1
|
Lindsay RJ, Holder PJ, Hewlett M, Gudelj I. Experimental evolution of yeast shows that public-goods upregulation can evolve despite challenges from exploitative non-producers. Nat Commun 2024; 15:7810. [PMID: 39242624 PMCID: PMC11379824 DOI: 10.1038/s41467-024-52043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Microbial secretions, such as metabolic enzymes, are often considered to be cooperative public goods as they are costly to produce but can be exploited by others. They create incentives for the evolution of non-producers, which can drive producer and population productivity declines. In response, producers can adjust production levels. Past studies suggest that while producers lower production to reduce costs and exploitation opportunities when under strong selection pressure from non-producers, they overproduce secretions when these pressures are weak. We challenge the universality of this trend with the production of a metabolic enzyme, invertase, by Saccharomyces cerevisiae, which catalyses sucrose hydrolysis into two hexose molecules. Contrary to past studies, overproducers evolve during evolutionary experiments even when under strong selection pressure from non-producers. Phenotypic and competition assays with a collection of synthetic strains - engineered to have modified metabolic attributes - identify two mechanisms for suppressing the benefits of invertase to those who exploit it. Invertase overproduction increases extracellular hexose concentrations that suppresses the metabolic efficiency of competitors, due to the rate-efficiency trade-off, and also enhances overproducers' hexose capture rate by inducing transporter expression. Thus, overproducers are maintained in the environment originally thought to not support public goods production.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Mark Hewlett
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Calatrava V, Hom EF, Guan Q, Llamas A, Fernández E, Galván A. Genetic evidence for algal auxin production in Chlamydomonas and its role in algal-bacterial mutualism. iScience 2024; 27:108762. [PMID: 38269098 PMCID: PMC10805672 DOI: 10.1016/j.isci.2023.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Interactions between algae and bacteria are ubiquitous and play fundamental roles in nutrient cycling and biomass production. Recent studies have shown that the plant auxin indole acetic acid (IAA) can mediate chemical crosstalk between algae and bacteria, resembling its role in plant-bacterial associations. Here, we report a mechanism for algal extracellular IAA production from L-tryptophan mediated by the enzyme L-amino acid oxidase (LAO1) in the model Chlamydomonas reinhardtii. High levels of IAA inhibit algal cell multiplication and chlorophyll degradation, and these inhibitory effects can be relieved by the presence of the plant-growth-promoting bacterium (PGPB) Methylobacterium aquaticum, whose growth is mutualistically enhanced by the presence of the alga. These findings reveal a complex interplay of microbial auxin production and degradation by algal-bacterial consortia and draws attention to potential ecophysiological roles of terrestrial microalgae and PGPB in association with land plants.
Collapse
Affiliation(s)
- Victoria Calatrava
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Erik F.Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677-1848, USA
| | - Qijie Guan
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677-1848, USA
| | - Angel Llamas
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
3
|
Milner DS, Galindo LJ, Irwin NAT, Richards TA. Transporter Proteins as Ecological Assets and Features of Microbial Eukaryotic Pangenomes. Annu Rev Microbiol 2023; 77:45-66. [PMID: 36944262 DOI: 10.1146/annurev-micro-032421-115538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Here we review two connected themes in evolutionary microbiology: (a) the nature of gene repertoire variation within species groups (pangenomes) and (b) the concept of metabolite transporters as accessory proteins capable of providing niche-defining "bolt-on" phenotypes. We discuss the need for improved sampling and understanding of pangenome variation in eukaryotic microbes. We then review the factors that shape the repertoire of accessory genes within pangenomes. As part of this discussion, we outline how gene duplication is a key factor in both eukaryotic pangenome variation and transporter gene family evolution. We go on to outline how, through functional characterization of transporter-encoding genes, in combination with analyses of how transporter genes are gained and lost from accessory genomes, we can reveal much about the niche range, the ecology, and the evolution of virulence of microbes. We advocate for the coordinated systematic study of eukaryotic pangenomes through genome sequencing and the functional analysis of genes found within the accessory gene repertoire.
Collapse
Affiliation(s)
- David S Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| | | | - Nicholas A T Irwin
- Department of Biology, University of Oxford, Oxford, United Kingdom;
- Merton College, University of Oxford, Oxford, United Kingdom
| | - Thomas A Richards
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
4
|
Lindsay RJ, Holder PJ, Talbot NJ, Gudelj I. Metabolic efficiency reshapes the seminal relationship between pathogen growth rate and virulence. Ecol Lett 2023; 26:896-907. [PMID: 37056166 PMCID: PMC10947253 DOI: 10.1111/ele.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
A cornerstone of classical virulence evolution theories is the assumption that pathogen growth rate is positively correlated with virulence, the amount of damage pathogens inflict on their hosts. Such theories are key for incorporating evolutionary principles into sustainable disease management strategies. Yet, empirical evidence raises doubts over this central assumption underpinning classical theories, thus undermining their generality and predictive power. In this paper, we identify a key component missing from current theories which redefines the growth-virulence relationship in a way that is consistent with data. By modifying the activity of a single metabolic gene, we engineered strains of Magnaporthe oryzae with different nutrient acquisition and growth rates. We conducted in planta infection studies and uncovered an unexpected non-monotonic relationship between growth rate and virulence that is jointly shaped by how growth rate and metabolic efficiency interact. This novel mechanistic framework paves the way for a much-needed new suite of virulence evolution theories.
Collapse
Affiliation(s)
| | | | - Nicholas J. Talbot
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Ivana Gudelj
- Biosciences and Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
5
|
Lerch BA, Smith DA, Koffel T, Bagby SC, Abbott KC. How public can public goods be? Environmental context shapes the evolutionary ecology of partially private goods. PLoS Comput Biol 2022; 18:e1010666. [PMID: 36318525 PMCID: PMC9651594 DOI: 10.1371/journal.pcbi.1010666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/11/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The production of costly public goods (as distinct from metabolic byproducts) has largely been understood through the realization that spatial structure can minimize losses to non-producing "cheaters" by allowing for the positive assortment of producers. In well-mixed systems, where positive assortment is not possible, the stable production of public goods has been proposed to depend on lineages that become indispensable as the sole producers of those goods while their neighbors lose production capacity through genome streamlining (the Black Queen Hypothesis). Here, we develop consumer-resource models motivated by nitrogen-fixing, siderophore-producing bacteria that consider the role of colimitation in shaping eco-evolutionary dynamics. Our models demonstrate that in well-mixed environments, single "public goods" can only be ecologically and evolutionarily stable if they are partially privatized (i.e., if producers reserve a portion of the product pool for private use). Colimitation introduces the possibility of subsidy: strains producing a fully public good can exclude non-producing strains so long as the producing strain derives sufficient benefit from the production of a second partially private good. We derive a lower bound for the degree of privatization necessary for production to be advantageous, which depends on external resource concentrations. Highly privatized, low-investment goods, in environments where the good is limiting, are especially likely to be stably produced. Coexistence emerges more rarely in our mechanistic model of the external environment than in past phenomenological approaches. Broadly, we show that the viability of production depends critically on the environmental context (i.e., external resource concentrations), with production of shared resources favored in environments where a partially-privatized resource is scarce.
Collapse
Affiliation(s)
- Brian A. Lerch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Derek A. Smith
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas Koffel
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, United States of America
| | - Sarah C. Bagby
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karen C. Abbott
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
6
|
Abstract
All organisms rely on complex metabolites such as amino acids, nucleotides, and cofactors for essential metabolic processes. Some microbes synthesize these fundamental ingredients of life de novo, while others rely on uptake to fulfill their metabolic needs. Although certain metabolic processes are inherently "leaky," the mechanisms enabling stable metabolite provisioning among microbes in the absence of a host remain largely unclear. In particular, how can metabolite provisioning among free-living bacteria be maintained under the evolutionary pressure to economize resources? Salvaging, the process of "recycling and reusing," can be a metabolically efficient route to obtain access to required resources. Here, we show experimentally how precursor salvaging in engineered Escherichia coli populations can lead to stable, long-term metabolite provisioning. We find that salvaged cobamides (vitamin B12 and related enzyme cofactors) are readily made available to nonproducing population members, yet salvagers are strongly protected from overexploitation. We also describe a previously unnoted benefit of precursor salvaging, namely, the removal of the nonfunctional, proliferation-inhibiting precursor. As long as compatible precursors are present, any microbe possessing the terminal steps of a biosynthetic process can, in principle, forgo de novo biosynthesis in favor of salvaging. Consequently, precursor salvaging likely represents a potent, yet overlooked, alternative to de novo biosynthesis for the acquisition and provisioning of metabolites in free-living bacterial populations. IMPORTANCE Recycling gives new life to old things. Bacteria have the ability to recycle and reuse complex molecules they encounter in their environment to fulfill their basic metabolic needs in a resource-efficient way. By studying the salvaging (recycling and reusing) of vitamin B12 precursors, we found that metabolite salvaging can benefit others and provide stability to a bacterial community at the same time. Salvagers of vitamin B12 precursors freely share the result of their labor yet cannot be outcompeted by freeloaders, likely because salvagers retain preferential access to the salvaging products. Thus, salvaging may represent an effective, yet overlooked, mechanism of acquiring and provisioning nutrients in microbial populations.
Collapse
|
7
|
Xenophontos C, Harpole WS, Küsel K, Clark AT. Cheating Promotes Coexistence in a Two-Species One-Substrate Culture Model. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.786006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cheating in microbial communities is often regarded as a precursor to a “tragedy of the commons,” ultimately leading to over-exploitation by a few species and destabilization of the community. While current evidence suggests that cheaters are evolutionarily and ecologically abundant, they can also play important roles in communities, such as promoting cooperative behaviors of other species. We developed a closed culture model with two microbial species and a single, complex nutrient substrate (the metaphorical “common”). One of the organisms, an enzyme producer, degrades the substrate, releasing an essential and limiting resource that it can use both to grow and produce more enzymes, but at a cost. The second organism, a cheater, does not produce the enzyme but can access the diffused resource produced by the other species, allowing it to benefit from the public good without contributing to it. We investigated evolutionarily stable states of coexistence between the two organisms and described how enzyme production rates and resource diffusion influence organism abundances. Our model shows that, in the long-term evolutionary scale, monocultures of the producer species drive themselves extinct because selection always favors mutant invaders that invest less in enzyme production, ultimately driving down the release of resources. However, the presence of a cheater buffers this process by reducing the fitness advantage of lower enzyme production, thereby preventing runaway selection in the producer, and promoting coexistence. Resource diffusion rate controls cheater growth, preventing it from outcompeting the producer. These results show that competition from cheaters can force producers to maintain adequate enzyme production to sustain both itself and the cheater. This is similar to what is known in evolutionary game theory as a “snowdrift game” – a metaphor describing a snow shoveler and a cheater following in their clean tracks. We move further to show that cheating can stabilize communities and possibly be a precursor to cooperation, rather than extinction.
Collapse
|
8
|
On the Ecological Significance of Phenotypic Heterogeneity in Microbial Populations Undergoing Starvation. Microbiol Spectr 2022; 10:e0045021. [PMID: 35019773 PMCID: PMC8754142 DOI: 10.1128/spectrum.00450-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To persist in variable environments, populations of microorganisms have to survive periods of starvation and be able to restart cell division in nutrient-rich conditions. Typically, starvation signals initiate a transition to a quiescent state in a fraction of individual cells, while the rest of the cells remain nonquiescent. It is widely believed that, while quiescent (Q) cells help the population to survive long starvation, the nonquiescent (NQ) cells are a side effect of imperfect transition. We analyzed the regrowth of starved monocultures of Q and NQ cells compared to that of mixed, heterogeneous cultures from simple and complex starvation environments. Our experiments, as well as mathematical modeling, demonstrate that Q monocultures benefit from better survival during long starvation and from a shorter lag phase after resupply of rich medium. However, when the starvation period is very short, the NQ monocultures outperform Q and mixed cultures due to their short lag phase. In addition, only NQ monocultures benefit from complex starvation environments, where nutrient recycling is possible. Our study suggests that phenotypic heterogeneity in starved populations could be a form of bet hedging that is adaptive when environmental determinants, such as the length of the starvation period, the length of the regrowth phase, and the complexity of the starvation environment, vary over time. IMPORTANCE Nongenetic cell heterogeneity is present in glucose-starved yeast populations in the form of quiescent (Q) and nonquiescent (NQ) phenotypes. There is evidence that Q cells help the population survive long starvation. However, the role of the NQ cell type is not known, and it has been speculated that the NQ phenotype is just a side effect of the imperfect transition to the Q phenotype. Here, we show that, in contrast, there are ecological scenarios in which NQ cells perform better than monocultures of Q cells or naturally occurring mixed populations containing both Q and NQ cells. NQ cells benefit when the starvation period is very short and environmental conditions allow nutrient recycling during starvation. Our experimental and mathematical modeling results suggest a novel hypothesis: the presence of both Q and NQ phenotypes within starved yeast populations may reflect a form of bet hedging where different phenotypes provide fitness advantages depending on the environmental conditions.
Collapse
|
9
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
10
|
Nev OA, Lindsay RJ, Jepson A, Butt L, Beardmore RE, Gudelj I. Predicting microbial growth dynamics in response to nutrient availability. PLoS Comput Biol 2021; 17:e1008817. [PMID: 33735173 PMCID: PMC8009381 DOI: 10.1371/journal.pcbi.1008817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 03/30/2021] [Accepted: 02/17/2021] [Indexed: 01/04/2023] Open
Abstract
Developing mathematical models to accurately predict microbial growth dynamics remains a key challenge in ecology, evolution, biotechnology, and public health. To reproduce and grow, microbes need to take up essential nutrients from the environment, and mathematical models classically assume that the nutrient uptake rate is a saturating function of the nutrient concentration. In nature, microbes experience different levels of nutrient availability at all environmental scales, yet parameters shaping the nutrient uptake function are commonly estimated for a single initial nutrient concentration. This hampers the models from accurately capturing microbial dynamics when the environmental conditions change. To address this problem, we conduct growth experiments for a range of micro-organisms, including human fungal pathogens, baker's yeast, and common coliform bacteria, and uncover the following patterns. We observed that the maximal nutrient uptake rate and biomass yield were both decreasing functions of initial nutrient concentration. While a functional form for the relationship between biomass yield and initial nutrient concentration has been previously derived from first metabolic principles, here we also derive the form of the relationship between maximal nutrient uptake rate and initial nutrient concentration. Incorporating these two functions into a model of microbial growth allows for variable growth parameters and enables us to substantially improve predictions for microbial dynamics in a range of initial nutrient concentrations, compared to keeping growth parameters fixed.
Collapse
Affiliation(s)
- Olga A. Nev
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Richard J. Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Robert E. Beardmore
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|