1
|
Liu T, Liu Z, Fan J, Yuan Y, Liu H, Xian W, Xiang S, Yang X, Liu Y, Liu S, Zhang M, Jiao Y, Cheng S, Doyle JJ, Xie F, Li J, Tian Z. Loss of Lateral suppressor gene is associated with evolution of root nodule symbiosis in Leguminosae. Genome Biol 2024; 25:250. [PMID: 39350172 PMCID: PMC11441212 DOI: 10.1186/s13059-024-03393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Root nodule symbiosis (RNS) is a fascinating evolutionary event. Given that limited genes conferring the evolution of RNS in Leguminosae have been functionally validated, the genetic basis of the evolution of RNS remains largely unknown. Identifying the genes involved in the evolution of RNS will help to reveal the mystery. RESULTS Here, we investigate the gene loss event during the evolution of RNS in Leguminosae through phylogenomic and synteny analyses in 48 species including 16 Leguminosae species. We reveal that loss of the Lateral suppressor gene, a member of the GRAS-domain protein family, is associated with the evolution of RNS in Leguminosae. Ectopic expression of the Lateral suppressor (Ls) gene from tomato and its homolog MONOCULM 1 (MOC1) and Os7 from rice in soybean and Medicago truncatula result in almost completely lost nodulation capability. Further investigation shows that Lateral suppressor protein, Ls, MOC1, and Os7 might function through an interaction with NODULATION SIGNALING PATHWAY 2 (NSP2) and CYCLOPS to repress the transcription of NODULE INCEPTION (NIN) to inhibit the nodulation in Leguminosae. Additionally, we find that the cathepsin H (CTSH), a conserved protein, could interact with Lateral suppressor protein, Ls, MOC1, and Os7 and affect the nodulation. CONCLUSIONS This study sheds light on uncovering the genetic basis of the evolution of RNS in Leguminosae and suggests that gene loss plays an essential role.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shi-Jiazhuang, China
| | - Jingwei Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyue Liu
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shuaiying Xiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jeff J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, NY, USA.
| | - Fang Xie
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| |
Collapse
|
2
|
Harder CB, Miyauchi S, Virágh M, Kuo A, Thoen E, Andreopoulos B, Lu D, Skrede I, Drula E, Henrissat B, Morin E, Kohler A, Barry K, LaButti K, Salamov A, Lipzen A, Merényi Z, Hegedüs B, Baldrian P, Stursova M, Weitz H, Taylor A, Koriabine M, Savage E, Grigoriev IV, Nagy LG, Martin F, Kauserud H. Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations. CELL GENOMICS 2024; 4:100586. [PMID: 38942024 PMCID: PMC11293592 DOI: 10.1016/j.xgen.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/28/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway; Department of Biology, Microbial Ecology Group, Biology Department, Lund University, Lund, Sweden; University of Copenhagen, Department of Biology, Section of Terrestrial Ecology, 2100 Copenhagen Ø, Denmark.
| | - Shingo Miyauchi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ella Thoen
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Bill Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dabao Lu
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France; INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martina Stursova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Hedda Weitz
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Andy Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; The James Hutton Institute, Aberdeen, UK
| | - Maxim Koriabine
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France.
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
3
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Feng B, Li Y, Liu H, Steenwyk JL, David KT, Tian X, Xu B, Gonçalves C, Opulente DA, LaBella AL, Harrison MC, Wolters JF, Shao S, Chen Z, Fisher KJ, Groenewald M, Hittinger CT, Shen XX, Rokas A, Zhou X, Li Y. Unique trajectory of gene family evolution from genomic analysis of nearly all known species in an ancient yeast lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597512. [PMID: 38895429 PMCID: PMC11185758 DOI: 10.1101/2024.06.05.597512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Gene gains and losses are a major driver of genome evolution; their precise characterization can provide insights into the origin and diversification of major lineages. Here, we examined gene family evolution of 1,154 genomes from nearly all known species in the medically and technologically important yeast subphylum Saccharomycotina. We found that yeast gene family and genome evolution are distinct from plants, animals, and filamentous ascomycetes and are characterized by small genome sizes and smaller gene numbers but larger gene family sizes. Faster-evolving lineages (FELs) in yeasts experienced significantly higher rates of gene losses-commensurate with a narrowing of metabolic niche breadth-but higher speciation rates than their slower-evolving sister lineages (SELs). Gene families most often lost are those involved in mRNA splicing, carbohydrate metabolism, and cell division and are likely associated with intron loss, metabolic breadth, and non-canonical cell cycle processes. Our results highlight the significant role of gene family contractions in the evolution of yeast metabolism, genome function, and speciation, and suggest that gene family evolutionary trajectories have differed markedly across major eukaryotic lineages.
Collapse
Affiliation(s)
- Bo Feng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yonglin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kyle T. David
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaolin Tian
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Biyang Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Dana A. Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department, Villanova University, Villanova, PA 19085, USA
| | - Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis NC 28223, USA AND Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, 28233, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Shengyuan Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Zhaohao Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kaitlin J. Fisher
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, 13126, USA
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Waters ER, Bezanilla M, Vierling E. ATAD3 Proteins: Unique Mitochondrial Proteins Essential for Life in Diverse Eukaryotic Lineages. PLANT & CELL PHYSIOLOGY 2024; 65:493-502. [PMID: 37859594 DOI: 10.1093/pcp/pcad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
ATPase family AAA domain-containing 3 (ATAD3) proteins are unique mitochondrial proteins that arose deep in the eukaryotic lineage but that are surprisingly absent in Fungi and Amoebozoa. These ∼600-amino acid proteins are anchored in the inner mitochondrial membrane and are essential in metazoans and Arabidopsis thaliana. ATAD3s comprise a C-terminal ATPases Associated with a variety of cellular Activities (AAA+) matrix domain and an ATAD3_N domain, which is located primarily in the inner membrane space but potentially extends to the cytosol to interact with the ER. Sequence and structural alignments indicate that ATAD3 proteins are most similar to classic chaperone unfoldases in the AAA+ family, suggesting that they operate in mitochondrial protein quality control. A. thaliana has four ATAD3 genes in two distinct clades that appear first in the seed plants, and both clades are essential for viability. The four genes are generally coordinately expressed, and transcripts are highest in growing apices and imbibed seeds. Plants with disrupted ATAD3 have reduced growth, aberrant mitochondrial morphology, diffuse nucleoids and reduced oxidative phosphorylation complex I. These and other pleiotropic phenotypes are also observed in ATAD3 mutants in metazoans. Here, we discuss the distribution of ATAD3 proteins as they have evolved in the plant kingdom, their unique structure, what we know about their function in plants and the challenges in determining their essential roles in mitochondria.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Department of Biology, San Diego State University, 5500 Campanille Dr., San Diego, CA 92182, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, 78 College St., Hanover, NH 03755, USA
| | - Elizabeth Vierling
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Barua D, Płecha M, Muszewska A. A minimal Fanconi Anemia complex in early diverging fungi. Sci Rep 2024; 14:9922. [PMID: 38688950 PMCID: PMC11061109 DOI: 10.1038/s41598-024-60318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Fanconi Anemia (FA) pathway resolves DNA interstrand cross links (ICL). The FA pathway was initially recognized in vertebrates, but was later confirmed in other animals and speculated in fungi. FA proteins FANCM, FANCL and FANCJ are present in Saccharomyces cerevisiae but, their mechanism of interaction to resolve ICL is still unclear. Unlike Dikarya, early diverging fungi (EDF) possess more traits shared with animals. We traced the evolutionary history of the FA pathway across Opisthokonta. We scanned complete proteomes for FA-related homologs to establish their taxonomic distribution and analyzed their phylogenetic trees. We checked transcription profiles of FA genes to test if they respond to environmental conditions and their genomic localizations for potential co-localization. We identified fungal homologs of the activation and ID complexes, 5 out of 8 core proteins, all of the endonucleases, and deubiquitination proteins. All fungi lack FANCC, FANCF and FANCG proteins responsible for post-replication repair and chromosome stability in animals. The observed taxonomic distribution can be attributed to a gradual degradation of the FA pathway from EDF to Dikarya. One of the key differences is that EDF have the ID complex recruiting endonucleases to the site of ICL. Moreover, 21 out of 32 identified FA genes are upregulated in response to different growth conditions. Several FA genes are co-localized in fungal genomes which also could facilitate co-expression. Our results indicate that a minimal FA pathway might still be functional in Mucoromycota with a gradual loss of components in Dikarya ancestors.
Collapse
Affiliation(s)
- Drishtee Barua
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Magdalena Płecha
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
7
|
Christinaki AC, Myridakis AI, Kouvelis VN. Genomic insights into the evolution and adaptation of secondary metabolite gene clusters in fungicolous species Cladobotryum mycophilum ATHUM6906. G3 (BETHESDA, MD.) 2024; 14:jkae006. [PMID: 38214578 PMCID: PMC10989895 DOI: 10.1093/g3journal/jkae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Mycophilic or fungicolous fungi can be found wherever fungi exist since they are able to colonize other fungi, which occupy a diverse range of habitats. Some fungicolous species cause important diseases on Basidiomycetes, and thus, they are the main reason for the destruction of mushroom cultivations. Nonetheless, despite their ecological significance, their genomic data remain limited. Cladobotryum mycophilum is one of the most aggressive species of the genus, destroying the economically important Agaricus bisporus cultivations. The 40.7 Mb whole genome of the Greek isolate ATHUM6906 is assembled in 16 fragments, including the mitochondrial genome and 2 small circular mitochondrial plasmids, in this study. This genome includes a comprehensive set of 12,282 protein coding, 56 rRNA, and 273 tRNA genes. Transposable elements, CAZymes, and pathogenicity related genes were also examined. The genome of C. mycophilum contained a diverse arsenal of genes involved in secondary metabolism, forming 106 biosynthetic gene clusters, which renders this genome as one of the most BGC abundant among fungicolous species. Comparative analyses were performed for genomes of species of the family Hypocreaceae. Some BGCs identified in C. mycophilum genome exhibited similarities to clusters found in the family Hypocreaceae, suggesting vertical heritage. In contrast, certain BGCs showed a scattered distribution among Hypocreaceae species or were solely found in Cladobotryum genomes. This work provides evidence of extensive BGC losses, horizontal gene transfer events, and formation of novel BGCs during evolution, potentially driven by neutral or even positive selection pressures. These events may increase Cladobotryum fitness under various environmental conditions and potentially during host-fungus interaction.
Collapse
Affiliation(s)
- Anastasia C Christinaki
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Antonis I Myridakis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| |
Collapse
|
8
|
Földi C, Merényi Z, Balázs B, Csernetics Á, Miklovics N, Wu H, Hegedüs B, Virágh M, Hou Z, Liu XB, Galgóczy L, Nagy LG. Snowball: a novel gene family required for developmental patterning of fruiting bodies of mushroom-forming fungi (Agaricomycetes). mSystems 2024; 9:e0120823. [PMID: 38334416 PMCID: PMC10949477 DOI: 10.1128/msystems.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The morphogenesis of sexual fruiting bodies of fungi is a complex process determined by a genetically encoded program. Fruiting bodies reached the highest complexity levels in the Agaricomycetes; yet, the underlying genetics is currently poorly known. In this work, we functionally characterized a highly conserved gene termed snb1, whose expression level increases rapidly during fruiting body initiation. According to phylogenetic analyses, orthologs of snb1 are present in almost all agaricomycetes and may represent a novel conserved gene family that plays a substantial role in fruiting body development. We disrupted snb1 using CRISPR/Cas9 in the agaricomycete model organism Coprinopsis cinerea. snb1 deletion mutants formed unique, snowball-shaped, rudimentary fruiting bodies that could not differentiate caps, stipes, and lamellae. We took advantage of this phenotype to study fruiting body differentiation using RNA-Seq analyses. This revealed differentially regulated genes and gene families that, based on wild-type RNA-Seq data, were upregulated early during development and showed tissue-specific expression, suggesting a potential role in differentiation. Taken together, the novel gene family of snb1 and the differentially expressed genes in the snb1 mutants provide valuable insights into the complex mechanisms underlying developmental patterning in the Agaricomycetes. IMPORTANCE Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are complex multicellular structures, with a spatially and temporally integrated developmental program that is, however, currently poorly known. In this study, we present a novel, conserved gene family, Snowball (snb), termed after the unique, differentiation-less fruiting body morphology of snb1 knockout strains in the model mushroom Coprinopsis cinerea. snb is a gene of unknown function that is highly conserved among agaricomycetes and encodes a protein of unknown function. A comparative transcriptomic analysis of the early developmental stages of differentiated wild-type and non-differentiated mutant fruiting bodies revealed conserved differentially expressed genes which may be related to tissue differentiation and developmental patterning fruiting body development.
Collapse
Affiliation(s)
- Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Bálint Balázs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Árpád Csernetics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Nikolett Miklovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Hongli Wu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Zhihao Hou
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - László Galgóczy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| |
Collapse
|
9
|
Szathmáry E. Nonadaptive onset of complex multicellularity. Proc Natl Acad Sci U S A 2024; 121:e2401220121. [PMID: 38437572 PMCID: PMC10945832 DOI: 10.1073/pnas.2401220121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Affiliation(s)
- Eörs Szathmáry
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest1121, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pöcking82343, Germany
| |
Collapse
|
10
|
Hong S, Shang J, Sun Y, Tang G, Wang C. Fungal infection of insects: molecular insights and prospects. Trends Microbiol 2024; 32:302-316. [PMID: 37778923 DOI: 10.1016/j.tim.2023.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Entomopathogenic fungi (EPF) distribute in different fungal phyla with variable host ranges and play essential role in regulating insect populations by infecting hosts via cuticle penetration. The representative ascomycete EPF of Metarhizium and Beauveria species have been widely used in mechanistic investigations of fungus-insect interactions and as ecofriendly mycoinsecticides. Here, we review the function of diverse genes, pathways, and secondary metabolites associated with EPF stepwise infections. In particular, emerging evidence has shown that EPF have to outcompete insect ectomicrobiotas prior to penetrating cuticles, and subvert or evade host antifungal immunity by using effector-like proteins and chemicals like plant pathogens. Future prospects are discussed for a better understanding of fungal pathobiology, which will provide novel insights into microbe-animal interactions.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaneli Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
11
|
Kim H, Hu J, Kang H, Kim W. Phylogenetic and functional analyses of N6-methyladenosine RNA methylation factors in the wheat scab fungus Fusarium graminearum. mSphere 2024; 9:e0055223. [PMID: 38085094 PMCID: PMC10826363 DOI: 10.1128/msphere.00552-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 01/31/2024] Open
Abstract
In eukaryotes, N6-methyladenosine (m6A) RNA modification plays a crucial role in governing the fate of RNA molecules and has been linked to various developmental processes. However, the phyletic distribution and functions of genetic factors responsible for m6A modification remain largely unexplored in fungi. To get insights into the evolution of m6A machineries, we reconstructed global phylogenies of potential m6A writers, readers, and erasers in fungi. Substantial copy number variations were observed, ranging from up to five m6A writers in early-diverging fungi to a single copy in the subphylum Pezizomycotina, which primarily comprises filamentous fungi. To characterize m6A factors in a phytopathogenic fungus Fusarium graminearum, we generated knockout mutants lacking potential m6A factors including the sole m6A writer MTA1. However, the resulting knockouts did not exhibit any noticeable phenotypic changes during vegetative and sexual growth stages. As obtaining a homozygous knockout lacking MTA1 was likely hindered by its essential role, we generated MTA1-overexpressing strains (MTA1-OE). The MTA1-OE5 strain showed delayed conidial germination and reduced hyphal branching, suggesting its involvement during vegetative growth. Consistent with these findings, the expression levels of MTA1 and a potential m6A reader YTH1 were dramatically induced in germinating conidia, followed by the expression of potential m6A erasers at later vegetative stages. Several genes including transcription factors, transporters, and various enzymes were found to be significantly upregulated and downregulated in the MTA1-OE5 strain. Overall, our study highlights the functional importance of the m6A methylation during conidial germination in F. graminearum and provides a foundation for future investigations into m6A modification sites in filamentous fungi.IMPORTANCEN6-methyladenosine (m6A) RNA methylation is a reversible posttranscriptional modification that regulates RNA function and plays a crucial role in diverse developmental processes. This study addresses the knowledge gap regarding phyletic distribution and functions of m6A factors in fungi. The identification of copy number variations among fungal groups enriches our knowledge regarding the evolution of m6A machinery in fungi. Functional characterization of m6A factors in a phytopathogenic filamentous fungus Fusarium graminearum provides insights into the essential role of the m6A writer MTA1 in conidial germination and hyphal branching. The observed effects of overexpressing MTA1 on fungal growth and gene expression patterns of m6A factors throughout the life cycle of F. graminearum further underscore the importance of m6A modification in conidial germination. Overall, this study significantly advances our understanding of m6A modification in fungi, paving the way for future research into its roles in filamentous growth and potential applications in disease control.
Collapse
Affiliation(s)
- Hyeonjae Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Jianzhong Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
12
|
Wang JJT, Steenwyk JL, Brem RB. Natural trait variation across Saccharomycotina species. FEMS Yeast Res 2024; 24:foae002. [PMID: 38218591 PMCID: PMC10833146 DOI: 10.1093/femsyr/foae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024] Open
Abstract
Among molecular biologists, the group of fungi called Saccharomycotina is famous for its yeasts. These yeasts in turn are famous for what they have in common-genetic, biochemical, and cell-biological characteristics that serve as models for plants and animals. But behind the apparent homogeneity of Saccharomycotina species lie a wealth of differences. In this review, we discuss traits that vary across the Saccharomycotina subphylum. We describe cases of bright pigmentation; a zoo of cell shapes; metabolic specialties; and species with unique rules of gene regulation. We discuss the genetics of this diversity and why it matters, including insights into basic evolutionary principles with relevance across Eukarya.
Collapse
Affiliation(s)
- Johnson J -T Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob L Steenwyk
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel B Brem
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Clark JW. Genome evolution in plants and the origins of innovation. THE NEW PHYTOLOGIST 2023; 240:2204-2209. [PMID: 37658677 DOI: 10.1111/nph.19242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Plant evolution has been characterised by a series of major novelties in their vegetative and reproductive traits that have led to greater complexity. Underpinning this diversification has been the evolution of the genome. When viewed at the scale of the plant kingdom, plant genome evolution has been punctuated by conspicuous instances of gene and whole-genome duplication, horizontal gene transfer and extensive gene loss. The periods of dynamic genome evolution often coincide with the evolution of key traits, demonstrating the coevolution of plant genomes and phenotypes at a macroevolutionary scale. Conventionally, plant complexity and diversity have been considered through the lens of gene duplication and the role of gene loss in plant evolution remains comparatively unexplored. However, in light of reductive evolution across multiple plant lineages, the association between gene loss and plant phenotypic diversity warrants greater attention.
Collapse
Affiliation(s)
- James W Clark
- School of Biological Sciences, University of Bristol, Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|