1
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and Developmental Divergence in the Neural Crest Program between Cichlid Fish Species. Mol Biol Evol 2024; 41:msae217. [PMID: 39412298 PMCID: PMC11558072 DOI: 10.1093/molbev/msae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic program in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to interspecific morphological differences, such as craniofacial structures and pigmentation. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared with teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes-particularly those controlled by sox10s-are involved in generating morphological diversification between species and lays the groundwork for further investigations into the mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | - Grégoire Vernaz
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Maxon J Ngochera
- Malawi Fisheries Department, Senga Bay Fisheries Research Center, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and developmental divergence in the neural crest programme between cichlid fish species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578004. [PMID: 38352436 PMCID: PMC10862805 DOI: 10.1101/2024.01.30.578004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic programme in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to inter-specific morphological differences. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared to the teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes - particularly those controlled by sox10s - might be involved in generating morphological diversification between species and lays the groundwork for further investigations into mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | | | | | - Maxon J. Ngochera
- Senga Bay Fisheries Research Center, Malawi Fisheries Department, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, United Kingdom
| | | |
Collapse
|
3
|
Sommer-Trembo C, Santos ME, Clark B, Werner M, Fages A, Matschiner M, Hornung S, Ronco F, Oliver C, Garcia C, Tschopp P, Malinsky M, Salzburger W. The genetics of niche-specific behavioral tendencies in an adaptive radiation of cichlid fishes. Science 2024; 384:470-475. [PMID: 38662824 DOI: 10.1126/science.adj9228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Abstract
Behavior is critical for animal survival and reproduction, and possibly for diversification and evolutionary radiation. However, the genetics behind adaptive variation in behavior are poorly understood. In this work, we examined a fundamental and widespread behavioral trait, exploratory behavior, in one of the largest adaptive radiations on Earth, the cichlid fishes of Lake Tanganyika. By integrating quantitative behavioral data from 57 cichlid species (702 wild-caught individuals) with high-resolution ecomorphological and genomic information, we show that exploratory behavior is linked to macrohabitat niche adaptations in Tanganyikan cichlids. Furthermore, we uncovered a correlation between the genotypes at a single-nucleotide polymorphism upstream of the AMPA glutamate-receptor regulatory gene cacng5b and variation in exploratory tendency. We validated this association using behavioral predictions with a neural network approach and CRISPR-Cas9 genome editing.
Collapse
Affiliation(s)
- Carolin Sommer-Trembo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marco Werner
- Leibniz-Institute for Polymer Research Dresden, Dresden, Germany
| | - Antoine Fages
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | - Simon Hornung
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Chantal Oliver
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Cody Garcia
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Patrick Tschopp
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Milan Malinsky
- Department of Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Almeida MV, Blumer M, Yuan CU, Sierra P, Price JL, Quah FX, Friman A, Dallaire A, Vernaz G, Putman ALK, Smith AM, Joyce DA, Butter F, Haase AD, Durbin R, Santos ME, Miska EA. Dynamic co-evolution of transposable elements and the piRNA pathway in African cichlid fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587621. [PMID: 38617250 PMCID: PMC11014572 DOI: 10.1101/2024.04.01.587621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.
Collapse
Affiliation(s)
- Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Moritz Blumer
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- These authors contributed equally
| | - Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- These authors contributed equally
| | - Pío Sierra
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jonathan L. Price
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Aleksandr Friman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Biophysics Graduate Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Alexandra Dallaire
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond TW9 3DS, UK
| | - Grégoire Vernaz
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Present address: Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, Basel, 4051, Switzerland
| | - Audrey L. K. Putman
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Alan M. Smith
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Domino A. Joyce
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Falk Butter
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Ackermannweg 4, Mainz, 55128, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer, Greifswald, 17493, Germany
| | - Astrid D. Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - M. Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eric A. Miska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| |
Collapse
|
5
|
Costa VA, Ronco F, Mifsud JCO, Harvey E, Salzburger W, Holmes EC. Host adaptive radiation is associated with rapid virus diversification and cross-species transmission in African cichlid fishes. Curr Biol 2024; 34:1247-1257.e3. [PMID: 38428417 DOI: 10.1016/j.cub.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Adaptive radiations are generated through a complex interplay of biotic and abiotic factors. Although adaptive radiations have been widely studied in the context of animal and plant evolution, little is known about how they impact the evolution of the viruses that infect these hosts, which in turn may provide insights into the drivers of cross-species transmission and hence disease emergence. We examined how the rapid adaptive radiation of the cichlid fishes of African Lake Tanganyika over the last 10 million years has shaped the diversity and evolution of the viruses they carry. Through metatranscriptomic analysis of 2,242 RNA sequencing libraries, we identified 121 vertebrate-associated viruses among various tissue types that fell into 13 RNA and 4 DNA virus groups. Host-switching was commonplace, particularly within the Astroviridae, Metahepadnavirus, Nackednavirus, Picornaviridae, and Hepacivirus groups, occurring more frequently than in other fish communities. A time-calibrated phylogeny revealed that hepacivirus diversification was not constant throughout the cichlid radiation but accelerated 2-3 million years ago, coinciding with a period of rapid cichlid diversification and niche packing in Lake Tanganyika, thereby providing more closely related hosts for viral infection. These data depict a dynamic virus ecosystem within the cichlids of Lake Tanganyika, characterized by rapid virus diversification and frequent host jumping, and likely reflecting their close phylogenetic relationships that lower the barriers to cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Fabrizia Ronco
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Zhu S, Hong J, Wang T. Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species. Nat Commun 2024; 15:800. [PMID: 38280843 PMCID: PMC10821886 DOI: 10.1038/s41467-024-45154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Natural microbial ecosystems harbor substantial diversity of competing species. Explaining such diversity is challenging, because in classic theories it is extremely infeasible for a large community of competing species to stably coexist in homogeneous environments. One important aspect mostly overlooked in these theories, however, is that microbes commonly share genetic materials with their neighbors through horizontal gene transfer (HGT), which enables the dynamic change of species growth rates due to the fitness effects of the mobile genetic elements (MGEs). Here, we establish a framework of species competition by accounting for the dynamic gene flow among competing microbes. Combining theoretical derivation and numerical simulations, we show that in many conditions HGT can surprisingly overcome the biodiversity limit predicted by the classic model and allow the coexistence of many competitors, by enabling dynamic neutrality of competing species. In contrast with the static neutrality proposed by previous theories, the diversity maintained by HGT is highly stable against random perturbations of microbial fitness. Our work highlights the importance of considering gene flow when addressing fundamental ecological questions in the world of microbes and has broad implications for the design and engineering of complex microbial consortia.
Collapse
Affiliation(s)
- Shiben Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juken Hong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Teng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Xu Y, Bush SJ, Yang X, Xu L, Wang B, Ye K. Evolutionary analysis of conserved non-coding elements subsequent to whole-genome duplication in opium poppy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1804-1824. [PMID: 37706612 DOI: 10.1111/tpj.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.
Collapse
Affiliation(s)
- Yu Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linfeng Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Ye
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Dimayacyac JR, Wu S, Jiang D, Pennell M. Evaluating the Performance of Widely Used Phylogenetic Models for Gene Expression Evolution. Genome Biol Evol 2023; 15:evad211. [PMID: 38000902 PMCID: PMC10709115 DOI: 10.1093/gbe/evad211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Phylogenetic comparative methods are increasingly used to test hypotheses about the evolutionary processes that drive divergence in gene expression among species. However, it is unknown whether the distributional assumptions of phylogenetic models designed for quantitative phenotypic traits are realistic for expression data and importantly, the reliability of conclusions of phylogenetic comparative studies of gene expression may depend on whether the data is well described by the chosen model. To evaluate this, we first fit several phylogenetic models of trait evolution to 8 previously published comparative expression datasets, comprising a total of 54,774 genes with 145,927 unique gene-tissue combinations. Using a previously developed approach, we then assessed how well the best model of the set described the data in an absolute (not just relative) sense. First, we find that Ornstein-Uhlenbeck models, in which expression values are constrained around an optimum, were the preferred models for 66% of gene-tissue combinations. Second, we find that for 61% of gene-tissue combinations, the best-fit model of the set was found to perform well; the rest were found to be performing poorly by at least one of the test statistics we examined. Third, we find that when simple models do not perform well, this appears to be typically a consequence of failing to fully account for heterogeneity in the rate of the evolution. We advocate that assessment of model performance should become a routine component of phylogenetic comparative expression studies; doing so can improve the reliability of inferences and inspire the development of novel models.
Collapse
Affiliation(s)
- Jose Rafael Dimayacyac
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Shanyun Wu
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daohan Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Matt Pennell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
10
|
Ricci V, Ronco F, Boileau N, Salzburger W. Visual opsin gene expression evolution in the adaptive radiation of cichlid fishes of Lake Tanganyika. SCIENCE ADVANCES 2023; 9:eadg6568. [PMID: 37672578 PMCID: PMC10482347 DOI: 10.1126/sciadv.adg6568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Tuning the visual sensory system to the ambient light is essential for survival in many animal species. This is often achieved through duplication, functional diversification, and/or differential expression of visual opsin genes. Here, we examined 753 new retinal transcriptomes from 112 species of cichlid fishes from Lake Tanganyika to unravel adaptive changes in gene expression at the macro-evolutionary and ecosystem level of one of the largest vertebrate adaptive radiations. We found that, across the radiation, all seven cone opsins-but not the rhodopsin-rank among the most differentially expressed genes in the retina, together with other vision-, circadian rhythm-, and hemoglobin-related genes. We propose two visual palettes characteristic of very shallow- and deep-water living species, respectively, and show that visual system adaptations along two major ecological axes, macro-habitat and diet, occur primarily via gene expression variation in a subset of cone opsin genes.
Collapse
Affiliation(s)
- Virginie Ricci
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Nicolas Boileau
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Eldem V, Zararsız G, Erkan M. Global expression pattern of genes containing positively selected sites in European anchovy (Engraulis encrasicolus L.) may shed light on teleost reproduction. PLoS One 2023; 18:e0289940. [PMID: 37566603 PMCID: PMC10420382 DOI: 10.1371/journal.pone.0289940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
European anchovy is a multiple-spawning and highly fecundate pelagic fish with high economic and ecological significance. Although fecundity is influenced by nutrition, temperature and weight of spawners, high reproductive capacity is related to molecular processes in the ovary. The ovary is an essential and complex reproductive organ composed of various somatic and germ cells, which interact to facilitate the development of the ovary and functional oocytes. Revealing the ovarian transcriptome profile of highly fecundate fishes provides insights into oocyte production in teleosts. Here we use a comprehensive tissue-specific RNA sequencing which yielded 102.3 billion clean bases to analyze the transcriptional profiles of the ovary compared with other organs (liver, kidney, ovary, testis, fin, cauda and gill) and juvenile tissues of European anchovy. We conducted a comparative transcriptome and positive selection analysis of seven teleost species with varying fecundity rates to identify genes potentially involved in oogenesis and oocyte development. Of the 2,272 single copies of orthologous genes found, up to 535 genes were under positive selection in European anchovy and these genes are associated with a wide spectrum of cellular and molecular functions, with enrichments such as RNA methylation and modification, ribosome biogenesis, DNA repair, cell cycle processing and peptide/amide biosynthesis. Of the 535 positively selected genes, 55 were upregulated, and 45 were downregulated in the ovary, most of which were related to RNA and DNA transferase, developmental transcription factors, protein kinases and replication factors. Overall, our analysis of the transcriptome level in the ovarian tissue of a teleost will provide further insights into molecular processes and deepen our genetic understanding of egg production in highly fecund fish.
Collapse
Affiliation(s)
- Vahap Eldem
- Faculty of Sciences, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
| | - Melike Erkan
- Faculty of Sciences, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Bertram J, Fulton B, Tourigny JP, Peña-Garcia Y, Moyle LC, Hahn MW. CAGEE: Computational Analysis of Gene Expression Evolution. Mol Biol Evol 2023; 40:msad106. [PMID: 37158385 PMCID: PMC10195155 DOI: 10.1093/molbev/msad106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
Despite the increasing abundance of whole transcriptome data, few methods are available to analyze global gene expression across phylogenies. Here, we present a new software package (Computational Analysis of Gene Expression Evolution [CAGEE]) for inferring patterns of increases and decreases in gene expression across a phylogenetic tree, as well as the rate at which these changes occur. In contrast to previous methods that treat each gene independently, CAGEE can calculate genome-wide rates of gene expression, along with ancestral states for each gene. The statistical approach developed here makes it possible to infer lineage-specific shifts in rates of evolution across the genome, in addition to possible differences in rates among multiple tissues sampled from the same species. We demonstrate the accuracy and robustness of our method on simulated data and apply it to a data set of ovule gene expression collected from multiple self-compatible and self-incompatible species in the genus Solanum to test hypotheses about the evolutionary forces acting during mating system shifts. These comparisons allow us to highlight the power of CAGEE, demonstrating its utility for use in any empirical system and for the analysis of most morphological traits. Our software is available at https://github.com/hahnlab/CAGEE/.
Collapse
Affiliation(s)
- Jason Bertram
- Department of Biology, Indiana University, Bloomington, IN
- Department of Mathematics, Western University, London, ON, Canada
| | - Ben Fulton
- Department of Biology, Indiana University, Bloomington, IN
- University Information Technology Services, Indiana University, Bloomington, IN
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN
- Department of Computer Science, Indiana University, Bloomington, IN
| | | | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN
- Department of Computer Science, Indiana University, Bloomington, IN
| |
Collapse
|
13
|
Mifsud JCO, Costa VA, Petrone ME, Marzinelli EM, Holmes EC, Harvey E. Transcriptome mining extends the host range of the Flaviviridae to non-bilaterians. Virus Evol 2022; 9:veac124. [PMID: 36694816 PMCID: PMC9854234 DOI: 10.1093/ve/veac124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022] Open
Abstract
The flavivirids (family Flaviviridae) are a group of positive-sense RNA viruses that include well-documented agents of human disease. Despite their importance and ubiquity, the timescale of flavivirid evolution is uncertain. An ancient origin, spanning millions of years, is supported by their presence in both vertebrates and invertebrates and by the identification of a flavivirus-derived endogenous viral element in the peach blossom jellyfish genome (Craspedacusta sowerbii, phylum Cnidaria), implying that the flaviviruses arose early in the evolution of the Metazoa. To date, however, no exogenous flavivirid sequences have been identified in these hosts. To help resolve the antiquity of the Flaviviridae, we mined publicly available transcriptome data across the Metazoa. From this, we expanded the diversity within the family through the identification of 32 novel viral sequences and extended the host range of the pestiviruses to include amphibians, reptiles, and ray-finned fish. Through co-phylogenetic analysis we found cross-species transmission to be the predominate macroevolutionary event across the non-vectored flavivirid genera (median, 68 per cent), including a cross-species transmission event between bats and rodents, although long-term virus-host co-divergence was still a regular occurrence (median, 23 per cent). Notably, we discovered flavivirus-like sequences in basal metazoan species, including the first associated with Cnidaria. This sequence formed a basal lineage to the genus Flavivirus and was closer to arthropod and crustacean flaviviruses than those in the tamanavirus group, which includes a variety of invertebrate and vertebrate viruses. Combined, these data attest to an ancient origin of the flaviviruses, likely close to the emergence of the metazoans 750-800 million years ago.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Mary E Petrone
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 Singapore
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
14
|
Vernaz G, Hudson AG, Santos ME, Fischer B, Carruthers M, Shechonge AH, Gabagambi NP, Tyers AM, Ngatunga BP, Malinsky M, Durbin R, Turner GF, Genner MJ, Miska EA. Epigenetic divergence during early stages of speciation in an African crater lake cichlid fish. Nat Ecol Evol 2022; 6:1940-1951. [PMID: 36266459 PMCID: PMC9715432 DOI: 10.1038/s41559-022-01894-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/26/2022] [Indexed: 12/15/2022]
Abstract
Epigenetic variation can alter transcription and promote phenotypic divergence between populations facing different environmental challenges. Here, we assess the epigenetic basis of diversification during the early stages of speciation. Specifically, we focus on the extent and functional relevance of DNA methylome divergence in the very young radiation of Astatotilapia calliptera in crater Lake Masoko, southern Tanzania. Our study focuses on two lake ecomorphs that diverged approximately 1,000 years ago and a population in the nearby river from which they separated approximately 10,000 years ago. The two lake ecomorphs show no fixed genetic differentiation, yet are characterized by different morphologies, depth preferences and diets. We report extensive genome-wide methylome divergence between the two lake ecomorphs, and between the lake and river populations, linked to key biological processes and associated with altered transcriptional activity of ecologically relevant genes. Such genes differing between lake ecomorphs include those involved in steroid metabolism, hemoglobin composition and erythropoiesis, consistent with their divergent habitat occupancy. Using a common-garden experiment, we found that global methylation profiles are often rapidly remodeled across generations but ecomorph-specific differences can be inherited. Collectively, our study suggests an epigenetic contribution to the early stages of vertebrate speciation.
Collapse
Affiliation(s)
- Grégoire Vernaz
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Alan G Hudson
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | - Alexandra M Tyers
- School of Natural Sciences, Bangor University, Bangor, UK
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Milan Malinsky
- Wellcome Sanger Institute, Hinxton, UK
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Eric A Miska
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
15
|
Ma W, Rovatsos M. Sex chromosome evolution: The remarkable diversity in the evolutionary rates and mechanisms. J Evol Biol 2022; 35:1581-1588. [DOI: 10.1111/jeb.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Wen‐Juan Ma
- Department of Molecular Biosciences University of Kansas Lawrence Kansas USA
| | | |
Collapse
|
16
|
Sex chromosomes in the tribe Cyprichromini (Teleostei: Cichlidae) of Lake Tanganyika. Sci Rep 2022; 12:17998. [PMID: 36289404 PMCID: PMC9606112 DOI: 10.1038/s41598-022-23017-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Sex determining loci have been described on at least 12 of 22 chromosomes in East African cichlid fishes, indicating a high rate of sex chromosome turnover. To better understand the rates and patterns of sex chromosome replacement, we used new methods to characterize the sex chromosomes of the cichlid tribe Cyprichromini from Lake Tanganyika. Our k-mer based methods successfully identified sex-linked polymorphisms without the need for a reference genome. We confirm the three previously reported sex chromosomes in this group. We determined the polarity of the sex chromosome turnover on LG05 in Cyprichromis as ZW to XY. We identified a new ZW locus on LG04 in Paracyprichromis brieni. The LG15 XY locus in Paracyprichromis nigripinnis was not found in other Paracyprichromis species, and the sample of Paracyprichromis sp. "tembwe" is likely to be of hybrid origin. Although highly divergent sex chromosomes are thought to develop in a stepwise manner, we show two cases (LG05-ZW and LG05-XY) in which the region of differentiation encompasses most of the chromosome, but appears to have arisen in a single step. This study expands our understanding of sex chromosome evolution in the Cyprichromini, and indicates an even higher level of sex chromosome turnover than previously thought.
Collapse
|
17
|
Mehta TK, Penso-Dolfin L, Nash W, Roy S, Di-Palma F, Haerty W. Evolution of miRNA-Binding Sites and Regulatory Networks in Cichlids. Mol Biol Evol 2022; 39:msac146. [PMID: 35748824 PMCID: PMC9260339 DOI: 10.1093/molbev/msac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The divergence of regulatory regions and gene regulatory network (GRN) rewiring is a key driver of cichlid phenotypic diversity. However, the contribution of miRNA-binding site turnover has yet to be linked to GRN evolution across cichlids. Here, we extend our previous studies by analyzing the selective constraints driving evolution of miRNA and transcription factor (TF)-binding sites of target genes, to infer instances of cichlid GRN rewiring associated with regulatory binding site turnover. Comparative analyses identified increased species-specific networks that are functionally associated to traits of cichlid phenotypic diversity. The evolutionary rewiring is associated with differential models of miRNA- and TF-binding site turnover, driven by a high proportion of fast-evolving polymorphic sites in adaptive trait genes compared with subsets of random genes. Positive selection acting upon discrete mutations in these regulatory regions is likely to be an important mechanism in rewiring GRNs in rapidly radiating cichlids. Regulatory variants of functionally associated miRNA- and TF-binding sites of visual opsin genes differentially segregate according to phylogeny and ecology of Lake Malawi species, identifying both rewired, for example, clade-specific and conserved network motifs of adaptive trait associated GRNs. Our approach revealed several novel candidate regulators, regulatory regions, and three-node motifs across cichlid genomes with previously reported associations to known adaptive evolutionary traits.
Collapse
Affiliation(s)
- Tarang K Mehta
- Regulatory and Systems Genomics, Earlham Institute (EI), Norwich, UK
| | - Luca Penso-Dolfin
- Bioinformatics Department, Silence Therapeutics GmbH, Robert-Rössle-Straße 10, Germany
| | - Will Nash
- Regulatory and Systems Genomics, Earlham Institute (EI), Norwich, UK
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, UW Madison, Madison, WI, USA
- Roy Lab, Wisconsin Institute for Discovery (WID), Madison, WI, USA
- Department of Computer Sciences, UW Madison, Madison, WI, USA
| | - Federica Di-Palma
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Research and Innovation, Genome British Columbia, Vancouver, Canada
| | - Wilfried Haerty
- Regulatory and Systems Genomics, Earlham Institute (EI), Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
18
|
Detecting signatures of selection on gene expression. Nat Ecol Evol 2022; 6:1035-1045. [PMID: 35551249 DOI: 10.1038/s41559-022-01761-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
A substantial amount of phenotypic diversity results from changes in gene expression levels and patterns. Understanding how the transcriptome evolves is therefore a key priority in identifying mechanisms of adaptive change. However, in contrast to powerful models of sequence evolution, we lack a consensus model of gene expression evolution. Furthermore, recent work has shown that many of the comparative approaches used to study gene expression are subject to biases that can lead to false signatures of selection. Here we first outline the main approaches for describing expression evolution and their inherent biases. Next, we bridge the gap between the fields of phylogenetic comparative methods and transcriptomics to reinforce the main pitfalls of inferring selection on expression patterns and use simulation studies to show that shifts in tissue composition can heavily bias inferences of selection. We close by highlighting the multi-dimensional nature of transcriptional variation and identifying major unanswered questions in disentangling how selection acts on the transcriptome.
Collapse
|
19
|
Huang Y, Shang R, Lu GA, Zeng W, Huang C, Zou C, Tang T. Spatiotemporal Regulation of a Single Adaptively Evolving Trans-Regulatory Element Contributes to Spermatogenetic Expression Divergence in Drosophila. Mol Biol Evol 2022; 39:6605656. [PMID: 35687719 PMCID: PMC9254010 DOI: 10.1093/molbev/msac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Due to extensive pleiotropy, trans-acting elements are often thought to be evolutionarily constrained. While the impact of trans-acting elements on gene expression evolution has been extensively studied, relatively little is understood about the contribution of a single trans regulator to interspecific expression and phenotypic divergence. Here, we disentangle the effects of genomic context and miR-983, an adaptively evolving young microRNA, on expression divergence between Drosophila melanogaster and D. simulans. We show miR-983 effects promote interspecific expression divergence in testis despite its antagonism with the often-predominant context effects. Single-cyst RNA-seq reveals that distinct sets of genes gain and lose miR-983 influence under disruptive or diversifying selection at different stages of spermatogenesis, potentially helping minimize antagonistic pleiotropy. At the round spermatid stage, the effects of miR-983 are weak and distributed, coincident with the transcriptome undergoing drastic expression changes. Knocking out miR-983 causes reduced sperm length with increased within-individual variation in D. melanogaster but not in D. simulans, and the D. melanogaster knockout also exhibits compromised sperm defense ability. Our results provide empirical evidence for the resolution of antagonistic pleiotropy and also have broad implications for the function and evolution of new trans regulators.
Collapse
Affiliation(s)
- Yumei Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Rui Shang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Guang-An Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Weishun Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Chenglong Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Chuangchao Zou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| |
Collapse
|
20
|
Evolutionary Divergence and Radula Diversification in Two Ecomorphs from an Adaptive Radiation of Freshwater Snails. Genes (Basel) 2022; 13:genes13061029. [PMID: 35741791 PMCID: PMC9222583 DOI: 10.3390/genes13061029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Adaptive diversification of complex traits plays a pivotal role in the evolution of organismal diversity. In the freshwater snail genus Tylomelania, adaptive radiations were likely promoted by trophic specialization via diversification of their key foraging organ, the radula. (2) Methods: To investigate the molecular basis of radula diversification and its contribution to lineage divergence, we used tissue-specific transcriptomes of two sympatric Tylomelania sarasinorum ecomorphs. (3) Results: We show that ecomorphs are genetically divergent lineages with habitat-correlated abundances. Sequence divergence and the proportion of highly differentially expressed genes are significantly higher between radula transcriptomes compared to the mantle and foot. However, the same is not true when all differentially expressed genes or only non-synonymous SNPs are considered. Finally, putative homologs of some candidate genes for radula diversification (hh, arx, gbb) were also found to contribute to trophic specialization in cichlids and Darwin’s finches. (4) Conclusions: Our results are in line with diversifying selection on the radula driving Tylomelania ecomorph divergence and indicate that some molecular pathways may be especially prone to adaptive diversification, even across phylogenetically distant animal groups.
Collapse
|
21
|
Masonick P, Meyer A, Hulsey CD. Phylogenomic analyses show repeated evolution of hypertrophied lips among Lake Malawi cichlid fishes. Genome Biol Evol 2022; 14:6568296. [PMID: 35417557 PMCID: PMC9017819 DOI: 10.1093/gbe/evac051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 11/27/2022] Open
Abstract
Cichlid fishes have repeatedly evolved an astounding diversity of trophic morphologies. For example, hypertrophied lips have evolved multiple times in both African and Neotropical cichlids and could have even evolved convergently within single species assemblages such as African Lake Malawi cichlids. However, the extremely high diversification rate in Lake Malawi cichlids and extensive potential for hybridization has cast doubt on whether even genome-level phylogenetic reconstructions could delineate if these types of adaptations have evolved once or multiple times. To examine the evolution of this iconic trait using protein-coding and noncoding single nucleotide polymorphisms (SNPs), we analyzed the genomes of 86 Lake Malawi cichlid species, including 33 de novo resequenced genomes. Surprisingly, genome-wide protein-coding SNPs exhibited enough phylogenetic informativeness to reconstruct interspecific and intraspecific relationships of hypertrophied lip cichlids, although noncoding SNPs provided better support. However, thinning of noncoding SNPs indicated most discrepancies come from the relatively smaller number of protein-coding sites and not from fundamental differences in their phylogenetic informativeness. Both coding and noncoding reconstructions showed that several “sand-dwelling” hypertrophied lip species, sampled intraspecifically, form a clade interspersed with a few other nonhypertrophied lip lineages. We also recovered Abactochromis labrosus within the rock-dwelling “mbuna” lineage, starkly contrasting with the affinities of other hypertrophied lip taxa found in the largely sand-dwelling “nonmbuna” component of this radiation. Comparative analyses coupled with tests for introgression indicate there is no widespread introgression between the hypertrophied lip lineages and taken together suggest this trophic phenotype has likely evolved at least twice independently within-lake Malawi.
Collapse
Affiliation(s)
- Paul Masonick
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - C Darrin Hulsey
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany.,Current Address: School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
22
|
Singh P, Ahi EP. The importance of alternative splicing in adaptive evolution. Mol Ecol 2022; 31:1928-1938. [DOI: 10.1111/mec.16377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Pooja Singh
- Department of Biological Sciences University of Calgary Calgary Canada
- Institute of Ecology and Evolution University of Bern Bern Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Kastanienbaum Switzerland
| | - Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
| |
Collapse
|
23
|
Lichilín N, El Taher A, Böhne A. Sex-biased gene expression and recent sex chromosome turnover. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200107. [PMID: 34304591 PMCID: PMC8310714 DOI: 10.1098/rstb.2020.0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cichlids are well known for their propensity to radiate generating arrays of morphologically and ecologically diverse species in short evolutionary time. Following this rapid evolutionary pace, cichlids show high rates of sex chromosome turnover. We here studied the evolution of sex-biased gene (SBG) expression in 14 recently diverged taxa of the Lake Tanganyika Tropheini cichlids, which show different XY sex chromosomes. Across species, sex chromosome sequence divergence predates divergence in expression between the sexes. Only one sex chromosome, the oldest, showed signs of demasculinization in gene expression and potentially contribution to the resolution of sexual conflict. SBGs in general showed high rates of turnovers and evolved mostly under drift. Sexual selection did not shape the rapid evolutionary changes of SBGs. Male-biased genes evolved faster than female-biased genes, which seem to be under more phylogenetic constraint. We found a relationship between the degree of sex bias and sequence evolution driven by sequence differences among the sexes. Consistent with other species, strong sex bias towards sex-limited expression contributes to resolving sexual conflict in cichlids. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Nicolás Lichilín
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Athimed El Taher
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| |
Collapse
|
24
|
El Taher A, Ronco F, Matschiner M, Salzburger W, Böhne A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. SCIENCE ADVANCES 2021; 7:eabe8215. [PMID: 34516923 PMCID: PMC8442896 DOI: 10.1126/sciadv.abe8215] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sex is a fundamental trait determined by environmental and/or genetic factors, including sex chromosomes. Sex chromosomes are studied in species scattered across the tree of life, yet little is known about tempo and mode of sex chromosome evolution among closely related species. Here, we examine sex chromosome evolution in the adaptive radiation of cichlid fishes in Lake Tanganyika. Through the analysis of male and female genomes from 244 cichlid taxa (189 described species with 5 represented with two local variants/populations; 50 undescribed species) and of 396 multitissue transcriptomes from 66 taxa, we identify signatures of sex chromosomes in 79 taxa, involving 12 linkage groups. We find that Tanganyikan cichlids have the highest rates of sex chromosome turnover and heterogamety transitions known to date. We show that sex chromosome recruitment is not at random. Moreover convergently emerged sex chromosomes in cichlids support the “limited options” hypothesis of sex chromosome evolution.
Collapse
Affiliation(s)
- Athimed El Taher
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Michael Matschiner
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Paleontology and Museum, University of Zurich, Zurich, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Corresponding author.
| |
Collapse
|
25
|
Chen W, Mao X. Extensive alternative splicing triggered by mitonuclear mismatch in naturally introgressed Rhinolophus bats. Ecol Evol 2021; 11:12003-12010. [PMID: 34522356 PMCID: PMC8427577 DOI: 10.1002/ece3.7966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial function needs strong interactions of mitochondrial and nuclear (mitonuclear) genomes, which can be disrupted by mitonuclear mismatch due to mitochondrial DNA (mtDNA) introgression between two formerly isolated populations or taxa. This mitonuclear disruption may cause severe cellular stress in mismatched individuals. Gene expression changes and alternative splicing (AS) are two important transcriptional regulations to respond to environmental or cellular stresses. We previously identified a naturally introgressed population in the intermediate horseshoe bat (Rhinolophus affinis). Individuals from this population belong to R. a. himalayanus and share almost identical nuclear genetic background; however, some of them had mtDNA from another subspecies (R. a. macrurus). With this unique natural system, we examined gene expression changes in six tissues between five mitonuclear mismatched and five matched individuals. A small number of differentially expressed genes (DEGs) were identified, and functional enrichment analysis revealed that most DEGs were related to immune response although some may be involved in response to oxidative stress. In contrast, we identified extensive AS events and alternatively spliced genes (ASGs) between mismatched and matched individuals. Functional enrichment analysis revealed that multiple ASGs were directly or indirectly associated with energy production in mitochondria which is vital for survival of organism. To our knowledge, this is the first study to examine the role of AS in responding to cellular stress caused by mitonuclear mismatch in natural populations. Our results suggest that AS may play a more important role than gene expression regulation in responding to severe environmental or cellular stresses.
Collapse
Affiliation(s)
- Wenli Chen
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Xiuguang Mao
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
- Institute of Eco‐Chongming (IEC)East China Normal UniversityShanghaiChina
| |
Collapse
|