1
|
Wisesa P, Li M, Curnan MT, Gu GH, Han JW, Yang JC, Saidi WA. Cu-Ni Oxidation Mechanism Unveiled: A Machine Learning-Accelerated First-Principles and in Situ TEM Study. NANO LETTERS 2025; 25:1329-1335. [PMID: 39808182 DOI: 10.1021/acs.nanolett.4c04648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with in situ environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)R45° missing row reconstruction (MRR). In situ ETEM experiments validate these predictions and show Ni segregation followed by NiO nucleation and growth in regions without MRR, with secondary nucleation and growth of Cu2O in MRR regions. Our approach based on combining disparate computational components and in situ ETEM provides a holistic description of the oxidation mechanism in CuNi, which applies to other alloy systems.
Collapse
Affiliation(s)
- Pandu Wisesa
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Meng Li
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Matthew T Curnan
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, South Korea
| | - Geun Ho Gu
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, South Korea
| | - Jeong Woo Han
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, South Korea
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Wissam A Saidi
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Xiao P, Orme CA, Qiu SR, Pham TA, Cho S, Bagge-Hansen M, Wood BC. Atomic-scale understanding of oxide growth and dissolution kinetics of Ni-Cr alloys. Nat Commun 2025; 16:341. [PMID: 39746906 PMCID: PMC11696368 DOI: 10.1038/s41467-024-54627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2024] [Indexed: 01/04/2025] Open
Abstract
Aqueous corrosion of metals is governed by formation and dissolution of a passivating, multi-component surface oxide. Unfortunately, a detailed atomistic description is challenging due to the compositional complexity and the need to consider multiple kinetic factors simultaneously. To this end, we combine experiments with a first-principles-derived, multiscale computational framework that transcends thermodynamic descriptions to explicitly simulate the kinetic evolution of surface oxides of Ni-Cr alloys as a function of composition, temperature, pH, and applied voltage. In the absence of pitting, we identify three distinct voltage regimes, which are kinetically dominated by oxide growth, dissolution, and competitive dissolution and reprecipitation. Evolving compositional gradients and oxide thickness are revealed, including a transition between a metastable Ni-Cr mixed oxide and a thick, porous Ni-dominated oxide. Beyond elucidating the underlying physics, we highlight the need for competing kinetics in models to properly predict the transition from passivation to corrosion. Our results provide a key step towards co-design of alloy composition alongside environmental conditions for sustainable use across a variety of critical energy and infrastructure applications.
Collapse
Affiliation(s)
- Penghao Xiao
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Christine A Orme
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - S Roger Qiu
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Tuan Anh Pham
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Seongkoo Cho
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Michael Bagge-Hansen
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Brandon C Wood
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
3
|
Chen J, Gao Z, Gong W, Cai C, Zhou G. Promoting effect of CO2 on NiCr oxidation: Atomistic origins based on first principles. J Chem Phys 2024; 161:144707. [PMID: 39387413 DOI: 10.1063/5.0231672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
The adsorption and dissociation of CO2 on both perfect and oxygen-deficient α-Cr2O3 (0001) surfaces, alongside the subsequent incorporation of the resulting C into the oxide lattice and its impact on oxide growth, are investigated using first-principles calculations. Our findings reveal that oxygen vacancies significantly enhance CO2 adsorption and promote its stepwise decomposition into C and O atoms. The resulting C can spontaneously dissolve into the oxide lattice through the oxygen vacancies. The presence of bulk dissolved C in the Cr2O3 lattice substantially enhances the formation, migration, and clustering of oxygen vacancies in the bulk. These results provide an atomic-level understanding of how CO2 accelerates the oxidation of chromia-forming alloys, offering microscopic insights for controlling oxide growth and mitigating oxidation-induced degradation of high-temperature alloys.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zifeng Gao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wenzhuo Gong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Canying Cai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Guangwen Zhou
- Department of Mechanical Engineering and Materials Science and Engineering Program, State University of New York, Binghamton, New York 13902, USA
| |
Collapse
|
4
|
Li S, Yang L, Christudasjustus J, Overman NR, Wirth BD, Sushko ML, Simonnin P, Schreiber DK, Gao F, Wang C. Selective atomic sieving across metal/oxide interface for super-oxidation resistance. Nat Commun 2024; 15:6149. [PMID: 39034317 PMCID: PMC11271475 DOI: 10.1038/s41467-024-50576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Surface passivation, a desirable natural consequence during initial oxidation of alloys, is the foundation for functioning of corrosion and oxidation resistant alloys ranging from industrial stainless steel to kitchen utensils. This initial oxidation has been long perceived to vary with crystal facet, however, the underlying mechanism remains elusive. Here, using in situ environmental transmission electron microscopy, we gain atomic details on crystal facet dependent initial oxidation behavior in a model Ni-5Cr alloy. We find the (001) surface shows higher initial oxidation resistance as compared to the (111) surface. We reveal the crystal facet dependent oxidation is related to an interfacial atomic sieving effect, wherein the oxide/metal interface selectively promotes diffusion of certain atomic species. Density functional theory calculations rationalize the oxygen diffusion across Ni(111)/NiO(111) interface, as contrasted with Ni(001)/NiO(111), is enhanced. We unveil that crystal facet with initial fast oxidation rate could conversely switch to a slow steady state oxidation.
Collapse
Affiliation(s)
- Shuang Li
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Li Yang
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, USA
| | - Jijo Christudasjustus
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nicole R Overman
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brian D Wirth
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, USA
| | - Maria L Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Pauline Simonnin
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel K Schreiber
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Fei Gao
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
5
|
You R, Ou Y, Qi R, Yu J, Wang F, Jiang Y, Zou S, Han ZK, Yuan W, Yang H, Zhang Z, Wang Y. Revealing Temperature-Dependent Oxidation Dynamics of Ni Nanoparticles via Ambient Pressure Transmission Electron Microscopy. NANO LETTERS 2023; 23:7260-7266. [PMID: 37534944 DOI: 10.1021/acs.nanolett.3c00923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Understanding the oxidation mechanism of metal nanoparticles under ambient pressure is extremely important to make the best use of them in a variety of applications. Through ambient pressure transmission electron microscopy, we in situ investigated the dynamic oxidation processes of Ni nanoparticles at different temperatures under atmospheric pressure, and a temperature-dependent oxidation behavior was revealed. At a relatively low temperature (e.g., 600 °C), the oxidation of Ni nanoparticles underwent a classic Kirkendall process, accompanied by the formation of oxide shells. In contrast, at a higher temperature (e.g., 800 °C), the oxidation began with a single crystal nucleus at the metal surface and then proceeded along the metal/oxide interface without voids formed during the whole process. Through our experiments and density functional theory calculations, a temperature-dependent oxidation mechanism based on Ni nanoparticles was proposed, which was derived from the discrepancy of gas adsorption and diffusion rates under different temperatures.
Collapse
Affiliation(s)
- Ruiyang You
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Qi
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jian Yu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Jiang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Zou
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhong-Kang Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Chen X, Wang J, Zhu Y, Xie Z, Ye S, Kisslinger K, Hwang S, Zakharov DN, Zhou G. Atomistic Origins of Reversible Noncatalytic Gas-Solid Interfacial Reactions. J Am Chem Soc 2023; 145:3961-3971. [PMID: 36763977 DOI: 10.1021/jacs.2c10083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Noncatalytic gas-solid reactions are a large group of heterogeneous reactions that are usually assumed to occur irreversibly because of the strong driving force to favor the forward direction toward the product formation. Using the example of Ni oxidation into NiO with CO2, herein, we demonstrate the existence of the reverse element that results in the NiO reduction from the countering effect of the gaseous product of CO. Using in situ electron microscopy observations and atomistic modeling, we show that the oxidation process occurs via preferential CO2 adsorption along step edges that results in step-flow growth of NiO layers, and the presence of Ni atoms on the flat NiO surface promotes the nucleation of NiO layers. Simultaneously, the NiO reduction happens via preferential step-edge adsorption of CO that leads to the receding motion of atomic steps, and the presence of Ni vacancies in the NiO surface facilitates the CO-adsorption-induced surface pitting. Temperature and CO2 pressure effect maps are constructed to illustrate the spatiotemporal dynamics of the competing NiO redox reactions. These results demonstrate the rich gas-solid surface reaction dynamics induced by the coexisting forward and reverse reaction elements and have practical applicability in manipulating gas-solid reactions via controlling the gas environment or atomic structure of the solid surface to steer the reaction toward the desired direction.
Collapse
Affiliation(s)
- Xiaobo Chen
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jianyu Wang
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Yaguang Zhu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Zhenhua Xie
- Chemical Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shuonan Ye
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dmitri N Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guangwen Zhou
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
8
|
The Critical Role of Steam during Activation Process on the Catalytic Performance of VPO for n-Butane Selective Oxidation to Maleic Anhydride. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Nakaya Y, Furukawa S. Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chem Rev 2022; 123:5859-5947. [PMID: 36170063 DOI: 10.1021/acs.chemrev.2c00356] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alloying has long been used as a promising methodology to improve the catalytic performance of metallic materials. In recent years, the field of alloy catalysis has made remarkable progress with the emergence of a variety of novel alloy materials and their functions. Therefore, a comprehensive disciplinary framework for catalytic chemistry of alloys that provides a cross-sectional understanding of the broad research field is in high demand. In this review, we provide a comprehensive classification of various alloy materials based on metallurgy, thermodynamics, and inorganic chemistry and summarize the roles of alloying in catalysis and its principles with a brief introduction of the historical background of this research field. Furthermore, we explain how each type of alloy can be used as a catalyst material and how to design a functional catalyst for the target reaction by introducing representative case studies. This review includes two approaches, namely, from materials and reactions, to provide a better understanding of the catalytic chemistry of alloys. Our review offers a perspective on this research field and can be used encyclopedically according to the readers' individual interests.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
10
|
Zhao H, Zhu Y, Ye H, He Y, Li H, Sun Y, Yang F, Wang R. Atomic-Scale Structure Dynamics of Nanocrystals Revealed By In Situ and Environmental Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206911. [PMID: 36153832 DOI: 10.1002/adma.202206911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystals are of great importance in material sciences and industry. Engineering nanocrystals with desired structures and properties is no doubt one of the most important challenges in the field, which requires deep insight into atomic-scale dynamics of nanocrystals during the process. The rapid developments of in situ transmission electron microscopy (TEM), especially environmental TEM, reveal insights into nanocrystals to digest. According to the considerable progress based on in situ electron microscopy, a comprehensive review on nanocrystal dynamics from three aspects: nucleation and growth, structure evolution, and dynamics in reaction conditions are given. In the nucleation and growth part, existing nucleation theories and growth pathways are organized based on liquid and gas-solid phases. In the structure evolution part, the focus is on in-depth mechanistic understanding of the evolution, including defects, phase, and disorder/order transitions. In the part of dynamics in reaction conditions, solid-solid and gas-solid interfaces of nanocrystals in atmosphere are discussed and the structure-property relationship is correlated. Even though impressive progress is made, additional efforts are required to develop the integrated and operando TEM methodologies for unveiling nanocrystal dynamics with high spatial, energy, and temporal resolutions.
Collapse
Affiliation(s)
- Haofei Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Zhang L, Li Y, Zhang L, Wang K, Li Y, Wang L, Zhang X, Yang F, Zheng Z. Direct Visualization of the Evolution of a Single-Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon Dissolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200592. [PMID: 35508897 PMCID: PMC9284138 DOI: 10.1002/advs.202200592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Transition metal single-atom catalysts (SACs) are of immense interest, but how exactly they are evolved upon pyrolysis of the corresponding precursors remains unclear as transition metal ions in the complex precursor undergo a series of morphological changes accompanied with changes in oxidation state as a result of the interactions with the carbon support. Herein, the authors record the complete evolution process of Co SAC during the pyrolysis a Co/Zn-containing zeolitic imidazolate framework. Aberration-corrected environmental TEM coupled with in-situ EELS is used for direct visualization of the evolution process at 200-1000 °C. Dissolution of carbon into the nanoparticles of Co is found to be key to modulating the wetting behavior of nanoparticles on the carbon support; melting of Co nanoparticles and their motion within the zeolitic architecture leads to the etching of the framework structure, yielding porous C/N support onto which Co-single atoms reside. This uniquely structured Co SAC is found to be effective for the oxidation of a series of aromatic alkanes to produce selective ketones among other possible products. The carbon dissolution and melting/sublimation-driven structural dynamics of transition metal revealed here will expand the methodology in synthesizing SACs and other high-temperature processes.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Yanyan Li
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Lei Zhang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Kun Wang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Yingbo Li
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Lei Wang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Xinyu Zhang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Feng Yang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Zhiping Zheng
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
12
|
Huang M, Deng B, Zhao X, Zhang Z, Li F, Li K, Cui Z, Kong L, Lu J, Dong F, Zhang L, Chen P. Template-Sacrificing Synthesis of Well-Defined Asymmetrically Coordinated Single-Atom Catalysts for Highly Efficient CO 2 Electrocatalytic Reduction. ACS NANO 2022; 16:2110-2119. [PMID: 35147409 DOI: 10.1021/acsnano.1c07746] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although various single-atom catalysts have been designed, atomically engineering their coordination environment remains a great challenge. Herein, a one-pot template-sacrificing pyrolysis approach is developed to synthesize well-defined Ni-N4-O catalytic sites on highly porous graphitic carbon for electrocatalytic CO2 reduction to CO with high Faradaic efficiency (maximum of 97.2%) in a wide potential window (-0.56 to -1.06 V vs RHE) and with high stability. In-depth experimental and theoretical studies reveal that the axial Ni-O coordination introduces asymmetry to the catalytic center, leading to lower Gibbs free energy for the rate-limiting step, strengthened binding with *COOH, and a weaker association with *CO. The present results demonstrate the successful atomic-level coordination environment engineering of high-surface-area porous graphitic carbon-supported Ni single-atom catalysts (SACs), and the demonstrated method can be applied to synthesize an array of SACs (metal-N4-O) for various catalysis applications.
Collapse
Affiliation(s)
- Ming Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Bangwei Deng
- Research Center for Environmental Science & Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaoli Zhao
- Research Center for Environmental Science & Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zheye Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Fei Li
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Kanglu Li
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhihao Cui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lingxuan Kong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fan Dong
- Research Center for Environmental Science & Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lili Zhang
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
13
|
Dong Z, Liu W, Zhang L, Wang S, Luo L. Structural Evolution of Cu/ZnO Catalysts during Water-Gas Shift Reaction: An In Situ Transmission Electron Microscopy Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41707-41714. [PMID: 34427430 DOI: 10.1021/acsami.1c11839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported metal catalysts experience significant structural evolution during the activation process and reaction conditions, which is critical to achieve a desired active surface and interface enabling efficient catalytic processes. However, such dynamic structural information and related mechanistic understandings remain largely elusive owing to the limitation of real-time capturing dynamic information under reaction conditions. Here, using in situ environment transmission electron microscopy, we demonstrate the atomic-scale structural evolution of the model Cu/ZnO catalyst under relevant water-gas shift reaction (WGSR) conditions. Under a CO gas environment, Cu nanoparticles decompose into smaller Cu species and redistribute on ZnO supports with either the crystalline Cu2O or amorphous CuOx phase due to a strong CO-Cu interaction. In addition, we visualize various metal-support interactions between Cu and ZnO under reaction conditions, e.g., ZnO clusters precipitating on Cu nanoparticles, which are critical to understand active sites of Cu/ZnO as catalysts for WGSR. These in situ atomic-scale observations highlight the dynamic interplays between Cu and ZnO that can be extended to other supported metal catalysts.
Collapse
Affiliation(s)
- Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Wei Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Shuangbao Wang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| |
Collapse
|
14
|
Li M, Xie DG, Zhang XX, Yang JC, Shan ZW. Quantifying Real-Time Sample Temperature Under the Gas Environment in the Transmission Electron Microscope Using a Novel MEMS Heater. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:758-766. [PMID: 34018478 DOI: 10.1017/s1431927621000489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as “gas cooling ability (H)”, determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.
Collapse
Affiliation(s)
- Meng Li
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - De-Gang Xie
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi-Xiang Zhang
- Division of Physical Science and Engineering, King Abdullah University of Science & Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - Zhi-Wei Shan
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
15
|
Dong Z, Ren Q, Wang S, Zhang L, Luo L. Atomic-Scale Interfacial Phase Transformation Governed Cu Oxidation in Water Vapor. J Phys Chem Lett 2021; 12:6996-7001. [PMID: 34283613 DOI: 10.1021/acs.jpclett.1c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal oxidation initiates from surface adsorption to subsurface and bulk reaction through continuous interfacial phase transformation from metals to oxides. How the initial interfacial process affects the whole process of metal oxidation remains largely elusive because of the lack of direct observation of the evolving interface. Here, through in situ atomic-scale environmental TEM observations of Cu surface reaction in water vapor, we demonstrate that the interfacial strain between the substrate and growing oxide is coupled into the continuing chemical reaction that determines the reaction kinetics. Atomic imaging of the reaction process in real time reveals that the growing oxides could temporarily possess a disordered CuOx phase to lower its interfacial strain with Cu substrate and can transform to a crystalline Cu2O phase later. This flexibility of the oxide phase results from the strong chemomechanical coupling during the interfacial phase transformation, which enhances the oxide penetration into the metal under water vapor.
Collapse
Affiliation(s)
- Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Qingye Ren
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shuangbao Wang
- Key Laboratory of LCR Materials and Devices of Yunnan Province, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
16
|
Li Z, Wen X, Chen F, Zhang Q, Zhang Q, Gu L, Cheng J, Wu B, Zheng N. Hexagonal Nickel as a Highly Durable and Active Catalyst for Hydrogen Evolution. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhisen Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaojian Wen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fengjiao Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Qiuyue Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Cheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Binghui Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Unusual layer-by-layer growth of epitaxial oxide islands during Cu oxidation. Nat Commun 2021; 12:2781. [PMID: 33986274 PMCID: PMC8119701 DOI: 10.1038/s41467-021-23043-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Elucidating metal oxide growth mechanisms is essential for precisely designing and fabricating nanostructured oxides with broad applications in energy and electronics. However, current epitaxial oxide growth methods are based on macroscopic empirical knowledge, lacking fundamental guidance at the nanoscale. Using correlated in situ environmental transmission electron microscopy, statistically-validated quantitative analysis, and density functional theory calculations, we show epitaxial Cu2O nano-island growth on Cu is layer-by-layer along Cu2O(110) planes, regardless of substrate orientation, contradicting classical models that predict multi-layer growth parallel to substrate surfaces. Growth kinetics show cubic relationships with time, indicating individual oxide monolayers follow Frank-van der Merwe growth whereas oxide islands follow Stranski-Krastanov growth. Cu sources for island growth transition from step edges to bulk substrates during oxidation, contrasting with classical corrosion theories which assume subsurface sources predominate. Our results resolve alternative epitaxial island growth mechanisms, improving the understanding of oxidation dynamics critical for advanced manufacturing at the nanoscale.
Collapse
|
18
|
Wang S, Dong Z, Zhang L, Tsiakaras P, Shen PK, Luo L. Atomic Scale Mechanisms of Multimode Oxide Growth on Nickel-Chromium Alloy: Direct In Situ Observation of the Initial Oxide Nucleation and Growth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1903-1913. [PMID: 33351607 DOI: 10.1021/acsami.0c18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The initial growth mode of oxide on alloy plays a decisive role in the development of protective oxide scales on metals and alloys, which is critical for their functionality for high temperature applications. However, the atomistic mechanisms dictating that the oxide growth remain elusive due to the lack of direct in situ observation of the initial oxide nucleation and growth at atomic-scale. Herein, we employed environmental transmission electron microscopy and the first-principles calculations to elucidate the initial atomic process of nickel-chromium (Ni-Cr) alloy oxidation. We directly revealed three different oxide growth modes of initial NiO islands on Ni-Cr alloy upon oxidation by O2, which result in distinct crystallography and morphology. The multimode oxide growth leads to irregular-shaped oxides, which is shown to be sensitive to the local mass transport. This localization of oxide growth mode is also demonstrated by the identified vigorous competence in oxide growth and thus shown to be kinetically controlled. The concept exemplified here provides insights into the oxide formation and has significant implications in other material and chemical processes involving oxygen gas, such as corrosion, heterogeneous catalysis, and ionic conduction.
Collapse
Affiliation(s)
- Shuangbao Wang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical and Technology & Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Zejian Dong
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Lifeng Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Panagiotis Tsiakaras
- Laboratory of Materials and Devices for Clean Energy, Department of Technology of Electrochemical Processes, Ural Federal University, 19 Mira Str., Yekaterinburg 620002, Russia
- Laboratory of Electrochemical Devices based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), Yekaterinburg 620990, Russia
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece
| | - Pei Kang Shen
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical and Technology & Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Langli Luo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
19
|
Abstract
The evolution of Pi3Ni–NiO nanoparticles was visualized in a liquid cell.
Collapse
Affiliation(s)
- Junyu Zhang
- Instrumental Analysis Center
- Huaqiao University
- Xiamen 361021
- China
| |
Collapse
|
20
|
Zhang J, Zhao P. Atomic imaging of the motion and transformation of Pt3Ni nanoparticles in liquids. CrystEngComm 2021. [DOI: 10.1039/d1ce00216c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we used liquid cell TEM to observe the motion and transformation pathways of Pt3Ni nanoparticles in solution by systematically changing the electron beam dose rate.
Collapse
Affiliation(s)
- Junyu Zhang
- Instrumental Analysis Center
- Laboratory and Equipment Management Department
- Huaqiao University
- Xiamen 361021
- China
| | - Peng Zhao
- Instrumental Analysis Center
- Laboratory and Equipment Management Department
- Huaqiao University
- Xiamen 361021
- China
| |
Collapse
|
21
|
Li B, Hu M, Ren H, Hu C, Li L, Zhang G, Jiang J, Zou C. Atomic Origin for Hydrogenation Promoted Bulk Oxygen Vacancies Removal in Vanadium Dioxide. J Phys Chem Lett 2020; 11:10045-10051. [PMID: 33179929 DOI: 10.1021/acs.jpclett.0c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxygen vacancies (VO), a common type of point defect in metal oxides materials, play important roles in the physical and chemical properties. To obtain stoichiometric oxide crystal, the pre-existing VO is always removed via careful post-annealing treatment at high temperature in an air or oxygen atmosphere. However, the annealing conditions are difficult to control, and the removal of VO in the bulk phase is restrained because of the high energy barrier of VO migration. Here, we selected VO2 crystal film as the model system and developed an alternative annealing treatment aided by controllable hydrogen doping, which can realize effective removal of VO defects in the VO2-δ crystal at a lower temperature. This finding is attributed to the hydrogenation accelerated oxygen vacancies recovery in the VO2-δ crystal. Theoretical calculations revealed that the H-doping-induced electrons are prone to accumulate around the oxygen defects in the VO2-δ film, which facilitates the diffusion of VO and thus makes it easier to be removed. The methodology is expected to be applied to other metal oxides for oxygen-related point defects control.
Collapse
Affiliation(s)
- Bowen Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Min Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hui Ren
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Changlong Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Liang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
22
|
Tang M, Yuan W, Ou Y, Li G, You R, Li S, Yang H, Zhang Z, Wang Y. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03335] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Luo L, Li L, Schreiber DK, He Y, Baer DR, Bruemmer SM, Wang C. Deciphering atomistic mechanisms of the gas-solid interfacial reaction during alloy oxidation. SCIENCE ADVANCES 2020; 6:eaay8491. [PMID: 32494632 PMCID: PMC7182408 DOI: 10.1126/sciadv.aay8491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/28/2020] [Indexed: 06/01/2023]
Abstract
Gas-solid interfacial reaction is critical to many technological applications from heterogeneous catalysis to stress corrosion cracking. A prominent question that remains unclear is how gas and solid interact beyond chemisorption to form a stable interphase for bridging subsequent gas-solid reactions. Here, we report real-time atomic-scale observations of Ni-Al alloy oxidation reaction from initial surface adsorption to interfacial reaction into the bulk. We found distinct atomistic mechanisms for oxide growth in O2 and H2O vapor, featuring a "step-edge" mechanism with severe interfacial strain in O2, and a "subsurface" one in H2O. Ab initio density functional theory simulations rationalize the H2O dissociation to favor the formation of a disordered oxide, which promotes ion diffusion to the oxide-metal interface and leads to an eased interfacial strain, therefore enhancing inward oxidation. Our findings depict a complete pathway for the Ni-Al surface oxidation reaction and delineate the delicate coupling of chemomechanical effect on gas-solid interactions.
Collapse
Affiliation(s)
- Langli Luo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Liang Li
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Daniel K. Schreiber
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Yang He
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Donald R. Baer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Stephen M. Bruemmer
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| |
Collapse
|
24
|
Unocic KA, Walden FS, Marthe NL, Datye AK, Bigelow WC, Allard LF. Introducing and Controlling Water Vapor in Closed-Cell In Situ Electron Microscopy Gas Reactions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:229-239. [PMID: 32157982 DOI: 10.1017/s1431927620000185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protocols for conducting in situ transmission electron microscopy (TEM) reactions using an environmental TEM with dry gases have been well established. However, many important reactions that are relevant to catalysis or high-temperature oxidation occur at atmospheric pressure and are influenced by the presence of water vapor. These experiments necessitate using a closed-cell gas reaction TEM holder. We have developed protocols for introducing and controlling water vapor concentrations in experimental gases from 2% at a full atmosphere to 100% at ~17 Torr, while measuring the gas composition using a residual gas analyzer (RGA) on the return side of the in situ gas reactor holder. Initially, as a model system, cube-shaped MgO crystals were used to help develop the protocols for handling the water vapor injection process and confirming that we could successfully inject water vapor into the gas cell. The interaction of water vapor with MgO triggered surface morphological and chemical changes as a result of the formation of Mg(OH)2, later validated with mass spectra obtained with our RGA system with and without water vapor. Integrating an RGA with an in situ scanning/TEM closed-cell gas reaction system can thus provide critical measurements correlating gas composition with dynamic surface restructuring of materials during reactions.
Collapse
Affiliation(s)
- Kinga A Unocic
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN37831, USA
| | - Franklin S Walden
- Protochips Inc., 3800 Gateway Centre Blvd, Suite 306, Morrisville, NC27560, USA
| | - Nelson L Marthe
- Protochips Inc., 3800 Gateway Centre Blvd, Suite 306, Morrisville, NC27560, USA
| | - Abhaya K Datye
- Chemical and Biological Engineering, University of New Mexico, MSC01 1120, Albuquerque, NM87131, USA
| | - Wilbur C Bigelow
- Department of Materials Science and Engineering, University of Michigan, Dow Bldg., Hayward Ave., Ann Arbor, MI48109, USA
| | - Lawrence F Allard
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN37831, USA
| |
Collapse
|
25
|
Yamazaki T, Van Driessche AES, Kimura Y. High mobility of lattice molecules and defects during the early stage of protein crystallization. SOFT MATTER 2020; 16:1955-1960. [PMID: 31967624 DOI: 10.1039/c9sm02382h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein crystals are expected to be useful not only for their molecular structure analysis but also as functional materials due to their unique properties. Although the generation and the propagation of defects during crystallization play critical roles in the final properties of protein crystals, the dynamics of these processes are poorly understood. By time-resolved liquid-cell transmission electron microscopy, we observed that nanosized crystal defects are surprisingly mobile during the early stages of the crystallization of a lysozyme as a model protein. This highly dynamic behavior of defects reveals that the lattice molecules are mobile throughout the crystal structure. Moreover, the disappearance of the defects indicated that intermolecular bonds can break and reform rapidly with little energetic cost, as reported in theoretical studies. All these findings are in marked contrast to the generally accepted notion that crystal lattices are rigid with very limited mobility of individual lattice molecules.
Collapse
Affiliation(s)
- Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Alexander E S Van Driessche
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, F-38000, Grenoble, France
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
| |
Collapse
|
26
|
Yuan W, Zhu B, Li XY, Hansen TW, Ou Y, Fang K, Yang H, Zhang Z, Wagner JB, Gao Y, Wang Y. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020; 367:428-430. [DOI: 10.1126/science.aay2474] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/24/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
Imaging a reaction taking place at the molecular level could provide direct information for understanding the catalytic reaction mechanism. We used in situ environmental transmission electron microscopy and a nanocrystalline anatase titanium dioxide (001) surface with (1 × 4) reconstruction as a catalyst, which provided highly ordered four-coordinated titanium “active rows” to realize real-time monitoring of water molecules dissociating and reacting on the catalyst surface. The twin-protrusion configuration of adsorbed water was observed. During the water–gas shift reaction, dynamic changes in these structures were visualized on these active rows at the molecular level.
Collapse
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiao-Yan Li
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Thomas W. Hansen
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yang Ou
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ke Fang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Jakob B. Wagner
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Yong Wang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| |
Collapse
|
27
|
Sun X, Zhu W, Wu D, Li C, Wang J, Zhu Y, Chen X, Boscoboinik JA, Sharma R, Zhou G. Surface-reaction induced structural oscillations in the subsurface. Nat Commun 2020; 11:305. [PMID: 31949160 PMCID: PMC6965640 DOI: 10.1038/s41467-019-14167-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Surface and subsurface are commonly considered as separate entities because of the difference in the bonding environment and are often investigated separately due to the experimental challenges in differentiating the surface and subsurface effects. Using in-situ atomic-scale transmission electron microscopy to resolve the surface and subsurface at the same time, we show that the hydrogen-CuO surface reaction results in structural oscillations in deeper atomic layers via the cycles of ordering and disordering of oxygen vacancies in the subsurface. Together with atomistic calculations, we show that the structural oscillations in the subsurface are induced by the hydrogen oxidation-induced cyclic loss of oxygen from the oxide surface. These results demonstrate the propagation of the surface reaction dynamics into the deeper layers in inducing nonstoichiometry in the subsurface and have significant implications in modulating various chemical processes involving surface-subsurface mass transport such as heterogeneous catalysis, oxidation, corrosion and carburization.
Collapse
Affiliation(s)
- Xianhu Sun
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Wenhui Zhu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Dongxiang Wu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Chaoran Li
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Jianyu Wang
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Yaguang Zhu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Xiaobo Chen
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | | | - Renu Sharma
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Guangwen Zhou
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA.
| |
Collapse
|
28
|
Zhang X, Fu C, Xia Y, Duan Y, Li Y, Wang Z, Jiang Y, Li H. Atomistic Origin of the Complex Morphological Evolution of Aluminum Nanoparticles during Oxidation: A Chain-like Oxide Nucleation and Growth Mechanism. ACS NANO 2019; 13:3005-3014. [PMID: 30785726 DOI: 10.1021/acsnano.8b07633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metal nanoparticles usually show different oxidation dynamics from bulk metals, which results in various oxide nanostructures because of their size-related surface effects. In this work, we have found and investigated the chain-like nucleation and growth of oxides on the aluminum nanoparticle (ANP) surface, using molecular dynamics simulations with the reactive force-field (ReaxFF). After nucleation, the chain-like oxide nuclei could stay on the ANP surface and continue growing into an oxide shell, extend outward from the surface to form longer oxide chains, or detach from the ANP to generate independent oxide clusters, which is highly dependent on the oxygen content, temperature, and nanoparticle size. Our results emphasize the complicated interplay between the surface structure of nanoparticles and the environmental conditions in determining the formation of oxides, which provides insights into the atomic-scale oxidation mechanism of metal nanoparticles.
Collapse
Affiliation(s)
- Xingfan Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education , Shandong University , Jinan 250061 , People's Republic of China
| | - Chengrui Fu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education , Shandong University , Jinan 250061 , People's Republic of China
| | - Yujie Xia
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education , Shandong University , Jinan 250061 , People's Republic of China
| | - Yunrui Duan
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education , Shandong University , Jinan 250061 , People's Republic of China
| | - Yifan Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education , Shandong University , Jinan 250061 , People's Republic of China
| | - Zhichao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education , Shandong University , Jinan 250061 , People's Republic of China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education , Shandong University , Jinan 250061 , People's Republic of China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education , Shandong University , Jinan 250061 , People's Republic of China
| |
Collapse
|
29
|
Liu Y, Wu H, Ma L, Zou S, Ling Y, Zhang Z. Highly stable and active SERS substrates with Ag-Ti alloy nanorods. NANOSCALE 2018; 10:19863-19870. [PMID: 30335108 DOI: 10.1039/c8nr07138a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silver (Ag) nanostructures have been intensively studied as one of the most promising surface-enhanced Raman scattering (SERS) substrates; however, their practical applications have been limited by the chemical instability with regard to oxidation, sulfuration and etching of Ag. Therefore, designing and fabricating highly active Ag nanostructures with high SERS stability has been recognized as an important research area. Herein, Ag-Ti alloy nanorods (Ag-Ti alloy NRs) are designed and fabricated by the oblique angle deposition (OAD) method to protect Ag. Taking advantage of the higher chemical activity of Ti compared with Ag, Ti can be sacrificed against oxidation and corrosion, protecting Ag in harsh environments, further ensuring long-term stability of the SERS substrates. It is demonstrated that a 2% Ti (in atoms) substrate possesses extremely high SERS sensitivity, and is stable both in air for more than 1 month and in 10 mM HNO3 solution for 1 hour. The alloy nanostructure provides a new opportunity to achieve highly sensitive and highly stable SERS substrates.
Collapse
Affiliation(s)
- Yuehua Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | | | | | | | | | | |
Collapse
|