comparing digestive enzymes in 1) Nepenthes hemsleyana, whose pitchers serve as roosts for the mutualistic woolly bat Kerivoula hardwickii, which also defecate inside the pitchers, and 2) the close relative Nepenthes rafflesiana, a typical arthropod capturing species. To investigate the dynamics of aspartic proteases (nepenthesin I and II) and type III and IV chitinases in both species, we conducted qPCR, western blotting, mass spectrometry, and enzyme activity measurements. We found that mRNA in pitcher tissue and enzyme abundance in the digestive fluid is upregulated in both species in response to faeces and insect feeding. Contrary to our initial hypothesis, the final nepenthesin proteolytic activity in the digestive fluid is higher in response to faeces addition than to insect prey irrespective of Nepenthes species. This indicates that faeces can mimic arthropod prey triggering the production of digestive enzymes and N. hemsleyana retained capacity for production of them.
Collapse
Affiliation(s)
- Ondřej Kocáb
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Bačovčinová
- Department of Botany, Institute of Biology and Ecology, Šafárik University, Mánesova 23, SK-040 01, Košice, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská Dolina B2, SK-842 15, Bratislava, Slovakia; Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, SK-841 04, Bratislava, Slovakia
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Caroline R Schöner
- Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, 17489, Greifswald, Germany
| | - Michael G Schöner
- Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, 17489, Greifswald, Germany
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
42
|
Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1946-1961. [PMID: 33247920 PMCID: PMC7921302 DOI: 10.1093/jxb/eraa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/25/2020] [Indexed: 05/16/2023]
Abstract
Over the last two decades, extensive studies have been performed at the molecular level to understand the evolution of carnivorous plants. As fruits, the repertoire of protein components in the digestive fluids of several carnivorous plants have gradually become clear. However, the quantitative aspects of these proteins and the expression mechanisms of the genes that encode them are still poorly understood. In this study, using the Australian sundew Drosera adelae, we identified and quantified the digestive fluid proteins. We examined the expression and methylation status of the genes corresponding to major hydrolytic enzymes in various organs; these included thaumatin-like protein, S-like RNase, cysteine protease, class I chitinase, β-1, 3-glucanase, and hevein-like protein. The genes encoding these proteins were exclusively expressed in the glandular tentacles. Furthermore, the promoters of the β-1, 3-glucanase and cysteine protease genes were demethylated only in the glandular tentacles, similar to the previously reported case of the S-like RNase gene da-I. This phenomenon correlated with high expression of the DNA demethylase DEMETER in the glandular tentacles, strongly suggesting that it performs glandular tentacle-specific demethylation of the genes. The current study strengthens and generalizes the relevance of epigenetics to trap organ-specific gene expression in D. adelae. We also suggest similarities between the trap organs of carnivorous plants and the roots of non-carnivorous plants.
Collapse
Affiliation(s)
- Naoki Arai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Ohno
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shinya Jumyo
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Hamaji
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
- Correspondence:
| |
Collapse
|
43
|
Fukushima K, Narukawa H, Palfalvi G, Hasebe M. A discordance of seasonally covarying cues uncovers misregulated phenotypes in the heterophyllous pitcher plant Cephalotus follicularis. Proc Biol Sci 2021; 288:20202568. [PMID: 33499794 PMCID: PMC7893253 DOI: 10.1098/rspb.2020.2568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organisms withstand normal ranges of environmental fluctuations by producing a set of phenotypes genetically programmed as a reaction norm; however, extreme conditions can expose a misregulation of phenotypes called a hidden reaction norm. Although an environment consists of multiple factors, how combinations of these factors influence a reaction norm is not well understood. To elucidate the combinatorial effects of environmental factors, we studied the leaf shape plasticity of the carnivorous pitcher plant Cephalotus follicularis. Clonally propagated plants were subjected to 12-week-long growth experiments in different conditions controlled by growth chambers. Here, we show that the dimorphic response of forming a photosynthetic flat leaf or an insect-trapping pitcher leaf is regulated by two covarying environmental cues: temperature and photoperiod. Even within the normal ranges of temperature and photoperiod, unusual combinations of the two induced the production of malformed leaves that were rarely observed under the environmentally typical combinations. We identified such cases in combinations of a summer temperature with a short-to-neutral day length, whose average frequency in the natural Cephalotus habitats corresponded to a once-in-a-lifetime event for this perennial species. Our results suggest that even if individual cues are within the range of natural fluctuations, a hidden reaction norm can be exposed under their discordant combinations. We anticipate that climate change may challenge organismal responses through not only extreme cues but also through uncommon combinations of benign cues.
Collapse
Affiliation(s)
- Kenji Fukushima
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan.,Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Hideki Narukawa
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Gergo Palfalvi
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| |
Collapse
|
44
|
Dkhar J, Bhaskar YK, Lynn A, Pareek A. Pitchers of Nepenthes khasiana express several digestive-enzyme encoding genes, harbor mostly fungi and probably evolved through changes in the expression of leaf polarity genes. BMC PLANT BIOLOGY 2020; 20:524. [PMID: 33203377 PMCID: PMC7672872 DOI: 10.1186/s12870-020-02663-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/23/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND A structural phenomenon seen in certain lineages of angiosperms that has captivated many scholars including Charles Darwin is the evolution of plant carnivory. Evidently, these structural features collectively termed carnivorous syndrome, evolved to aid nutritional acquisition from attracted, captured and digested prey. We now understand why plant carnivory evolved but how carnivorous plants acquired these attributes remains a mystery. In an attempt to understand the evolution of Nepenthes pitcher and to shed more light on its role in prey digestion, we analyzed the transcriptome data of the highly specialized Nepenthes khasiana leaf comprising the leaf base lamina, tendril and the different parts/zones of the pitcher tube viz. digestive zone, waxy zone and lid. RESULTS In total, we generated around 262 million high-quality Illumina reads. Reads were pooled, normalized and de novo assembled to generate a reference transcriptome of about 412,224 transcripts. We then estimated transcript abundance along the N. khasiana leaf by mapping individual reads from each part/zone to the reference transcriptome. Correlation-based hierarchical clustering analysis of 27,208 commonly expressed genes indicated functional relationship and similar cellular processes underlying the development of the leaf base and the pitcher, thereby implying that the Nepenthes pitcher is indeed a modified leaf. From a list of 2386 differentially expressed genes (DEGs), we identified transcripts encoding key enzymes involved in prey digestion and protection against pathogen attack, some of which are expressed at high levels in the digestive zone. Interestingly, many of these enzyme-encoding genes are also expressed in the unopened N. khasiana pitcher. Transcripts showing homology to both bacteria and fungi were also detected; and in the digestive zone, fungi are more predominant as compared to bacteria. Taking cues from histology and scanning electron microscopy (SEM) photomicrographs, we found altered expressions of key regulatory genes involved in leaf development. Of particular interest, the expression of class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII) and ARGONAUTE (AGO) genes were upregulated in the tendril. CONCLUSIONS Our findings suggest that N. khasiana pitchers employ a wide range of enzymes for prey digestion and plant defense, harbor microbes and probably evolved through altered expression of leaf polarity genes.
Collapse
Affiliation(s)
- Jeremy Dkhar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
| | - Yogendra Kumar Bhaskar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Andrew Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
45
|
Xu S, Wang J, Guo Z, He Z, Shi S. Genomic Convergence in the Adaptation to Extreme Environments. PLANT COMMUNICATIONS 2020; 1:100117. [PMID: 33367270 PMCID: PMC7747959 DOI: 10.1016/j.xplc.2020.100117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 05/08/2023]
Abstract
Convergent evolution is especially common in plants that have independently adapted to the same extreme environments (i.e., extremophile plants). The recent burst of omics data has alleviated many limitations that have hampered molecular convergence studies of non-model extremophile plants. In this review, we summarize cases of genomic convergence in these taxa to examine the extent and type of genomic convergence during the process of adaptation to extreme environments. Despite being well studied by candidate gene approaches, convergent evolution at individual sites is rare and often has a high false-positive rate when assessed in whole genomes. By contrast, genomic convergence at higher genetic levels has been detected during adaptation to the same extreme environments. Examples include the convergence of biological pathways and changes in gene expression, gene copy number, amino acid usage, and GC content. Higher convergence levels play important roles in the adaptive evolution of extremophiles and may be more frequent and involve more genes. In several cases, multiple types of convergence events have been found to co-occur. However, empirical and theoretical studies of this higher level convergent evolution are still limited. In conclusion, both the development of powerful approaches and the detection of convergence at various genetic levels are needed to further reveal the genetic mechanisms of plant adaptation to extreme environments.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiayan Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Evolutionary analysis of the Moringa oleifera genome reveals a recent burst of plastid to nucleus gene duplications. Sci Rep 2020; 10:17646. [PMID: 33077763 PMCID: PMC7573628 DOI: 10.1038/s41598-020-73937-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
It is necessary to identify suitable alternative crops to ensure the nutritional demands of a growing global population. The genome of Moringa oleifera, a fast-growing drought-tolerant orphan crop with highly valuable agronomical, nutritional and pharmaceutical properties, has recently been reported. We model here gene family evolution in Moringa as compared with ten other flowering plant species. Despite the reduced number of genes in the compact Moringa genome, 101 gene families, grouping 957 genes, were found as significantly expanded. Expanded families were highly enriched for chloroplastidic and photosynthetic functions. Indeed, almost half of the genes belonging to Moringa expanded families grouped with their Arabidopsis thaliana plastid encoded orthologs. Microsynteny analysis together with modeling the distribution of synonymous substitutions rates, supported most plastid duplicated genes originated recently through a burst of simultaneous insertions of large regions of plastid DNA into the nuclear genome. These, together with abundant short insertions of plastid DNA, contributed to the occurrence of massive amounts of plastid DNA in the Moringa nuclear genome, representing 4.71%, the largest reported so far. Our study provides key genetic resources for future breeding programs and highlights the potential of plastid DNA to impact the structure and function of nuclear genes and genomes.
Collapse
|
47
|
Cui S, Kubota T, Nishiyama T, Ishida JK, Shigenobu S, Shibata TF, Toyoda A, Hasebe M, Shirasu K, Yoshida S. Ethylene signaling mediates host invasion by parasitic plants. SCIENCE ADVANCES 2020; 6:6/44/eabc2385. [PMID: 33115743 PMCID: PMC7608805 DOI: 10.1126/sciadv.abc2385] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/10/2020] [Indexed: 05/18/2023]
Abstract
Parasitic plants form a specialized organ, a haustorium, to invade host tissues and acquire water and nutrients. To understand the molecular mechanism of haustorium development, we performed a forward genetics screening to isolate mutants exhibiting haustorial defects in the model parasitic plant Phtheirospermum japonicum. We isolated two mutants that show prolonged and sometimes aberrant meristematic activity in the haustorium apex, resulting in severe defects on host invasion. Whole-genome sequencing revealed that the two mutants respectively have point mutations in homologs of ETHYLENE RESPONSE 1 (ETR1) and ETHYLENE INSENSITIVE 2 (EIN2), signaling components in response to the gaseous phytohormone ethylene. Application of the ethylene signaling inhibitors also caused similar haustorial defects, indicating that ethylene signaling regulates cell proliferation and differentiation of parasite cells. Genetic disruption of host ethylene production also perturbs parasite invasion. We propose that parasitic plants use ethylene as a signal to invade host roots.
Collapse
Affiliation(s)
- Songkui Cui
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tomoya Kubota
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | | | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | | | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
48
|
Boulogne C, Gillet C, Hughes L, LE Bars R, Canette A, Hawes CR, Satiat-Jeunemaitre B. Functional organisation of the endomembrane network in the digestive gland of the Venus flytrap: revisiting an old story with a new microscopy toolbox. J Microsc 2020; 280:86-103. [PMID: 32844427 DOI: 10.1111/jmi.12957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 01/10/2023]
Abstract
Up-to-date imaging approaches were used to address the spatiotemporal organisation of the endomembrane system in secretory cells of Dionaea muscipula. Different 'slice and view' methodologies were performed on resin-embedded samples to finally achieve a 3D reconstruction of the cell architecture, using ultrastructural tomography, array tomography, serial block face-scanning electron microscopy (SBF-SEM), correlation, and volume rendering at the light microscopy level. Observations of cryo-fixed samples by high-pressure freezing revealed changes of the endomembrane system that occur after trap activation and prey digestion. They provide evidence for an original strategy that adapts the secretory machinery to a specific and unique case of stimulated exocytosis in plant cells. A first secretion peak is part of a rapid response to deliver digestive fluids to the cell surface, which delivers the needed stock of digestive materials 'on site'. The second peak of activity could then be associated with the reconstruction of the Golgi apparatus (GA), endoplasmic reticulum (ER) and vacuolar machinery, in order to prepare for a subsequent round of prey capture. Tubular continuum between ER and Golgi stacks observed on ZIO-impregnated tissues may correspond to an efficient transfer mechanism for lipids and/or proteins, especially for use in rapidly resetting the molecular GA machinery. The occurrence of one vacuolar continuum may permit continuous adjustment of cell homeostasy. The subcellular features of the secretory cells of Dionaea muscipula outline key innovations in the organisation of plant cell compartmentalisation that are used to cope with specific cell needs such as the full use of the GA as a protein factory, and the ability to create protein reservoirs in the periplasmic space. Shape-derived forces of the pleiomorphic vacuole may act as signals to accompany the sorting and entering flows of the cell.
Collapse
Affiliation(s)
- C Boulogne
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - C Gillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - L Hughes
- Oxford Brookes University, Oxford UK, England.,Oxford Instruments NanoAnalysis, High Wycombe, Bucks, UK
| | - R LE Bars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - A Canette
- CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - C R Hawes
- Oxford Brookes University, Oxford UK, England
| | - B Satiat-Jeunemaitre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
49
|
Hartmann S, Preick M, Abelt S, Scheffel A, Hofreiter M. Annotated genome sequences of the carnivorous plant Roridula gorgonias and a non-carnivorous relative, Clethra arborea. BMC Res Notes 2020; 13:426. [PMID: 32912303 PMCID: PMC7488092 DOI: 10.1186/s13104-020-05254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Plant carnivory is distributed across the tree of life and has evolved at least six times independently, but sequenced and annotated nuclear genomes of carnivorous plants are currently lacking. We have sequenced and structurally annotated the nuclear genome of the carnivorous Roridula gorgonias and that of a non-carnivorous relative, Madeira's lily-of-the-valley-tree, Clethra arborea, both within the Ericales. This data adds an important resource to study the evolutionary genetics of plant carnivory across angiosperm lineages and also for functional and systematic aspects of plants within the Ericales. RESULTS Our assemblies have total lengths of 284 Mbp (R. gorgonias) and 511 Mbp (C. arborea) and show high BUSCO scores of 84.2% and 89.5%, respectively. We used their predicted genes together with publicly available data from other Ericales' genomes and transcriptomes to assemble a phylogenomic data set for the inference of a species tree. However, groups of orthologs showed a marked absence of species represented by a transcriptome. We discuss possible reasons and caution against combining predicted genes from genome- and transriptome-based assemblies.
Collapse
Affiliation(s)
- Stefanie Hartmann
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Michaela Preick
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Silke Abelt
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - André Scheffel
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
50
|
Veleba A, Zedek F, Horová L, Veselý P, Srba M, Šmarda P, Bureš P. Is the evolution of carnivory connected with genome size reduction? AMERICAN JOURNAL OF BOTANY 2020; 107:1253-1259. [PMID: 32882073 DOI: 10.1002/ajb2.1526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/13/2020] [Indexed: 05/24/2023]
Abstract
PREMISE As repeatedly shown, the remarkable variation in the genome size of angiosperms can be shaped by extrinsic selective pressures, including nutrient availability. Carnivory has evolved independently in 10 angiosperm clades, but all carnivorous plants share a common affinity to nutrient-poor habitats. As such, carnivory and genome reduction could be responses to the same environmental pressure. Indeed, the smallest genomes among flowering plants are found in the carnivorous family Lentibulariaceae, where a unique mutation in cytochrome c oxidase (COX) is suspected to promote genome miniaturization. Despite these hypotheses, a phylogenetically informed test of genome size and nutrient availability across carnivorous clades has so far been missing. METHODS Using linear mixed models, we compared genome sizes of 127 carnivorous plants from 7 diverse angiosperm clades with 1072 of their noncarnivorous relatives. We also tested whether genome size in Lentibulariaceae reflects the presence of the COX mutation. RESULTS The genome sizes of carnivorous plants do not differ significantly from those of their noncarnivorous relatives. Based on available data, no significant association between the COX mutation and genome miniaturization could be confirmed, not even when considering polyploidy. CONCLUSIONS Carnivory alone does not seem to significantly affect genome size decrease. Plausibly, it might actually counterbalance the effect of nutrient limitation on genome size evolution. The role of the COX mutation in genome miniaturization needs to be evaluated by analysis of a broader data set because current knowledge of its presence across Lentibulariaceae covers less than 10% of the species diversity in this family.
Collapse
Affiliation(s)
- Adam Veleba
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| | - Pavel Veselý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| | - Miroslav Srba
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, CZ, 12844, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| |
Collapse
|