1
|
Avrahami HM, Makovicky PJ, Tucker RT, Zanno LE. A new semi-fossorial thescelosaurine dinosaur from the Cenomanian-age Mussentuchit Member of the Cedar Mountain Formation, Utah. Anat Rec (Hoboken) 2024. [PMID: 38979930 DOI: 10.1002/ar.25505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024]
Abstract
Thescelosaurines are a group of early diverging, ornithischian dinosaurs notable for their conservative bauplans and mosaic of primitive features. Although abundant within the latest Cretaceous ecosystems of North America, their record is poor to absent in earlier assemblages, leaving a large gap in our understanding of their evolution, origins, and ecological roles. Here we report a new small bodied thescelosaurine-Fona herzogae gen. et sp. nov.-from the Mussentuchit Member of the Cedar Mountain Formation, Utah, USA. Fona herzogae is represented by multiple individuals, representing one of the most comprehensive skeletal assemblages of a small bodied, early diverging ornithischian described from North America to date. Phylogenetic analysis recovers Fona as the earliest member of Thescelosaurinae, minimally containing Oryctodromeus, and all three species of Thescelosaurus, revealing the clade was well-established in North America by as early as the Cenomanian, and distinct from, yet continental cohabitants with, their sister clade, Orodrominae. To date, orodromines and thescelosaurines have not been found together within a single North American ecosystem, suggesting different habitat preferences or competitive exclusion. Osteological observations reveal extensive intraspecific variation across cranial and postcranial elements, and a number of anatomical similarities with Oryctodromeus, suggesting a shared semi-fossorial lifestyle.
Collapse
Affiliation(s)
- Haviv M Avrahami
- North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| | - Peter J Makovicky
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan T Tucker
- Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lindsay E Zanno
- North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Melchor R, Perez M, Villegas P, Espinoza N, Umazano A, Cardonatto MC. Early Cretaceous lepidosaur (sphenodontian?) burrows. Sci Rep 2023; 13:10209. [PMID: 37353642 PMCID: PMC10290101 DOI: 10.1038/s41598-023-37385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/21/2023] [Indexed: 06/25/2023] Open
Abstract
Scarce fossil tetrapod burrows have been recorded in Cretaceous rocks, which is probably linked to the dominant equable climates that existed for most of this period. The occurrence of Cretaceous tetrapod burrows from Patagonia (Chubut Province, Argentina) dated between 118 and 115 million years ago, gives insights into their paleoecology and paleoenvironment. The rocks containing the tetrapod burrows are of pyroclastic origin and represent eolian dunes and ash-fall deposits, some reworked by fluvial currents and others showing soil development. Fossil burrow casts preserved in a paleosol are composed by a ramp with a slightly curved or straight path in plan-view and lacking bifurcation, a rounded termination with no enlargement, showing a reniform cross-section, and are assigned to the ichnospecies Reniformichnus katikatii. The strongly flattened cross-sectional shape of the burrow casts and comparison with modern lizard burrows suggest that the producers were lepidosaurs (body mass = 50-323 g). Among Cretaceous fossorial lepidosaurs from Patagonia, the best candidate is an eilenodontine sphenodontian. Sphenodontians burrowed in the fossil soils where also arthropods, earthworms and shrubby plants thrived. The rare occurrence of tetrapod burrows in Cretaceous rocks is linked to stressing conditions related to frequent arrival of volcanic ash and a semiarid seasonal climate.
Collapse
Affiliation(s)
- Ricardo Melchor
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Pampa), Mendoza 109, 6300, Santa Rosa, La Pampa, Argentina.
- Departamento de Geología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina.
| | - Mariano Perez
- Departamento de Geología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Pablo Villegas
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Pampa), Mendoza 109, 6300, Santa Rosa, La Pampa, Argentina
| | - Nahuel Espinoza
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Pampa), Mendoza 109, 6300, Santa Rosa, La Pampa, Argentina
| | - Aldo Umazano
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Pampa), Mendoza 109, 6300, Santa Rosa, La Pampa, Argentina
- Departamento de Geología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - M Cristina Cardonatto
- Departamento de Geología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| |
Collapse
|
3
|
A new multituberculate from the latest Cretaceous of central China and its implications for multituberculate tooth homologies and occlusion. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Incentive disengagement and the adaptive significance of frustrative nonreward. Learn Behav 2022; 50:372-388. [DOI: 10.3758/s13420-022-00519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 11/08/2022]
|
5
|
Weaver LN, Fulghum HZ, Grossnickle DM, Brightly WH, Kulik ZT, Wilson Mantilla GP, Whitney MR. Multituberculate Mammals Show Evidence of a Life History Strategy Similar to That of Placentals, Not Marsupials. Am Nat 2022; 200:383-400. [DOI: 10.1086/720410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lucas N. Weaver
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - Henry Z. Fulghum
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - David M. Grossnickle
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - William H. Brightly
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - Zoe T. Kulik
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - Gregory P. Wilson Mantilla
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - Megan R. Whitney
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
6
|
Csiki-Sava Z, Vremir M, Meng J, Vasile Ş, Brusatte SL, Norell MA. Spatial and Temporal Distribution of the Island-Dwelling Kogaionidae (Mammalia, Multituberculata) in the Uppermost Cretaceous of Transylvania (Western Romania). BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.1206/0003-0090.456.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Zoltán Csiki-Sava
- Laboratory of Paleontology, Faculty of Geology and Geophysics, and Center for Risk Studies, Space Modeling and Dynamics of Terrestrial and Coastal Systems, University of Bucharest
| | - Mátyás Vremir
- Deceased; formerly Department of Natural Sciences, Transylvanian Museum Society, Cluj-Napoca, Romania
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York
| | - Ştefan Vasile
- Laboratory of Paleontology, Faculty of Geology and Geophysics, and Center for Risk Studies, Space Modeling and Dynamics of Terrestrial and Coastal Systems, University of Bucharest
| | | | - Mark A. Norell
- Division of Paleontology, American Museum of Natural History, New York
| |
Collapse
|
7
|
Krause DW, Hoffmann S, Lyson TR, Dougan LG, Petermann H, Tecza A, Chester SGB, Miller IM. New Skull Material of Taeniolabis taoensis (Multituberculata, Taeniolabididae) from the Early Paleocene (Danian) of the Denver Basin, Colorado. J MAMM EVOL 2021; 28:1083-1143. [PMID: 34924738 PMCID: PMC8667543 DOI: 10.1007/s10914-021-09584-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/26/2022]
Abstract
Taeniolabis taoensis is an iconic multituberculate mammal of early Paleocene (Puercan 3) age from the Western Interior of North America. Here we report the discovery of significant new skull material (one nearly complete cranium, two partial crania, one nearly complete dentary) of T. taoensis in phosphatic concretions from the Corral Bluffs study area, Denver Formation (Danian portion), Denver Basin, Colorado. The new skull material provides the first record of the species from the Denver Basin, where the lowest in situ specimen occurs in river channel deposits ~730,000 years after the Cretaceous-Paleogene boundary, roughly coincident with the first appearance of legumes in the basin. The new material, in combination with several previously described and undescribed specimens from the Nacimiento Formation of the San Juan Basin, New Mexico, is the subject of detailed anatomical study, aided by micro-computed tomography. Our analyses reveal many previously unknown aspects of skull anatomy. Several regions (e.g., anterior portions of premaxilla, orbit, cranial roof, occiput) preserved in the Corral Bluffs specimens allow considerable revision of previous reconstructions of the external cranial morphology of T. taoensis. Similarly, anatomical details of the ascending process of the dentary are altered in light of the new material. Although details of internal cranial anatomy (e.g., nasal and endocranial cavities) are difficult to discern in the available specimens, we provide, based on UCMP 98083 and DMNH.EPV 95284, the best evidence to date for inner ear structure in a taeniolabidoid multituberculate. The cochlear canal of T. taoensis is elongate and gently curved and the vestibule is enlarged, although to a lesser degree than in Lambdopsalis.
Collapse
Affiliation(s)
- David W. Krause
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-8081 USA
| | - Simone Hoffmann
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568 USA
| | - Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
| | - Lindsay G. Dougan
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
| | - Holger Petermann
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
| | - Adrienne Tecza
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
| | - Stephen G. B. Chester
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210 USA
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 USA
- New York Consortium in Evolutionary Primatology, 200 Central Park West, New York, NY 10024 USA
| | - Ian M. Miller
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
- National Geographic Society, 1145 17th Street NW, Washington, DC 20036 USA
| |
Collapse
|
8
|
Hughes JJ, Berv JS, Chester SGB, Sargis EJ, Field DJ. Ecological selectivity and the evolution of mammalian substrate preference across the K-Pg boundary. Ecol Evol 2021; 11:14540-14554. [PMID: 34765124 PMCID: PMC8571592 DOI: 10.1002/ece3.8114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
The Cretaceous-Paleogene (K-Pg) mass extinction 66 million years ago was characterized by a worldwide ecological catastrophe and rapid species turnover. Large-scale devastation of forested environments resulting from the Chicxulub asteroid impact likely influenced the evolutionary trajectories of multiple clades in terrestrial environments, and it has been hypothesized to have biased survivorship in favour of nonarboreal lineages across the K-Pg boundary. Here, we evaluate patterns of substrate preferences across the K-Pg boundary among crown group mammals, a group that underwent rapid diversification following the mass extinction. Using Bayesian, likelihood, and parsimony reconstructions, we identify patterns of mammalian ecological selectivity that are broadly similar to those previously hypothesized for birds. Models based on extant taxa indicate predominant K-Pg survivorship among semi- or nonarboreal taxa, followed by numerous independent transitions to arboreality in the early Cenozoic. However, contrary to the predominant signal, some or all members of total-clade Euarchonta (Primates + Dermoptera + Scandentia) appear to have maintained arboreal habits across the K-Pg boundary, suggesting ecological flexibility during an interval of global habitat instability. We further observe a pronounced shift in character state transitions away from plesiomorphic arboreality associated with the K-Pg transition. Our findings are consistent with the hypothesis that predominantly nonarboreal taxa preferentially survived the end-Cretaceous mass extinction, and emphasize the pivotal influence of the K-Pg transition in shaping the early evolutionary trajectories of extant terrestrial vertebrates.
Collapse
Affiliation(s)
- Jonathan J. Hughes
- Department of Ecology & Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - Jacob S. Berv
- Department of Ecology & Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- University of Michigan Museum of PaleontologyUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen G. B. Chester
- Department of AnthropologyBrooklyn CollegeCity University of New YorkBrooklynNew YorkUSA
- Department of AnthropologyThe Graduate CenterCity University of New YorkNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| | - Eric J. Sargis
- Department of AnthropologyYale UniversityNew HavenConnecticutUSA
- Divisions of Vertebrate Paleontology and Vertebrate ZoologyYale Peabody Museum of Natural HistoryNew HavenConnecticutUSA
- Yale Institute for Biospheric StudiesNew HavenConnecticutUSA
| | - Daniel J. Field
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
9
|
A New Mammal Skull from the Late Cretaceous of Romania and Phylogenetic Affinities of Kogaionid Multituberculates. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09564-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Bennett MS. What Behavioral Abilities Emerged at Key Milestones in Human Brain Evolution? 13 Hypotheses on the 600-Million-Year Phylogenetic History of Human Intelligence. Front Psychol 2021; 12:685853. [PMID: 34393912 PMCID: PMC8358274 DOI: 10.3389/fpsyg.2021.685853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023] Open
Abstract
This paper presents 13 hypotheses regarding the specific behavioral abilities that emerged at key milestones during the 600-million-year phylogenetic history from early bilaterians to extant humans. The behavioral, intellectual, and cognitive faculties of humans are complex and varied: we have abilities as diverse as map-based navigation, theory of mind, counterfactual learning, episodic memory, and language. But these faculties, which emerge from the complex human brain, are likely to have evolved from simpler prototypes in the simpler brains of our ancestors. Understanding the order in which behavioral abilities evolved can shed light on how and why our brains evolved. To propose these hypotheses, I review the available data from comparative psychology and evolutionary neuroscience.
Collapse
|
11
|
Weaver LN, Grossnickle DM. Functional diversity of small-mammal postcrania is linked to both substrate preference and body size. Curr Zool 2020; 66:539-553. [PMID: 33293932 PMCID: PMC7705507 DOI: 10.1093/cz/zoaa057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/14/2020] [Indexed: 01/18/2023] Open
Abstract
Selective pressures favor morphologies that are adapted to distinct ecologies, resulting in trait partitioning among ecomorphotypes. However, the effects of these selective pressures vary across taxa, especially because morphology is also influenced by factors such as phylogeny, body size, and functional trade-offs. In this study, we examine how these factors impact functional diversification in mammals. It has been proposed that trait partitioning among mammalian ecomorphotypes is less pronounced at small body sizes due to biomechanical, energetic, and environmental factors that favor a “generalist” body plan, whereas larger taxa exhibit more substantial functional adaptations. We title this the Divergence Hypothesis (DH) because it predicts greater morphological divergence among ecomorphotypes at larger body sizes. We test DH by using phylogenetic comparative methods to examine the postcranial skeletons of 129 species of taxonomically diverse, small-to-medium-sized (<15 kg) mammals, which we categorize as either “tree-dwellers” or “ground-dwellers.” In some analyses, the morphologies of ground-dwellers and tree-dwellers suggest greater between-group differentiation at larger sizes, providing some evidence for DH. However, this trend is neither particularly strong nor supported by all analyses. Instead, a more pronounced pattern emerges that is distinct from the predictions of DH: within-group phenotypic disparity increases with body size in both ground-dwellers and tree-dwellers, driven by morphological outliers among “medium”-sized mammals. Thus, evolutionary increases in body size are more closely linked to increases in within-locomotor-group disparity than to increases in between-group disparity. We discuss biomechanical and ecological factors that may drive these evolutionary patterns, and we emphasize the significant evolutionary influences of ecology and body size on phenotypic diversity.
Collapse
Affiliation(s)
- Lucas N Weaver
- Department of Biology, Life Sciences Building, University of Washington, Seattle, WA 98195, USA
| | - David M Grossnickle
- Department of Biology, Life Sciences Building, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|