1
|
Houée G, Goudemand N, Germain D, Bardin J. Paleo-evo-devo implications of a revised conceptualization of enameloids and enamels. Biol Rev Camb Philos Soc 2024. [PMID: 39692055 DOI: 10.1111/brv.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Understanding the origin and evolution of the mineralized skeleton is crucial for unravelling vertebrate history. However, several limitations hamper our progress. The first obstacle is the lack of uniformity and clarity in the literature for the definition of the tissues of concern, especially of enameloid(s) and enamel(s), resulting in ambiguous terminology and inconsistencies among studies. Moreover, the identification criteria currently employed to characterize hypermineralized tissues in extinct taxa, such as the presence or absence of tubules for enameloids, may lead to unsupported conclusions. We suggest that comparative developmental studies may be key to unambiguous terminology, truly diagnostic identification criteria and developmentally informed evolutionary hypotheses. We exemplify this approach by: (i) introducing a new conceptual framework for enameloid(s) and enamel(s), with clear terminologies, definitions and interactions between concepts; (ii) suggesting more rigorous ways to identify tissues, based on the observation of defining or additional properties, as well as on the comparison of developmental scenarios when possible; (iii) constructing a clear phylogenetic framework to discuss their homologies and highlighting possible transitions between these tissues; and by (iv) proposing developmental models that explain both enamel and enameloid formation, and suggest possible transitions between them.
Collapse
Affiliation(s)
- Guillaume Houée
- UMR 7207 Centre de recherche en paléontologie - Paris (CR2P), Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, 43 rue Buffon, Paris, 75005, France
| | - Nicolas Goudemand
- UMR 5242 Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, 46 All. d'Italie, Lyon, 69007, France
| | - Damien Germain
- UMR 7207 Centre de recherche en paléontologie - Paris (CR2P), Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, 43 rue Buffon, Paris, 75005, France
| | - Jérémie Bardin
- UMR 7207 Centre de recherche en paléontologie - Paris (CR2P), Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, 43 rue Buffon, Paris, 75005, France
| |
Collapse
|
2
|
Grohganz M, Johanson Z, Keating JN, Donoghue PCJ. Morphogenesis of pteraspid heterostracan oral plates and the evolutionary origin of teeth. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240836. [PMID: 39698157 PMCID: PMC11651891 DOI: 10.1098/rsos.240836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
Teeth are a key vertebrate innovation; their evolution is generally associated with the origin of jawed vertebrates. However, tooth-like structures already occur in jawless stem-gnathostomes; heterostracans bear denticles and morphologically distinct tubercles on their oral plates. We analysed the histology of the heterostracan denticles and plates to elucidate their morphogenesis and test their homology to the gnathostome oral skeleton. We identified a general model of growth for heterostracan oral plates that exhibit proximal episodic addition of tubercle rows. The distal hook exhibits truncated lamellae compatible with resorption, but we observe growth layers to be continuous between denticles. The denticles show no evidence of patterns of apposition or replacement indicating tooth homology. The oral plates and dermal skeleton share the same histological layers. The denticles grew in a manner comparable to the oral plate tubercles and the rest of the dermal skeleton. Our test of phylogenetic congruence reveals that the distribution of internal odontodes is discontinuous, indicating that the capacity to form internal odontodes evolved independently several times among stem-gnathostomes. Our results support the 'outside-in' hypothesis and the origin of teeth through the spread of odontogenic competence from extra-oral to oral epithelia and the subsequent co-option to a tooth function in gnathostomes.
Collapse
Affiliation(s)
- Madleen Grohganz
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, BristolBS8 1TQ, UK
| | | | - Joseph N. Keating
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, BristolBS8 1TQ, UK
| | - Philip C. J. Donoghue
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, BristolBS8 1TQ, UK
| |
Collapse
|
3
|
Castillo H, Hanna P, Sachs LM, Buisine N, Godoy F, Gilbert C, Aguilera F, Muñoz D, Boisvert C, Debiais-Thibaud M, Wan J, Spicuglia S, Marcellini S. Xenopus tropicalis osteoblast-specific open chromatin regions reveal promoters and enhancers involved in human skeletal phenotypes and shed light on early vertebrate evolution. Cells Dev 2024; 179:203924. [PMID: 38692409 DOI: 10.1016/j.cdev.2024.203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals. We report 425 regulatory regions conserved with human and globally associated to skeletogenic genes. Of these, 35 regions have been shown to impact human skeletal phenotypes by GWAS, including one trps1 enhancer and the runx2 promoter, two genes which are respectively involved in trichorhinophalangeal syndrome type I and cleidocranial dysplasia. Intriguingly, 60 osteoblastic NFRs also align to the genome of the elephant shark, a species lacking osteoblasts and bone tissue. To tackle this paradox, we chose to focus on dlx5 because its conserved promoter, known to integrate regulatory inputs during mammalian osteogenesis, harbours an osteoblast-specific NFR in both frog and human. Hence, we show that dlx5 is expressed in Xt and elephant shark odontoblasts, supporting a common cellular and genetic origin of bone and dentine. Taken together, our work (i) unravels the Xt osteogenic regulatory landscape, (ii) illustrates how cross-species comparisons harvest data relevant to human biology and (iii) reveals that a set of genes including bnc2, dlx5, ebf3, mir199a, nfia, runx2 and zfhx4 drove the development of a primitive form of mineralized skeletal tissue deep in the vertebrate lineage.
Collapse
Affiliation(s)
- Héctor Castillo
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile.
| | - Patricia Hanna
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - Laurent M Sachs
- UMR7221, Physiologie Moléculaire et Adaptation, CNRS, MNHN, Paris Cedex 05, France
| | - Nicolas Buisine
- UMR7221, Physiologie Moléculaire et Adaptation, CNRS, MNHN, Paris Cedex 05, France
| | - Francisco Godoy
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 12 route 128, 91190 Gif-sur-Yvette, France
| | - Felipe Aguilera
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - David Muñoz
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - Catherine Boisvert
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Jing Wan
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labelisée LIGUE contre le Cancer, Marseille, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labelisée LIGUE contre le Cancer, Marseille, France
| | - Sylvain Marcellini
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile.
| |
Collapse
|
4
|
Dearden RP, Jones AS, Giles S, Lanzetti A, Grohganz M, Johanson Z, Lautenschlager S, Randle E, Donoghue PCJ, Sansom IJ. The three-dimensionally articulated oral apparatus of a Devonian heterostracan sheds light on feeding in Palaeozoic jawless fishes. Proc Biol Sci 2024; 291:20232258. [PMID: 38531402 PMCID: PMC10965320 DOI: 10.1098/rspb.2023.2258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Attempts to explain the origin and diversification of vertebrates have commonly invoked the evolution of feeding ecology, contrasting the passive suspension feeding of invertebrate chordates and larval lampreys with active predation in living jawed vertebrates. Of the extinct jawless vertebrates that phylogenetically intercalate these living groups, the feeding apparatus is well-preserved only in the early diverging stem-gnathostome heterostracans. However, its anatomy remains poorly understood. Here, we use X-ray microtomography to characterize the feeding apparatus of the pteraspid heterostracan Rhinopteraspis dunensis (Roemer, 1855). The apparatus is composed of 13 plates arranged approximately bilaterally, most of which articulate from the postoral plate. Our reconstruction shows that the oral plates were capable of rotating around the transverse axis, but likely with limited movement. It also suggests the nasohypophyseal organs opened internally, into the pharynx. The functional morphology of the apparatus in Rhinopteraspis precludes all proposed interpretations of feeding except for suspension/deposit feeding and we interpret the apparatus as having served primarily to moderate the oral gape. This is consistent with evidence that at least some early jawless gnathostomes were suspension feeders and runs contrary to macroecological scenarios that envisage early vertebrate evolution as characterized by a directional trend towards increasingly active food acquisition.
Collapse
Affiliation(s)
- Richard P. Dearden
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Vertebrate Evolution, Development, and Ecology, Naturalis Biodiversity Center, Darwinweg 2, Leiden, 2333 CR, The Netherlands
| | - Andy S. Jones
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sam Giles
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Agnese Lanzetti
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Madleen Grohganz
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Stephan Lautenschlager
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Emma Randle
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Philip C. J. Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Ivan J. Sansom
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Milgram J, Rehav K, Ibrahim J, Shahar R, Weiner S. The 3D organization of the mineralized scales of the sturgeon has structures reminiscent of dentin and bone: A FIB-SEM study. J Struct Biol 2023; 215:108045. [PMID: 37977509 DOI: 10.1016/j.jsb.2023.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Scales are structures composed of mineralized collagen fibrils embedded in the skin of fish. Here we investigate structures contributing to the bulk of the scale material of the sturgeon (Acipencer guldenstatii) at the millimeter, micrometer and nanometer length scales. Polished and fracture surfaces were prepared in each of the three anatomic planes for imaging with light and electron microscopy, as well as focused ion beam - scanning electron microscopy (FIB-SEM). The scale is composed of three layers, upper and lower layers forming the bulk of the scale, as well as a thin surface layer. FTIR shows that the scale is composed mainly of collagen and carbonated hydroxyapatite. Lacunae are present throughout the structure. Fracture surfaces of all three layers are characterized by large diameter collagen fibril bundles (CFBs) emanating from a plane comprising smaller diameter CFBs orientated in different directions. Fine lineations seen in polished surfaces of both major layers are used to define planes called here the striation planes. FIB-SEM image stacks of the upper and lower layers acquired in planes aligned with the striation planes, show that CFBs are oriented in various directions within the striation plane, with larger CFBs emanating from the striation plane. Fibril bundles oriented in different directions in the same plane is reminiscent of a similar organization in orthodentin. The large collagen fibril bundles emanating out of this plane are analogous to von Korff fibrils found in developing dentin with respect to size and orientation. Scales of the sturgeon are unusual in that their mineralized collagen fibril organization contains structural elements of both dentin and bone. The sturgeon scale may be an example of an early evolved mineralized material which is neither bone nor dentin but contains characteristics of both materials, however, the fossil data required to confirm this is missing.
Collapse
Affiliation(s)
- Joshua Milgram
- Hebrew University Jerusalem, Faculty of Agriculture Food & Environment, Koret School of Veterinary Medicine, P.O.B. 12, Rehovot 7610001, Israel.
| | - Katya Rehav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Jamal Ibrahim
- Archaeological Science Unit, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ron Shahar
- Hebrew University Jerusalem, Faculty of Agriculture Food & Environment, Koret School of Veterinary Medicine, P.O.B. 12, Rehovot 7610001, Israel.
| | - Stephen Weiner
- Archaeological Science Unit, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
6
|
Delgado S, Fernandez-Trujillo MA, Houée G, Silvent J, Liu X, Corre E, Sire JY. Expression of 20 SCPP genes during tooth and bone mineralization in Senegal bichir. Dev Genes Evol 2023; 233:91-106. [PMID: 37410100 DOI: 10.1007/s00427-023-00706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
The African bichir (Polypterus senegalus) is a living representative of Polypteriformes. P. senegalus possesses teeth composed of dentin covered by an enameloid cap and a layer of collar enamel on the tooth shaft, as in lepisosteids. A thin layer of enamel matrix can also be found covering the cap enameloid after its maturation and during the collar enamel formation. Teleosts fish do not possess enamel; teeth are protected by cap and collar enameloid, and inversely in sarcopterygians, where teeth are only covered by enamel, with the exception of the cap enameloid in teeth of larval urodeles. The presence of enameloid and enamel in the teeth of the same organism is an opportunity to solve the evolutionary history of the presence of enamel/enameloid in basal actinopterygians. In silico analyses of the jaw transcriptome of a juvenile bichir provided twenty SCPP transcripts. They included enamel, dentin, and bone-specific SCPPs known in sarcopterygians and several actinopterygian-specific SCPPs. The expression of these 20 genes was investigated by in situ hybridizations on jaw sections during tooth and dentary bone formation. A spatiotemporal expression patterns were established and compared with previous studies of SCPP gene expression during enamel/enameloid and bone formation. Similarities and differences were highlighted, and several SCPP transcripts were found specifically expressed during tooth or bone formation suggesting either conserved or new functions of these SCPPs.
Collapse
Affiliation(s)
- S Delgado
- Sorbonne Université, MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, 75005, Paris, France.
| | - M A Fernandez-Trujillo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| | - G Houée
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, CR2P (Centre de Recherche en Paléontologie - Paris), UMR 7207, Equipe Formes, Structures et Fonctions, 43 rue Buffon, 75005, Paris, France
| | - J Silvent
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| | - X Liu
- Sorbonne Université - CNRS, FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), 29680, Roscoff, France
| | - E Corre
- Sorbonne Université - CNRS, FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), 29680, Roscoff, France
| | - J Y Sire
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| |
Collapse
|
7
|
Xiong W, Peng Y, Ma W, Xu X, Zhao Y, Wu J, Tang R. Microalgae-material hybrid for enhanced photosynthetic energy conversion: a promising path towards carbon neutrality. Natl Sci Rev 2023; 10:nwad200. [PMID: 37671320 PMCID: PMC10476897 DOI: 10.1093/nsr/nwad200] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/10/2023] [Accepted: 07/02/2023] [Indexed: 09/07/2023] Open
Abstract
Photosynthetic energy conversion for high-energy chemicals generation is one of the most viable solutions in the quest for sustainable energy towards carbon neutrality. Microalgae are fascinating photosynthetic organisms, which can directly convert solar energy into chemical energy and electrical energy. However, microalgal photosynthetic energy has not yet been applied on a large scale due to the limitation of their own characteristics. Researchers have been inspired to couple microalgae with synthetic materials via biomimetic assembly and the resulting microalgae-material hybrids have become more robust and even perform new functions. In the past decade, great progress has been made in microalgae-material hybrids, such as photosynthetic carbon dioxide fixation, photosynthetic hydrogen production, photoelectrochemical energy conversion and even biochemical energy conversion for biomedical therapy. The microalgae-material hybrid offers opportunities to promote artificially enhanced photosynthesis research and synchronously inspires investigation of biotic-abiotic interface manipulation. This review summarizes current construction methods of microalgae-material hybrids and highlights their implication in energy and health. Moreover, we discuss the current problems and future challenges for microalgae-material hybrids and the outlook for their development and applications. This review will provide inspiration for the rational design of the microalgae-based semi-natural biohybrid and further promote the disciplinary fusion of material science and biological science.
Collapse
Affiliation(s)
- Wei Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yiyan Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xurong Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Yueqi Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Tarasov S. New Phylogenetic Markov Models for Inapplicable Morphological Characters. Syst Biol 2023; 72:681-693. [PMID: 36788381 PMCID: PMC10276624 DOI: 10.1093/sysbio/syad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/15/2022] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
This article proposes new Markov models for phylogenetic inference with anatomically dependent (inapplicable) morphological characters. The proposed models can explicitly model an anatomical dependency in which one or several characters are allowed to evolve only within a specific state of the hierarchically upstream character. The new models come up in two main types depending on the type of character hierarchy. The functions for constructing custom character hierarchies are provided in the R package rphenoscate. The performance of the new models is assessed using theory and simulations. This article provides practical recommendations for using the new models in Bayesian phylogenetic inference with RevBayes. [Bayesian; inapplicable characters; likelihood; Markov models; morphology; parsimony; RevBayes.].
Collapse
Affiliation(s)
- Sergei Tarasov
- Finnish Museum of Natural History, Pohjoinen Rautatiekatu 13, FI-00014 Helsinki, Finland
| |
Collapse
|
9
|
Tian Q, Zhao F, Zeng H, Zhu M, Jiang B. Ultrastructure reveals ancestral vertebrate pharyngeal skeleton in yunnanozoans. Science 2022; 377:218-222. [DOI: 10.1126/science.abm2708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pharyngeal arches are a key innovation that likely contributed to the evolution of the jaws and braincase of vertebrates. It has long been hypothesized that the pharyngeal (branchial) arch evolved from an unjointed cartilaginous rod in vertebrate ancestors such as that in the nonvertebrate chordate amphioxus, but whether such ancestral anatomy existed remains unknown. The pharyngeal skeleton of controversial Cambrian animals called yunnanozoans may contain the oldest fossil evidence constraining the early evolution of the arches, yet its correlation with that of vertebrates is still disputed. By examining additional specimens in previously unexplored techniques (for example, x-ray microtomography, scanning and transmission electron microscopy, and energy dispersive spectrometry element mapping), we found evidence that yunnanozoan branchial arches consist of cellular cartilage with an extracellular matrix dominated by microfibrils, a feature hitherto considered specific to vertebrates. Our phylogenetic analysis provides further support that yunnanozoans are stem vertebrates.
Collapse
Affiliation(s)
- Qingyi Tian
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fangchen Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Han Zeng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyu Jiang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Leurs N, Martinand-Mari C, Marcellini S, Debiais-Thibaud M. Parallel evolution of ameloblastic scpp genes in bony and cartilaginous vertebrates. Mol Biol Evol 2022; 39:6582990. [PMID: 35535508 PMCID: PMC9122587 DOI: 10.1093/molbev/msac099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In bony vertebrates, skeletal mineralization relies on the secretory calcium-binding phosphoproteins (Scpp) family whose members are acidic extracellular proteins posttranslationally regulated by the Fam20°C kinase. As scpp genes are absent from the elephant shark genome, they are currently thought to be specific to bony fishes (osteichthyans). Here, we report a scpp gene present in elasmobranchs (sharks and rays) that evolved from local tandem duplication of sparc-L 5′ exons and show that both genes experienced recent gene conversion in sharks. The elasmobranch scpp is remarkably similar to the osteichthyan scpp members as they share syntenic and gene structure features, code for a conserved signal peptide, tyrosine-rich and aspartate/glutamate-rich regions, and harbor putative Fam20°C phosphorylation sites. In addition, the catshark scpp is coexpressed with sparc-L and fam20°C in tooth and scale ameloblasts, similarly to some osteichthyan scpp genes. Despite these strong similarities, molecular clock and phylogenetic data demonstrate that the elasmobranch scpp gene originated independently from the osteichthyan scpp gene family. Our study reveals convergent events at the sparc-L locus in the two sister clades of jawed vertebrates, leading to parallel diversification of the skeletal biomineralization toolkit. The molecular evolution of sparc-L and its coexpression with fam20°C in catshark ameloblasts provides a unifying genetic basis that suggests that all convergent scpp duplicates inherited similar features from their sparc-L precursor. This conclusion supports a single origin for the hypermineralized outer odontode layer as produced by an ancestral developmental process performed by Sparc-L, implying the homology of the enamel and enameloid tissues in all vertebrates.
Collapse
Affiliation(s)
- Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
11
|
Rosa JT, Witten PE, Huysseune A. Cells at the Edge: The Dentin-Bone Interface in Zebrafish Teeth. Front Physiol 2021; 12:723210. [PMID: 34690799 PMCID: PMC8526719 DOI: 10.3389/fphys.2021.723210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Bone-producing osteoblasts and dentin-producing odontoblasts are closely related cell types, a result from their shared evolutionary history in the ancient dermal skeleton. In mammals, the two cell types can be distinguished based on histological characters and the cells’ position in the pulp cavity or in the tripartite periodontal complex. Different from mammals, teleost fish feature a broad diversity in tooth attachment modes, ranging from fibrous attachment to firm ankylosis to the underlying bone. The connection between dentin and jaw bone is often mediated by a collar of mineralized tissue, a part of the dental unit that has been termed “bone of attachment”. Its nature (bone, dentin, or an intermediate tissue type) is still debated. Likewise, there is a debate about the nature of the cells secreting this tissue: osteoblasts, odontoblasts, or yet another (intermediate) type of scleroblast. Here, we use expression of the P/Q rich secretory calcium-binding phosphoprotein 5 (scpp5) to characterize the cells lining the so-called bone of attachment in the zebrafish dentition. scpp5 is expressed in late cytodifferentiation stage odontoblasts but not in the cells depositing the “bone of attachment”. nor in bona fide osteoblasts lining the supporting pharyngeal jaw bone. Together with the presence of the osteoblast marker Zns-5, and the absence of covering epithelium, this links the cells depositing the “bone of attachment” to osteoblasts rather than to odontoblasts. The presence of dentinal tubule-like cell extensions and the near absence of osteocytes, nevertheless distinguishes the “bone of attachment” from true bone. These results suggest that the “bone of attachment” in zebrafish has characters intermediate between bone and dentin, and, as a tissue, is better termed “dentinous bone”. In other teleosts, the tissue may adopt different properties. The data furthermore support the view that these two tissues are part of a continuum of mineralized tissues. Expression of scpp5 can be a valuable tool to investigate how differentiation pathways diverge between osteoblasts and odontoblasts in teleost models and help resolving the evolutionary history of tooth attachment structures in actinopterygians.
Collapse
Affiliation(s)
- Joana T Rosa
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium.,Comparative, Adaptive and Functional Skeletal Biology (BIOSKEL), Centre of Marine Sciences (CCMAR), University of Algarve, Campus Gambelas, Faro, Portugal
| | - Paul Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Abstract
Philip Donoghue introduces the fossil record of cells.
Collapse
Affiliation(s)
- Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
13
|
Yong LW, Lu TM, Tung CH, Chiou RJ, Li KL, Yu JK. Somite Compartments in Amphioxus and Its Implications on the Evolution of the Vertebrate Skeletal Tissues. Front Cell Dev Biol 2021; 9:607057. [PMID: 34041233 PMCID: PMC8141804 DOI: 10.3389/fcell.2021.607057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mineralized skeletal tissues of vertebrates are an evolutionary novelty within the chordate lineage. While the progenitor cells that contribute to vertebrate skeletal tissues are known to have two embryonic origins, the mesoderm and neural crest, the evolutionary origin of their developmental process remains unclear. Using cephalochordate amphioxus as our model, we found that cells at the lateral wall of the amphioxus somite express SPARC (a crucial gene for tissue mineralization) and various collagen genes. During development, some of these cells expand medially to surround the axial structures, including the neural tube, notochord and gut, while others expand laterally and ventrally to underlie the epidermis. Eventually these cell populations are found closely associated with the collagenous matrix around the neural tube, notochord, and dorsal aorta, and also with the dense collagen sheets underneath the epidermis. Using known genetic markers for distinct vertebrate somite compartments, we showed that the lateral wall of amphioxus somite likely corresponds to the vertebrate dermomyotome and lateral plate mesoderm. Furthermore, we demonstrated a conserved role for BMP signaling pathway in somite patterning of both amphioxus and vertebrates. These results suggest that compartmentalized somites and their contribution to primitive skeletal tissues are ancient traits that date back to the chordate common ancestor. The finding of SPARC-expressing skeletal scaffold in amphioxus further supports previous hypothesis regarding SPARC gene family expansion in the elaboration of the vertebrate mineralized skeleton.
Collapse
Affiliation(s)
- Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Aquatic Biology, Chia-Yi University, Chia-Yi, Taiwan
| | - Ruei-Jen Chiou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
14
|
Haridy Y, Osenberg M, Hilger A, Manke I, Davesne D, Witzmann F. Bone metabolism and evolutionary origin of osteocytes: Novel application of FIB-SEM tomography. SCIENCE ADVANCES 2021; 7:eabb9113. [PMID: 33789889 PMCID: PMC8011976 DOI: 10.1126/sciadv.abb9113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 02/11/2021] [Indexed: 06/10/2023]
Abstract
Lacunae and canaliculi spaces of osteocytes are remarkably well preserved in fossilized bone and serve as an established proxy for bone cells. The earliest bone in the fossil record is acellular (anosteocytic), followed by cellular (osteocytic) bone in the jawless relatives of jawed vertebrates, the osteostracans, about 400 million years ago. Virtually nothing is known about the physiological pressures that would have initially favored osteocytic over anosteocytic bone. We apply focused ion beam-scanning electron microscopy tomography combined with machine learning for cell detection and segmentation to image fossil cell spaces. Novel three-dimensional high-resolution images reveal areas of low density around osteocyte lacunae and their canaliculi in osteostracan bone. This provides evidence for demineralization that would have occurred in vivo as part of osteocytic osteolysis, a mechanism of mineral homeostasis, supporting the hypothesis that a physiological demand for phosphorus was the principal driver in the initial evolution of osteocytic bone.
Collapse
Affiliation(s)
- Yara Haridy
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.
| | - Markus Osenberg
- Helmholtz Centre for Materials and Energy (HZB), Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - André Hilger
- Helmholtz Centre for Materials and Energy (HZB), Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Ingo Manke
- Helmholtz Centre for Materials and Energy (HZB), Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Donald Davesne
- Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, UK
- Institut de Systématique, Évolution, Biodiversité (UMR 7205), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 75005 Paris, France
| | - Florian Witzmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
15
|
Khor JM, Ettensohn CA. Transcription Factors of the Alx Family: Evolutionarily Conserved Regulators of Deuterostome Skeletogenesis. Front Genet 2020; 11:569314. [PMID: 33329706 PMCID: PMC7719703 DOI: 10.3389/fgene.2020.569314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Members of the alx gene family encode transcription factors that contain a highly conserved Paired-class, DNA-binding homeodomain, and a C-terminal OAR/Aristaless domain. Phylogenetic and comparative genomic studies have revealed complex patterns of alx gene duplications during deuterostome evolution. Remarkably, alx genes have been implicated in skeletogenesis in both echinoderms and vertebrates. In this review, we provide an overview of current knowledge concerning alx genes in deuterostomes. We highlight their evolutionarily conserved role in skeletogenesis and draw parallels and distinctions between the skeletogenic gene regulatory circuitries of diverse groups within the superphylum.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Pitirri MK, Kawasaki K, Richtsmeier JT. It takes two: Building the vertebrate skull from chondrocranium and dermatocranium. VERTEBRATE ZOOLOGY 2020; 70:587-600. [PMID: 33163116 PMCID: PMC7644101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In most modern bony vertebrates, a considerable portion of the chondrocranium remains cartilaginous only during a relatively small window of embryonic development, making it difficult to study this complex structure. Yet, the transient nature of some chondrocranial elements is precisely why it is so intriguing. Since the chondrocranium has never been lost in any vertebrate, its function is critical to craniofacial development, disease, and evolution. Experimental evidence for the various roles of the chondrocranium is limited, and though snapshots of chondrocranial development in various species at isolated time points are valuable and informative, these cannot provide the data needed to determine the functions of the chondrocranium, or its relationship to the dermatocranium in evolution, in development, or in disease. Observations of the spatiotemporal associations of chondrocranial cartilage, cartilage bone, and dermal bone over early developmental time are available for many vertebrate species and these observations represent the data from which we can build hypotheses. The testing of those hypotheses requires precise control of specific variables like developmental time and molecular signaling that can only be accomplished in a laboratory setting. Here, we employ recent advances in contrast-enhanced micro computed tomography to provide novel 3D reconstructions of the embryonic chondrocranium in relation to forming dermal and cartilage bones in laboratory mice across three embryonic days (E13.5, E14.5, and E15.5). Our observations provide support for the established hypothesis that the vertebrate dermal (exo-) skeleton and endoskeleton evolved as distinct structures and remain distinct. Additionally, we identify spatiotemporal patterning in the development of the lateral wall, roof, and braincase floor of the chondrocranium and the initial mineralization and growth of the bones associated with these cartilages that provides support for the hypothesis that the chondrocranium serves as a scaffold for developing dermatocranial bones. The experimental protocols described and data presented provide tools for further experimental work on chondrocranial development.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
17
|
Lemierre A, Germain D. A new mineralized tissue in the early vertebrate Astraspis. J Anat 2019; 235:1105-1113. [PMID: 31355451 DOI: 10.1111/joa.13070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 11/27/2022] Open
Abstract
The dermoskeleton of the earliest vertebrates is well known but their endoskeleton is thought to have been largely cartilaginous until the Late Silurian. We confirm that the dermal plates of Astraspis are three-layered, with a superficial layer of enameloid and orthodentine, a middle layer of aspidin and a basal layer of lamellar acellular bone. This dermoskeleton is found in association with globular calcified cartilage, indicating the presence of a partially mineralized endoskeleton. In addition to the classical three-layered organization, some dermal plates exhibit alignments of chondrocyte-like lacunae, very similar to a pattern typical of chondroid metaplastic bone, previously unknown in early vertebrates. This discovery implies the presence of a proliferative cartilage, hitherto only known in Osteichthyans. This discovery indicates that a pattern similar to the first step of endochondral ossification was already present in the earliest vertebrates.
Collapse
Affiliation(s)
- Alfred Lemierre
- CR2P, MNHN-CNRS-Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Damien Germain
- CR2P, MNHN-CNRS-Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
18
|
O'Shea J, Keating JN, Donoghue PCJ. The dermal skeleton of the jawless vertebrate
Tremataspis mammillata
(Osteostraci, stem‐Gnathostomata). J Morphol 2019; 280:999-1025. [DOI: 10.1002/jmor.20997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023]
Affiliation(s)
- James O'Shea
- School of Earth SciencesUniversity of Bristol, Life Sciences Building Bristol UK
| | - Joseph N. Keating
- School of Earth SciencesUniversity of Bristol, Life Sciences Building Bristol UK
- School of Earth and Environmental SciencesUniversity of Manchester Manchester UK
| | | |
Collapse
|
19
|
Davesne D, Meunier FJ, Schmitt AD, Friedman M, Otero O, Benson RBJ. The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism. Biol Rev Camb Philos Soc 2019; 94:1338-1363. [DOI: 10.1111/brv.12505] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Donald Davesne
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - François J. Meunier
- BOREA (UMR 7208 CNRS, IRD, MNHN, Sorbonne Université)Muséum national d'Histoire naturelle 75005 Paris France
| | - Armin D. Schmitt
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental SciencesUniversity of Michigan Ann Arbor MI 48109‐1079 U.S.A
| | - Olga Otero
- PalEvoPrim (UMR 7262 CNRS)Université de Poitiers 86000 Poitiers France
| | | |
Collapse
|