1
|
Han Y, Huang W, He M, An B, Chen Y, Han X, An L, Kippax-Jones M, Li J, Yang Y, Frogley MD, Li C, Crawshaw D, Manuel P, Rudić S, Cheng Y, Silverwood I, Daemen LL, Ramirez-Cuesta AJ, Day SJ, Thompson SP, Spencer BF, Nikiel M, Lee D, Schröder M, Yang S. Trace benzene capture by decoration of structural defects in metal-organic framework materials. NATURE MATERIALS 2024; 23:1531-1538. [PMID: 39472753 PMCID: PMC11525167 DOI: 10.1038/s41563-024-02029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Capture of trace benzene is an important and challenging task. Metal-organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti8O8(OH)4(BDC)6 where H2BDC is 1,4-benzenedicarboxylic acid). At 298 K, MIL-125-Zn exhibits a benzene uptake of 7.63 mmol g-1 at 1.2 mbar and 5.33 mmol g-1 at 0.12 mbar, and breakthrough experiments confirm the removal of trace benzene (from 5 to <0.5 ppm) from air (up to 111,000 min g-1 of metal-organic framework), even after exposure to moisture. The binding of benzene to the defect and open Zn(II) sites at low pressure has been visualized by diffraction, scattering and spectroscopy. This work highlights the importance of fine-tuning pore chemistry for designing adsorbents for the removal of air pollutants.
Collapse
Affiliation(s)
- Yu Han
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Wenyuan Huang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Meng He
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Bing An
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Yinlin Chen
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Xue Han
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Lan An
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - Meredydd Kippax-Jones
- Department of Chemistry, University of Manchester, Manchester, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Jiangnan Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Yuhang Yang
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Cheng Li
- Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Pascal Manuel
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, UK
| | - Svemir Rudić
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, UK
| | - Yongqiang Cheng
- Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ian Silverwood
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, UK
| | - Luke L Daemen
- Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Anibal J Ramirez-Cuesta
- Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sarah J Day
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - Ben F Spencer
- Photon Science Institute, University of Manchester, Manchester, UK
- Department of Materials, University of Manchester, Manchester, UK
| | - Marek Nikiel
- Photon Science Institute, University of Manchester, Manchester, UK
- Department of Materials, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Daniel Lee
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, UK.
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Lu W, De Alwis Jayasinghe D, Schröder M, Yang S. Ammonia Storage in Metal-Organic Framework Materials: Recent Developments in Design and Characterization. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:1279-1290. [PMID: 39478984 PMCID: PMC11519835 DOI: 10.1021/accountsmr.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
Since the advent of the Haber-Bosch process in 1910, the global demand for ammonia (NH3) has surged, driven by its applications in agriculture, pharmaceuticals, and energy. Current methods of NH3 storage, including high-pressure storage and transportation, present significant challenges due to their corrosive and toxic nature. Consequently, research has turned towards metal-organic framework (MOF) materials as potential candidates for NH3 storage due to their potential high adsorption capacities and structural tunability. MOFs are coordination networks composed of metal nodes and organic linkers, offering unprecedented porosity and surface area, and allowing incorporation of various functional groups and metal sites that can enhance NH3 adsorption. However, the stability of MOFs in the presence of NH3 is a significant concern since many degrade upon exposure to NH3, primarily due to ligand displacement and framework collapse. To address this, recent studies have focused on the synthesis and postsynthetic modification of MOFs to enhance both NH3 uptake and stability. In this Account, we summarize recent developments in the design and characterization of MOFs for NH3 storage. The choice of metal centers in MOFs is crucial for stability and performance. High-valence metals such as AlIII and TiIV form strong metal-linker bonds, enhancing the stability of the framework to NH3. The MFM-300 series of materials composed of high-valence 3+ and 4+ metal ions and carboxylic linkers demonstrates high stability and high NH3 uptake capacities. Ligand functionalization is another effective strategy for improving the NH3 adsorption. Polar functional groups such as -NH2, -OH, and -COOH enhance the interaction between the framework and NH3, particularly at low partial pressures, while postsynthetic modification allows fine-tuning of these functionalities to optimize the framework for higher adsorption capacities and stability. For example, MFM-303(Al), incorporating free carboxylic acid groups, exhibits a high NH3 packing density comparable to that of solid NH3. Creating defect sites by removing linkers or adding metal ions increases the number of active sites available for NH3 adsorption and shows promise for enhancing uptake. UiO-66, a stable MOF framework, can be modified to include defect sites, significantly enhancing the level of NH3 uptake. The full characterization of MOFs and especially their interactions with NH3 are vital for understanding and improving their performance. Techniques such as neutron powder diffraction (NPD), inelastic neutron scattering (INS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), electron paramagnetic resonance (EPR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy can elucidate host-guest interactions and binding dynamics between NH3 and the framework structure and afford crucial information for the future design and rational development of new sorbents. This Account highlights our current strategies for the synthesis and characterization of MOFs for NH3 capture, providing an overview of this rapidly evolving field.
Collapse
Affiliation(s)
- Wanpeng Lu
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | | | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing, China, 100871
| |
Collapse
|
3
|
Mo X, Zhu C, Zhang Z, Yan X, Han C, Li J, Attfield JP, Yang M. Nitrogen-Doped Indium Oxide Electrochemical Sensor for Stable and Selective NO 2 Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409294. [PMID: 39161092 DOI: 10.1002/adma.202409294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Efficient gas sensors are critical for environmental monitoring and industrial safety. While metal oxide semiconductor (MOS) sensors are cost-effective, they struggle with poor selectivity, high operating temperatures, and limited stability. Electrochemical sensors, though selective and energy-efficient, face high costs, and stability issues due to precious metal catalysts like platinum on carbon (Pt/C). Herein, a novel, cost-effective electrochemical sensor using nitrogen-doped indium oxide In2O3- xN2 x /3Vx /3 (0.01≤x≤0.14), synthesized with varying nitriding times is presented. The optimized In2O3 N-40 min sensor demonstrates a remarkable response current of 771 nA to 10 ppm nitrogen dioxide (NO2) at ambient temperature, with outstanding long-term stability (over 30 days) and rapid response/recovery times (5/16 s). Compared to Pt/C sensors, it shows 84% and 67% reductions in response and recovery times, respectively, and maintains 98% performance after a month, versus 68% for Pt/C. This cost-effective sensor presents a promising alternative for electrochemical gas sensing, eliminating the need for precious metal catalysts.
Collapse
Affiliation(s)
- Xichao Mo
- School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Chonghui Zhu
- School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Zhaorui Zhang
- School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Xiaohui Yan
- School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Chenshuai Han
- School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Jiaxin Li
- School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3FD, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| |
Collapse
|
4
|
Kimura T. Utilization of Reactive Nitrogen Compounds for Nitrogen Circular Economy. CHEM REC 2024; 24:e202400094. [PMID: 39092686 DOI: 10.1002/tcr.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 08/04/2024]
Abstract
Nitrogen oxides (NOx) should be purified according to environmental regulations, being restricted increasingly year by year. A wide variety of denitration technologies, such as selective catalytic reduction (SCR) of NOx to nitrogen (N2) and NOx storage reduction (NSR) to N2 by injecting reducing agents like ammonia (NH3), has so far been developed practically. Sophisticated catalytic approaches are perhaps mandatory for the sustainability in energy including complete purification of NOx. As one of the solutions to overcome problems for environment and resource simultaneously, this concept article focuses on the utilization of reactive nitrogen (Nr) compounds, mainly NOx, for encouraging an opening to consider nitrogen circular economy. For the recycling of NOx via NH3, a challenging but rational catalytic technology can be proposed by an alternate switching the inlet gas between NOx containing oxidative gas and H2 containing reductive one without an operation to change the reaction temperature. Considering the reactivity of NOx higher than that of N2, this kind of NOx to NH3 (NTA) process is promising for synthesizing NH3, being valuable not only as fertilizer but also as fuel in near future.
Collapse
Affiliation(s)
- Tatsuo Kimura
- National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya, 463-8560, Japan
| |
Collapse
|
5
|
Daturi M, Blasin-Aubé V, Yoon JW, Bazin P, Vimont A, Chang JS, Hwang YK, Seo YK, Jang S, Chang H, Wuttke S, Horcajada P, Haneda M, Serre C. Room Temperature Reduction of Nitrogen Oxide on Iron Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403053. [PMID: 38767509 DOI: 10.1002/adma.202403053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Nitrogen oxides represent one of the main threats for the environment. Despite decades of intensive research efforts, a sustainable solution for NOx removal under environmental conditions is still undefined. Using theoretical modelling, material design, state-of-the-art investigation methods and mimicking enzymes, it is found that selected porous hybrid iron(II/III) based MOF material are able to decompose NOx, at room temperature, in the presence of water and oxygen, into N2 and O2 and without reducing agents. This paves the way to the development of new highly sustainable heterogeneous catalysts to improve air quality.
Collapse
Affiliation(s)
- Marco Daturi
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen, 14000, France
| | - Vanessa Blasin-Aubé
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen, 14000, France
| | - Ji Wong Yoon
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen, 14000, France
- Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon, 305-600, South Korea
| | - Philippe Bazin
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen, 14000, France
| | - Alexandre Vimont
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen, 14000, France
| | - Jong-San Chang
- Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon, 305-600, South Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-476, South Korea
| | - Young Kyu Hwang
- Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon, 305-600, South Korea
| | - You-Kyong Seo
- Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon, 305-600, South Korea
| | - Seunghun Jang
- Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon, 305-600, South Korea
| | - Hyunju Chang
- Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong, Daejeon, 305-600, South Korea
| | - Stefan Wuttke
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen, 14000, France
- Institut Lavoisier (UMR CNRS 8180), Université de Versailles Saint-Quentin-en-Yvelines, Université Paris Saclay, 45, avenue des Etats-Unis, Versailles, 78035, France
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
- Spain and BCMaterials, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Patricia Horcajada
- Institut Lavoisier (UMR CNRS 8180), Université de Versailles Saint-Quentin-en-Yvelines, Université Paris Saclay, 45, avenue des Etats-Unis, Versailles, 78035, France
- Madrid Institute for Advanced Studies, Madrid, 28040, Spain
| | - Masaaki Haneda
- Nagoya Inst Technol, Adv. Ceram. Res. Ctr., 10-6-29 Asahigaoka, Tajimi, Gifu, 5070071, Japan
| | - Christian Serre
- Institute of Porous Materials from Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| |
Collapse
|
6
|
Jia J, Bhatt PM, Tavares SR, Abou-Hamad E, Belmabkhout Y, Jiang H, Mallick A, Parvatkar PT, Maurin G, Eddaoudi M. Porous Organic Polymers for Efficient and Selective SO 2 Capture from CO 2-rich Flue Gas. Angew Chem Int Ed Engl 2024; 63:e202318844. [PMID: 38785268 DOI: 10.1002/anie.202318844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 05/25/2024]
Abstract
The quest for effective technologies to reduce SO2 pollution is crucial due to its adverse effects on the environment and human health. Markedly, removing a ppm level of SO2 from CO2-containing waste gas is a persistent challenge, and current technologies suffer from low SO2/CO2 selectivity and energy-intensive regeneration processes. Here using the molecular building blocks approach and theoretical calculation, we constructed two porous organic polymers (POPs) encompassing pocket-like structures with exposed imidazole groups, promoting preferential interactions with SO2 from CO2-containing streams. Markedly, the evaluated POPs offer outstanding SO2/CO2 selectivity, high SO2 capacity, and an easy regeneration process, making it one of the best materials for SO2 capture. To gain better structural insights into the notable SO2 selectivity of the POPs, we used dynamic nuclear polarization NMR spectroscopy (DNP) and molecular modelling to probe the interactions between SO2 and POP adsorbents. The newly developed materials are poised to offer an energy-efficient and environment-friendly SO2 separation process while we are obliged to use fossil fuels for our energy needs.
Collapse
Affiliation(s)
- Jiangtao Jia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Prashant M Bhatt
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sergio R Tavares
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brasil
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Youssef Belmabkhout
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hao Jiang
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arijit Mallick
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Prakash T Parvatkar
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Wang Y, Xu C, Zhou Y, Lee J, Chen Q, Chen H. Interface-Engineered 2D Heterojunction with Photoelectric Dual Gain: Mxene@MOF-Enhanced SPR Spectroscopy for Direct Sensing of Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308897. [PMID: 38150665 DOI: 10.1002/smll.202308897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Indexed: 12/29/2023]
Abstract
MXene is widely used in the construction of optoelectronic interfaces due to its excellent properties. However, the hydrophilicity and metastable surface of MXene lead to its oxidation behavior, resulting in the degradation of its various properties, which seriously limits its practical application. In this work, a 2D metal-organic framework (2D MOF) with matching 2D morphology, excellent stability performance, and outstanding optoelectronic performance is grown in situ on the MXene surface through heterojunction engineering to suppress the direct contact between reactive molecules and the inner layer material without affecting the original advantages of MXene. The photoelectric dual gain MXene@MOF heterojunction is confirmed. As a photoelectric material, its properties are highly suitable for the demand of interface sensitization layer materials of surface plasmon resonance (SPR). Therefore, using SPR as a platform for the application of this interface material, the performance of MXene@MOF and its potential mechanism to enhance SPR are analyzed in depth using experiments combined with simulation calculations (FDTD/DFT). Finally, the MXene@MOF/peptides-SPR sensor is constructed for rapid and sensitive detection of the cancer marker exosomes to explore its potential in practical applications. This work offers a forward-looking strategy for the design of interface materials with excellent photoelectric performance.
Collapse
Affiliation(s)
- Yindian Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Chengcheng Xu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jaebeom Lee
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
8
|
Marsh C, Han X, Lu Z, da Silva I, Cheng Y, Daemen LL, Day SJ, Thompson SP, Ramirez-Cuesta AJ, Yang S, Schröder M. Binding of carbon dioxide and acetylene to free carboxylic acid sites in a metal-organic framework. Chem Sci 2024; 15:8197-8203. [PMID: 38817566 PMCID: PMC11134375 DOI: 10.1039/d4sc00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
The functionalisation of organic linkers in metal-organic frameworks (MOFs) to improve gas uptake is well-documented. Although the positive role of free carboxylic acid sites in MOFs for binding gas molecules has been proposed in computational studies, relatively little experimental evidence has been reported in support of this. Primarily this is because of the inherent synthetic difficulty to prepare MOF materials bearing free, accessible -COOH moieties which would normally bind to metal ions within the framework structure. Here, we describe the direct binding of CO2 and C2H2 molecules to the free -COOH sites within the pores of MFM-303(Al). MFM-303(Al) exhibits highly selective adsorption of CO2 and C2H2 with a high selectivity for C2H2 over C2H4. In situ synchrotron X-ray diffraction and inelastic neutron scattering, coupled with modelling, highlight the cooperative interactions of adsorbed CO2 and C2H2 molecules with free -COOH and -OH sites within MFM-303(Al), thus rationalising the observed high selectivity for gas separation.
Collapse
Affiliation(s)
- Christopher Marsh
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Xue Han
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Zhenzhong Lu
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Ivan da Silva
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Oxford OX11 0QX UK
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Luke L Daemen
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Sarah J Day
- Diamond Light Source Harwell Science Campus Oxford OX11 0DE UK
| | | | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Sihai Yang
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Martin Schröder
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| |
Collapse
|
9
|
Clark JB, Allen HC. Interfacial carbonyl groups of propylene carbonate facilitate the reversible binding of nitrogen dioxide. Phys Chem Chem Phys 2024; 26:15733-15741. [PMID: 38767271 DOI: 10.1039/d4cp01382d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The interaction of NO2 with organic interfaces is critical in the development of NO2 sensing and trapping technologies, and equally so to the atmospheric processing of marine and continental aerosol. Recent studies point to the importance of surface oxygen groups in these systems, however the role of specific functional groups on the microscopic level has yet to be fully established. In the present study, we aim to provide fundamental information on the interaction and potential binding of NO2 at atmospherically relevant organic interfaces that may also help inform innovation in NO2 sensing and trapping development. We then present an investigation into the structural changes induced by NO2 at the surface of propylene carbonate (PC), an environmentally relevant carbonate ester. Surface-sensitive vibrational spectra of the PC liquid surface are acquired before, during, and after exposure to NO2 using infrared reflection-absorption spectroscopy (IRRAS). Analysis of vibrational changes at the liquid surface reveal that NO2 preferentially interacts with the carbonyl of PC at the interface, forming a distribution of binding symmetries. At low ppm levels, NO2 saturates the PC surface within 10 minutes and the perturbations to the surface are constant over time during the flow of NO2. Upon removal of NO2 flow, and under atmospheric pressures, these interactions are reversible, and the liquid surface structure of PC recovers completely within 30 min.
Collapse
Affiliation(s)
- Jessica B Clark
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
10
|
Chen EX, He L, Qiu M, Zhang Y, Sun Y, Li WH, Xiao JZ, Chen J, Xu G, Lin Q. Regulating electron transfer and orbital interaction within metalloporphyrin-MOFs for highly sensitive NO 2 sensing. Chem Sci 2024; 15:6833-6841. [PMID: 38725503 PMCID: PMC11077542 DOI: 10.1039/d3sc06909e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
The understanding of electron transfer pathways and orbital interactions between analytes and adsorption sites in gas-sensitive studies, especially at the atomic level, is currently limited. Herein, we have designed eight isoreticular catechol-metalloporphyrin scaffolds, FeTCP-M and InTCP-M (TCP = 5,10,15,20-tetrakis-catechol-porphyrin, M = Fe, Co, Ni and Zn) with adjustable charge transfer schemes in the coordination microenvironment and precise tuning of orbital interactions between analytes and adsorption sites, which can be used as models for exploring the influence of these factors on gas sensing. Our experimental findings indicate that the sensitivity and selectivity can be modulated using the type of metals in the metal-catechol chains (which regulate the electron transfer routes) and the metalloporphyrin rings (which fine-tune the orbital interactions between analytes and adsorption sites). Among the isostructures, InTCP-Co demonstrates the highest response and selectivity to NO2 under visible light irradiation, which could be attributed to the more favorable transfer pathway of charge carriers in the coordination microenvironment under visible light illumination, as well as the better electron spin state compatibility, higher orbital overlap and orbital symmetry matching between the N-2s2pz hybrid orbital of NO2 and the Co-3dz2 orbital of InTCP-Co.
Collapse
Affiliation(s)
- Er-Xia Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Liang He
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Mei Qiu
- College of Chemistry and Materials, Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Yayong Sun
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wen-Hua Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jian-Ze Xiao
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jie Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
11
|
Moradi-Bieranvand M, Farhadi S, Zabardasti A, Mahmoudi F. Construction of magnetic MoS 2/NiFe 2O 4/MIL-101(Fe) hybrid nanostructures for separation of dyes and antibiotics from aqueous media. RSC Adv 2024; 14:11037-11056. [PMID: 38586447 PMCID: PMC10995676 DOI: 10.1039/d4ra00505h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
In this study, MoS2/NiFe2O4/MIL-101(Fe) nanocomposite was synthesized by hydrothermal method and used as an adsorbent for the elimination of organic dyes and some antibiotic drugs in aqueous solutions. The synthesized nanocomposite underwent characterization through different techniques, including scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), zeta potential analysis, vibrating sample magnetometry (VSM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). These results demonstrated the successful insertion of MoS2within the cavities of MIL-101(Fe). The as-prepared magnetic nanocomposite was used as a new magnetic adsorbent for removing methylene blue (MB) and rhodamine B (RhB) organic dyes and tetracycline (TC) and ciprofloxacin (CIP) antibiotic drugs. For achieving the optimized conditions, the effects of initial pH, initial dye and drug concentration, temperature, and adsorbent dose on MB, TC, and CIP elimination were investigated. The results revealed that at a temperature of 25 °C, the highest adsorption capacities of MoS2/NiFe2O4/MIL-101(Fe) for MB, TC, and CIP were determined to be 999.1, 2991.3, and 1994.2 mg g-1, respectively. The pseudo-second-order model and Freundlich model are considered suitable for explaining the adsorption behavior of the MoS2/NiFe2O4/MIL-101(Fe) nanocomposite. The magnetic nanocomposite was very stable and had good recycling capability without any change in its structure.
Collapse
Affiliation(s)
- Mehri Moradi-Bieranvand
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Saeed Farhadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Abedin Zabardasti
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Farzaneh Mahmoudi
- Department of Chemistry, University of Miami Coral Gables Florida 33146 USA
| |
Collapse
|
12
|
Poryvaev AS, Efremov AA, Alimov DV, Smirnova KA, Polyukhov DM, Sagdeev RZ, Jacoutot S, Marque SRA, Fedin MV. Nanoscale solvent organization in metal-organic framework ZIF-8 probed by EPR of flexible β-phosphorylated nitroxides. Chem Sci 2024; 15:5268-5276. [PMID: 38577353 PMCID: PMC10988587 DOI: 10.1039/d3sc05724k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) draw increasing attention as nanoenvironments for chemical reactions, especially in the field of catalysis. Knowing the specifics of MOF cavities is decisive in many of these cases; yet, obtaining them in situ remains very challenging. We report the first direct assessment of the apparent polarity and solvent organization inside MOF cavities using a dedicated structurally flexible spin probe. A stable β-phosphorylated nitroxide radical was incorporated into the cavities of a prospective MOF ZIF-8 in trace amounts. The spectroscopic properties of this probe depend on local polarity, structuredness, stiffness and cohesive pressure and can be precisely monitored by Electron Paramagnetic Resonance (EPR) spectroscopy. Using this approach, we have demonstrated experimentally that the cavities of bare ZIF-8 are sensed by guest molecules as highly non-polar inside. When various alcohols fill the cavities, remarkable self-organization of solvent molecules is observed leading to a higher apparent polarity in MOFs compared to the corresponding bulk alcohols. Accounting for such nanoorganization phenomena can be crucial for optimization of chemical reactions in MOFs, and the proposed methodology provides unique routes to study MOF cavities inside in situ, thus aiding in their various applications.
Collapse
Affiliation(s)
- Artem S Poryvaev
- International Tomography Center SB RAS Novosibirsk 630090 Russia
| | - Aleksandr A Efremov
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Dmitry V Alimov
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Kristina A Smirnova
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | | | - Renad Z Sagdeev
- International Tomography Center SB RAS Novosibirsk 630090 Russia
| | - Samuel Jacoutot
- Aix Marseille University, CNRS, UMR Avenue Escadrille Normandie-Niemen 7273 Marseille 13397 CEDEX 20 France
| | - Sylvain R A Marque
- Aix Marseille University, CNRS, UMR Avenue Escadrille Normandie-Niemen 7273 Marseille 13397 CEDEX 20 France
| | - Matvey V Fedin
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| |
Collapse
|
13
|
Zhao YL, Zhang X, Li MZ, Li JR. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024; 53:2056-2098. [PMID: 38214051 DOI: 10.1039/d3cs00285c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.
Collapse
Affiliation(s)
- Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Mu-Zi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
14
|
Cui J, Zhang Z, Yang L, Hu J, Jin A, Yang Z, Zhao Y, Meng B, Zhou Y, Wang J, Su Y, Wang J, Cui X, Xing H. A molecular sieve with ultrafast adsorption kinetics for propylene separation. Science 2024; 383:179-183. [PMID: 38096333 DOI: 10.1126/science.abn8418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
The design of molecular sieves is vital for gas separation, but it suffers from a long-standing issue of slow adsorption kinetics due to the intrinsic contradiction between molecular sieving and diffusion within restricted nanopores. We report a molecular sieve ZU-609 with local sieving channels that feature molecular sieving gates and rapid diffusion channels. The precise cross-sectional cutoff of molecular sieving gates enables the exclusion of propane from propylene. The coexisting large channels constituted by sulfonic anions and helically arranged metal-organic architectures allow the fast adsorption kinetics of propylene, and the measured propylene diffusion coefficient in ZU-609 is one to two orders of magnitude higher than previous molecular sieves. Propylene with 99.9% purity is obtained through breakthrough experiments with a productivity of 32.2 L kg-1.
Collapse
Affiliation(s)
- Jiyu Cui
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310012, P.R. China
| | - Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Lifeng Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310012, P.R. China
| | - Jianbo Hu
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P.R. China
| | - Anye Jin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310012, P.R. China
| | - Zhenglu Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310012, P.R. China
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Biao Meng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yun Su
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Xili Cui
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310012, P.R. China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P.R. China
| | - Huabin Xing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310012, P.R. China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P.R. China
| |
Collapse
|
15
|
Wang Z, Sheveleva AM, Li J, Zhou Z, Sapchenko S, Whitehead G, Warren MR, Collison D, Sun J, Schröder M, McInnes EJL, Yang S, Tuna F. Analysis of a Cu-Doped Metal-Organic Framework, MFM-520(Zn 1-x Cu x ), for NO 2 Adsorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305542. [PMID: 37964415 PMCID: PMC10767414 DOI: 10.1002/advs.202305542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Indexed: 11/16/2023]
Abstract
MFM-520(Zn) confines dimers of NO2 with a high adsorption of 4.52 mmol g-1 at 1 bar at 298 K. The synthesis and the incommensurate structure of Cu-doped MFM-520(Zn) are reported. The introduction of paramagnetic Cu2+ sites allows investigation of the electronic and geometric structure of metal site by in situ electron paramagnetic resonance (EPR) spectroscopy upon adsorption of NO2 . By combining continuous wave and electron-nuclear double resonance spectroscopy, an unusual reverse Berry distorted coordination geometry of the Cu2+ centers is observed. Interestingly, Cu-doped MFM-520(Zn0.95 Cu0.05 ) shows enhanced adsorption of NO2 of 5.02 mmol g-1 at 1 bar at 298 K. Whereas MFM-520(Zn) confines adsorbed NO2 as N2 O4 , the presence of monomeric NO2 at low temperature suggests that doping with Cu2+ centers into the framework plays an important role in tuning the dimerization of NO2 molecules in the pore via the formation of specific host-guest interactions.
Collapse
Affiliation(s)
- Zi Wang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Alena M. Sheveleva
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Jiangnan Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Zhengyang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Sergei Sapchenko
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - George Whitehead
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Mark R. Warren
- Diamond Light SourceHarwell Science CampusOxfordshireOX11 0DEUK
| | - David Collison
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Eric J. L. McInnes
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| | - Floriana Tuna
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
16
|
Wang F, Sun M, Li D, Qin X, Liao Y, Liu X, Jia S, Xie Y, Zhong C. Multifunctional Asymmetric Bacterial Cellulose Membrane with Enhanced Anti-Bacterial and Anti-Inflammatory Activities for Promoting Infected Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303591. [PMID: 37568253 DOI: 10.1002/smll.202303591] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Indexed: 08/13/2023]
Abstract
An asymmetric wound dressing acts as a skin-like structure serves as a protective barrier between a wound and its surroundings. It allows for the absorption of tissue fluids and the release of active substances at the wound site, thus speeding up the healing process. However, the production of such wound dressings requires the acquisition of specialized tools, expensive polymers, and solvents that contain harmful byproducts. In this study, an asymmetric bacterial cellulose (ABC) wound dressing using starch as a porogen has been developed. By incorporating silver-metal organic frameworks (Ag-MOF) and curcumin into the ABC membrane, the wound dressing gains antioxidant, reactive oxygen species (ROS) scavenging, and anti-bacterial activities. Compared to BC-based wound dressings, this dressing promotes efficient dissolution and controlled release of curcumin and silver ions. In a full-thickness skin defect model, wound dressing not only inhibits the growth of bacteria on infected wounds but also regulates the release of curcumin to reduce inflammation and promote the production of epithelium, blood vessels, and collagen. Consequently, this dressing provides superior wound treatment compared to BC-based dressing.
Collapse
Affiliation(s)
- Fengping Wang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong, P. R. China
| | - Meiyan Sun
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Dongmei Li
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xiaotong Qin
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yuting Liao
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, Tianjin, P. R. China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yanyan Xie
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
17
|
Zhang Y, Jiang Y, Yuan Z, Liu B, Zhao Q, Huang Q, Li Z, Zeng W, Duan Z, Tai H. Synergistic Effect of Electron Scattering and Space Charge Transfer Enabled Unprecedented Room Temperature NO 2 Sensing Response of SnO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303631. [PMID: 37403282 DOI: 10.1002/smll.202303631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Metal oxide gas sensors have long faced the challenge of low response and poor selectivity, especially at room temperature (RT). Herein, a synergistic effect of electron scattering and space charge transfer is proposed to comprehensively improve gas sensing performance of n-type metal oxides toward oxidizing NO2 (electron acceptor) at RT. To this end, the porous SnO2 nanoparticles (NPs) assembled from grains of about 4 nm with rich oxygen vacancies are developed through an acetylacetone-assisted solvent evaporation approach combined with precise N2 and air calcinations. The results show that the as-fabricated porous SnO2 NPs sensor exhibits an unprecedented NO2 -sensing performance, including outstanding response (Rg /Ra = 772.33 @ 5 ppm), fast recovery (<2 s), an extremely low detection limit (10 ppb), and exceptional selectivity (response ratio >30) at RT. Theoretical calculation and experimental tests confirm that the excellent NO2 sensing performance is mainly attributed to the unique synergistic effect of electron scattering and space charge transfer. This work proposes a useful strategy for developing high-performance RT NO2 sensors using metal oxides, and provides an in-depth understanding for the basic characteristics of the synergistic effect on gas sensing, paving the way for efficient and low power consumption gas detection at RT.
Collapse
Affiliation(s)
- Yajie Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Bohao Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Qiuni Zhao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Qi Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Ziteng Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| |
Collapse
|
18
|
Sun W, Chen P, Zhang M, Ma JX, Sun J. Locating Hydrogen Positions for COF-300 by Cryo-3D Electron Diffraction. Angew Chem Int Ed Engl 2023; 62:e202305985. [PMID: 37403425 DOI: 10.1002/anie.202305985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Covalent organic frameworks (COFs) have wide-ranging applications, and their host-guest interactions play an essential role in the achievement of COF functions. To investigate these host-guest interactions, it is necessary to locate all atoms, especially hydrogen atoms. However, it is difficult to determine the hydrogen atomic positions in COFs because of the complexities in synthesizing high-quality large single crystals. Three-dimensional electron diffraction (3D ED) has unique advantages for the structural determination of nanocrystals and identification of light atoms. In this study, it was demonstrated for the first time that the hydrogen atoms of a COF, not only on the framework but also on the guest molecule, can be located by 3D ED using continuous precession electron diffraction tomography (cPEDT) under cryogenic conditions. The host-guest interactions were clarified with the location of the hydrogen atoms. These findings provide novel insights into the investigation of COFs.
Collapse
Affiliation(s)
- Wenjia Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, P.R. China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, P.R. China
| | - Mingxuan Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, P.R. China
| | - Jian-Xin Ma
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, P.R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, P.R. China
| |
Collapse
|
19
|
Dong Q, Wan J, Chen H, Huang Y, Duan J. Highly Efficient CO 2 Capture from Wet-Hot Flue Gas by a Robust Trap-and-Flow Crystal. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39606-39613. [PMID: 37579213 DOI: 10.1021/acsami.3c09456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Highly selective CO2 capture from flue gas based on adsorption technology is among the largest challenge on the horizon, due to its high temperature (>333 K), lower partial pressure (0.1-0.2 bar), and competition from water. Due to the designable and tunable pore system, porous coordination polymers (PCPs) have been considered as the most exciting discoveries in porous materials. However, the rational design and function-led preparation of the pore system that permits highly selective CO2 capture from flue gas (CO2/N2/O2/CO/H2O) remains a great challenge. Herein, we report a highly selective CO2 capture from wet-hot (363 K, RH = 40%) flue gas by a robust trap-and-flow crystal (NTU-67). Crystallographic analysis showed that the flow channel provides plausible CO2 traffic, while the confined trap works as an accommodation for captured gas molecules. Further, the hydrophobic pore surface endows the function of the channels that are not influenced by hot moisture, a major obstacle to overcome direct CO2 capture by PCPs. The integral nature of NTU-67, including good stability in SO2, meets the key prerequisites that are usually considered for practical applications. The molecular insight and highly efficient CO2 capture make us believe that different nanospace with their own duties may be extended into ingenious design of more advanced adsorbents for cost-effective and promising for CO2 capture from flue gas.
Collapse
Affiliation(s)
- Qiubing Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jingmeng Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huanhao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuhang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
20
|
Zhong H, Jiang C, Zou J, Zhu G, Huang Y. CeO 2-Based Porous Carbonaceous Frameworks as Antioxidant Nanozymes for Scavenging Reactive Oxygen Species and Adsorbing Benzo[a]pyrene. Inorg Chem 2023; 62:13168-13172. [PMID: 37555763 DOI: 10.1021/acs.inorgchem.3c02145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Barbecue smoke, car exhaust, cigarette smoke, and other waste gases contain toxic reactive oxygen species (ROS) and polycyclic aromatic hydrocarbons (PAHs). Herein, CeO2-based porous carbonaceous frameworks (CeO2 PCFs) were explored as antioxidant nanozymes to scavenge ROS and absorb benzo[a]pyrene (B[a]P). Using cerium-based frameworks as the precursors, CeO2 PCFs were constructed by high-temperature calcination. Due to excellent superoxide dismutase-like and catalase-like activity, CeO2 PCFs could effectively eliminate superoxide radical, hydroxyl radical, and hydrogen peroxide. The 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) free radical scavenging assay had substantiated free radical scavenging ability of CeO2 PCFs. In addition, with a large surface area and porous structure, CeO2 PCFs could adsorb B[a]P efficiently. The designed CeO2 PCFs may provide a new opportunity as scavengers of ROS and absorbents of PAHs in some harmful gases.
Collapse
Affiliation(s)
- Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahui Zou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guancheng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
21
|
Small LJ, Vornholt SM, Percival SJ, Meyerson ML, Schindelholz ME, Chapman KW, Nenoff TM. Impedance-Based Detection of NO 2 Using Ni-MOF-74: Influence of Competitive Gas Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37675-37686. [PMID: 37498628 DOI: 10.1021/acsami.3c06864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Chemically robust, low-power sensors are needed for the direct electrical detection of toxic gases. Metal-organic frameworks (MOFs) offer exceptional chemical and structural tunability to meet this challenge, though further understanding is needed regarding how coadsorbed gases influence or interfere with the electrical response. To probe the influence of competitive gases on trace NO2 detection in a simulated flue gas stream, a combined structure-property study integrating synchrotron powder diffraction and pair distribution function analyses was undertaken, to elucidate how structural changes associated with gas binding inside Ni-MOF-74 pores correlate with the electrical response from Ni-MOF-74-based sensors. Data were evaluated for 16 gas combinations of N2, NO2, SO2, CO2, and H2O at 50 °C. Fourier difference maps from a rigid-body Rietveld analysis showed that additional electron density localized around the Ni-MOF-74 lattice correlated with large decreases in Ni-MOF-74 film resistance of up to a factor of 6 × 103, observed only when NO2 was present. These changes in resistance were significantly amplified by the presence of competing gases, except for CO2. Without NO2, H2O rapidly (<120 s) produced small (1-3×) decreases in resistance, though this effect could be differentiated from the slower adsorption of NO2 by the evaluation of the MOF's capacitance. Furthermore, samples exposed to H2O displayed a significant shift in lattice parameters toward a larger lattice and more diffuse charge density in the MOF pore. Evaluating the Ni-MOF-74 impedance in real time, NO2 adsorption was associated with two electrically distinct processes, the faster of which was inhibited by competitive adsorption of CO2. Together, this work points to the unique interaction of NO2 and other specific gases (e.g., H2O, SO2) with the MOF's surface, leading to orders of magnitude decrease in MOF resistance and enhanced NO2 detection. Understanding and leveraging these coadsorbed gases will further improve the gas detection properties of MOF materials.
Collapse
Affiliation(s)
- Leo J Small
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Stephen J Percival
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Melissa L Meyerson
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Karena W Chapman
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Tina M Nenoff
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
22
|
Wang Z, Sheveleva AM, Lee D, Chen Y, Iuga D, Franks WT, Ma Y, Li J, Li L, Cheng Y, Daemen LL, Days SJ, Ramirez‐Cuesta AJ, Han B, Eggeman AS, McInnes EJL, Tuna F, Yang S, Schröder M. Modulation of Uptake and Reactivity of Nitrogen Dioxide in Metal-Organic Framework Materials. Angew Chem Int Ed Engl 2023; 62:e202302602. [PMID: 37027005 PMCID: PMC10962595 DOI: 10.1002/anie.202302602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
We report the modulation of reactivity of nitrogen dioxide (NO2 ) in a charged metal-organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl- ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl- to give nitrosyl chloride (NOCl) and NO3 - anions. A high dynamic uptake of 6.58 mmol g-1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g-1 . The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV/Vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.
Collapse
Affiliation(s)
- Zi Wang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Alena M. Sheveleva
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Daniel Lee
- Department of Chemical Engineering and Analytical ScienceUniversity of ManchesterManchesterM13 9PLUK
| | - Yinlin Chen
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Dinu Iuga
- Department of PhysicsUniversity of WarwickCoventryCV4 7ALUK
| | | | - Yujie Ma
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Jiangnan Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Lei Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Yongqiang Cheng
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Luke L. Daemen
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Sarah J. Days
- Diamond Light SourceHarwell Science CampusOxfordshireOX11 0DEUK
| | | | - Bing Han
- Department of MaterialsUniversity of ManchesterManchesterM13 9PLUK
| | | | - Eric J. L. McInnes
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Floriana Tuna
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
23
|
Seehamart K, Busayaporn W, Chanajaree R. Molecular adsorption and self-diffusion of NO 2, SO 2, and their binary mixture in MIL-47(V) material. RSC Adv 2023; 13:19207-19219. [PMID: 37362329 PMCID: PMC10289206 DOI: 10.1039/d3ra02724d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
The loading dependence of self-diffusion coefficients (Ds) of NO2, SO2, and their equimolar binary mixture in MIL-47(V) have been investigated by using classical molecular dynamics (MD) simulations. The Ds of NO2 are found to be two orders of magnitude greater than SO2 at low loadings and temperatures, and its Ds decreases monotonically with loading. The Ds of SO2 exhibit two diffusion patterns, indicating the specific interaction between the gas molecules and the MIL-47(V) lattice. The maximum activation energy (Ea) in the pure component and in the mixture for SO2 are 16.43 and 18.35 kJ mol-1, and for NO2 are 2.69 and 1.89 kJ mol-1, respectively. It is shown that SO2 requires more amount of energy than NO2 to increase the diffusion rate. The radial distribution functions (RDFs) of gas-gas and gas-lattice indicate that the Oh of MIL-47(V) are preferential adsorption site for both NO2 and SO2 molecules. However, the presence of the hydrogen bonding (HB) interaction between the O of SO2 and the H of MIL-47(V) and also their binding angle (θ(OHC)) of 120° with the linkers of lattice indicate a stronger binding interaction between the SO2 and the MIL-47(V), but it does not occur with NO2. The jump-diffusion of SO2 between adsorption sites within the lattice has been confirmed by the 2D density distribution plots. Moreover, the extraordinarily high Sdiff for NO2/SO2 of 623.4 shows that NO2 can diffuse through the MIL-47(V) significantly faster than SO2, especially at low loading and temperature.
Collapse
Affiliation(s)
- Kompichit Seehamart
- Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology Isan Khon Kaen Campus Khon Kaen 40000 Thailand
| | - Wutthikrai Busayaporn
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima 30000 Thailand
| | - Rungroj Chanajaree
- Metallurgy and Materials Science Research Institfute (MMRI), Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
24
|
Poryvaev AS, Gjuzi E, Yazikova AA, Polyukhov DM, Albrekht YN, Efremov AA, Kudriavykh NA, Yanshole VV, Hoffmann F, Fröba M, Fedin MV. Blatter Radical-Decorated Silica as a Prospective Adsorbent for Selective NO Capture from Air. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5191-5197. [PMID: 36652301 DOI: 10.1021/acsami.2c19183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nitrogen oxides are adverse poisonous gases present in the atmosphere and having detrimental effects on the human health and environment. In this work, we propose a new type of mesoporous materials capable of capturing nitrogen monoxide (NO) from air. The designed material combines the robust Santa Barbara Amorphous-15 silica scaffold and ultrastable Blatter-type radicals acting as NO traps. Using in situ electron paramagnetic resonance spectroscopy, we demonstrate that NO capture from air is selective and reversible at practical conditions, thus making Blatter radical-decorated silica highly promising for environmental applications.
Collapse
Affiliation(s)
- Artem S Poryvaev
- International Tomography Center SB RAS, Institutskaya Street 3a, Novosibirsk, 630090, Russia
| | - Eva Gjuzi
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Anastasiya A Yazikova
- International Tomography Center SB RAS, Institutskaya Street 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Daniil M Polyukhov
- International Tomography Center SB RAS, Institutskaya Street 3a, Novosibirsk, 630090, Russia
| | - Yana N Albrekht
- International Tomography Center SB RAS, Institutskaya Street 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Aleksandr A Efremov
- International Tomography Center SB RAS, Institutskaya Street 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | | | - Vadim V Yanshole
- International Tomography Center SB RAS, Institutskaya Street 3a, Novosibirsk, 630090, Russia
| | - Frank Hoffmann
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya Street 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| |
Collapse
|
25
|
Control of the pore chemistry in metal-organic frameworks for efficient adsorption of benzene and separation of benzene/cyclohexane. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
26
|
Nath K, Ahmed A, Siegel DJ, Matzger AJ. Microscale Determination of Binary Gas Adsorption Isotherms in MOFs. J Am Chem Soc 2022; 144:20939-20946. [DOI: 10.1021/jacs.2c09818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Karabi Nath
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan48109, United States
| | - Alauddin Ahmed
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan48109, United States
| | - Donald J. Siegel
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan48109, United States
- Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan48109, United States
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan48109, United States
| | - Adam J. Matzger
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan48109-1055, United States
| |
Collapse
|
27
|
Gebreegziabher TB, Gebremariam SK, Wang S, Nam H. Synthesis of sawdust-based porous carbon using Box–Behnken design for NO2 adsorption: modeling, optimization, and study of interaction effects. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Panigrahi TH, Sahoo SR, Murmu G, Maity D, Saha S. Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx) – A critical review. PROG SOLID STATE CH 2022. [DOI: 10.1016/j.progsolidstchem.2022.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Li J, Wang Z, Chen Y, Cheng Y, Daemen LL, Tuna F, McInnes EJL, Day SJ, Ramirez-Cuesta AJ, Schröder M, Yang S. Synthesis of Nitro Compounds from Nitrogen Dioxide Captured in a Metal-Organic Framework. J Am Chem Soc 2022; 144:18967-18975. [PMID: 36198137 PMCID: PMC9585588 DOI: 10.1021/jacs.2c07283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing levels of air pollution are driving the need for the development of new processes that take "waste-to-chemicals". Herein, we report the capture and conversion under ambient conditions of a major air pollutant, NO2, using a robust metal-organic framework (MOF) material, Zr-bptc (H4bptc = 3,3',5,5'-biphenyltetracarboxylic acid), comprising {Zr6(μ3-O)4(μ3-OH)4(COO)12} clusters linked by 4-connected bptc4- ligands in an ftw topology. At 298 K, Zr-bptc shows exceptional stability and adsorption of NO2 at both low (4.9 mmol g-1 at 10 mbar) and high pressures (13.8 mmol g-1 at 1.0 bar), as measured by isotherm experiments. Dynamic breakthrough experiments have confirmed the selective retention of NO2 by Zr-bptc at low concentrations under both dry and wet conditions. The immobilized NO2 can be readily transformed into valuable nitro compounds relevant to construction, agrochemical, and pharmaceutical industries. In situ crystallographic and spectroscopic studies reveal strong binding interactions of NO2 to the {Zr6(μ3-O)4(μ3-OH)4(COO)12} cluster node. This study paves a circular pathway to enable the integration of nitrogen-based air pollutants into the production of fine chemicals.
Collapse
Affiliation(s)
- Jiangnan Li
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Zi Wang
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Yinlin Chen
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Luke L Daemen
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Floriana Tuna
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K.,Photon Science Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Sarah J Day
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
30
|
Zhu J, Zhou H, Wang R, Wang C. Core-shell nanosheets@MIL-101(Fe) heterostructures with enhanced photocatalytic activity promoted by peroxymonosulfate. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Gupta NK, Vikrant K, Kim KS, Kim KH, Giannakoudakis DA. Regeneration strategies for metal–organic frameworks post acidic gas capture. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
An B, Li Z, Wang Z, Zeng X, Han X, Cheng Y, Sheveleva AM, Zhang Z, Tuna F, McInnes EJL, Frogley MD, Ramirez-Cuesta AJ, S Natrajan L, Wang C, Lin W, Yang S, Schröder M. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. NATURE MATERIALS 2022; 21:932-938. [PMID: 35773491 DOI: 10.1038/s41563-022-01279-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Natural gas, consisting mainly of methane (CH4), has a relatively low energy density at ambient conditions (~36 kJ l-1). Partial oxidation of CH4 to methanol (CH3OH) lifts the energy density to ~17 MJ l-1 and drives the production of numerous chemicals. In nature, this is achieved by methane monooxygenase with di-iron sites, which is extremely challenging to mimic in artificial systems due to the high dissociation energy of the C-H bond in CH4 (439 kJ mol-1) and facile over-oxidation of CH3OH to CO and CO2. Here we report the direct photo-oxidation of CH4 over mono-iron hydroxyl sites immobilized within a metal-organic framework, PMOF-RuFe(OH). Under ambient and flow conditions in the presence of H2O and O2, CH4 is converted to CH3OH with 100% selectivity and a time yield of 8.81 ± 0.34 mmol gcat-1 h-1 (versus 5.05 mmol gcat-1 h-1 for methane monooxygenase). By using operando spectroscopic and modelling techniques, we find that confined mono-iron hydroxyl sites bind CH4 by forming an [Fe-OH···CH4] intermediate, thus lowering the barrier for C-H bond activation. The confinement of mono-iron hydroxyl sites in a porous matrix demonstrates a strategy for C-H bond activation in CH4 to drive the direct photosynthesis of CH3OH.
Collapse
Affiliation(s)
- Bing An
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Zhe Li
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, China
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Zi Wang
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Xiangdi Zeng
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alena M Sheveleva
- Department of Chemistry, University of Manchester, Manchester, UK
- Photon Science Institute, University of Manchester, Manchester, UK
| | - Zhongyue Zhang
- Department of Chemistry, Nagoya University, Nagoya, Japan
| | - Floriana Tuna
- Department of Chemistry, University of Manchester, Manchester, UK
- Photon Science Institute, University of Manchester, Manchester, UK
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester, Manchester, UK
- Photon Science Institute, University of Manchester, Manchester, UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Didcot, UK
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Cheng Wang
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, China
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
33
|
Daglar H, Keskin S. Combining Machine Learning and Molecular Simulations to Unlock Gas Separation Potentials of MOF Membranes and MOF/Polymer MMMs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32134-32148. [PMID: 35818710 PMCID: PMC9305976 DOI: 10.1021/acsami.2c08977] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Due to the enormous increase in the number of metal-organic frameworks (MOFs), combining molecular simulations with machine learning (ML) would be a very useful approach for the accurate and rapid assessment of the separation performances of thousands of materials. In this work, we combined these two powerful approaches, molecular simulations and ML, to evaluate MOF membranes and MOF/polymer mixed matrix membranes (MMMs) for six different gas separations: He/H2, He/N2, He/CH4, H2/N2, H2/CH4, and N2/CH4. Single-component gas uptakes and diffusivities were computed by grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations, respectively, and these simulation results were used to assess gas permeabilities and selectivities of MOF membranes. Physical, chemical, and energetic features of MOFs were used as descriptors, and eight different ML models were developed to predict gas adsorption and diffusion properties of MOFs. Gas permeabilities and membrane selectivities of 5249 MOFs and 31,494 MOF/polymer MMMs were predicted using these ML models. To examine the transferability of the ML models, we also focused on computer-generated, hypothetical MOFs (hMOFs) and predicted the gas permeability and selectivity of 1000 hMOF/polymer MMMs. The ML models that we developed accurately predict the uptake and diffusion properties of He, H2, N2, and CH4 gases in MOFs and will significantly accelerate the assessment of separation performances of MOF membranes and MOF/polymer MMMs. These models will also be useful to direct the extensive experimental efforts and computationally demanding molecular simulations to the fabrication and analysis of membrane materials offering high performance for a target gas separation.
Collapse
|
34
|
Zhang X, Maddock J, Nenoff TM, Denecke MA, Yang S, Schröder M. Adsorption of iodine in metal-organic framework materials. Chem Soc Rev 2022; 51:3243-3262. [PMID: 35363235 PMCID: PMC9328120 DOI: 10.1039/d0cs01192d] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Nuclear power will continue to provide energy for the foreseeable future, but it can pose significant challenges in terms of the disposal of waste and potential release of untreated radioactive substances. Iodine is a volatile product from uranium fission and is particularly problematic due to its solubility. Different isotopes of iodine present different issues for people and the environment. 129I has an extremely long half-life of 1.57 × 107 years and poses a long-term environmental risk due to bioaccumulation. In contrast, 131I has a shorter half-life of 8.02 days and poses a significant risk to human health. There is, therefore, an urgent need to develop secure, efficient and economic stores to capture and sequester ionic and neutral iodine residues. Metal-organic framework (MOF) materials are a new generation of solid sorbents that have wide potential applicability for gas adsorption and substrate binding, and recently there is emerging research on their use for the selective adsorptive removal of iodine. Herein, we review the state-of-the-art performance of MOFs for iodine adsorption and their host-guest chemistry. Various aspects are discussed, including establishing structure-property relationships between the functionality of the MOF host and iodine binding. The techniques and methodologies used for the characterisation of iodine adsorption and of iodine-loaded MOFs are also discussed together with strategies for designing new MOFs that show improved performance for iodine adsorption.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - John Maddock
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Tina M Nenoff
- Materials, Physics and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Melissa A Denecke
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- Division of Physical and Chemical Science, Department of Nuclear Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Sihai Yang
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Martin Schröder
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
35
|
Lin J, Ho W, Qin X, Leung CF, Au VKM, Lee SC. Metal-Organic Frameworks for NO x Adsorption and Their Applications in Separation, Sensing, Catalysis, and Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105484. [PMID: 35032140 DOI: 10.1002/smll.202105484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen oxide (NOx ) is a family of poisonous and highly reactive gases formed when fuel is burned at high temperatures during anthropogenic behavior. It is a strong oxidizing agent that significantly contributes to the ozone and smog in the atmosphere. Thus, NOx removal is important for the ecological environment upon which the civilization depends. In recent decades, metal-organic frameworks (MOFs) have been regarded as ideal candidates to address these issues because they form a reticular structure between proper inorganic and organic constituents with ultrahigh porosity and high internal surface area. These characteristics render them chemically adaptable for NOx adsorption, separation, sensing, and catalysis. In additional, MOFs enable potential nitric oxide (NO) delivery for the signaling of molecular NO in the human body. Herein, the different advantages of MOFs for coping with current environmental burdens and improving the habitable environment of humans on the basis of NOx adsorption are reviewed.
Collapse
Affiliation(s)
- Jinliang Lin
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Xing Qin
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Vonika Ka-Man Au
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Shun-Cheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University Hong Kong, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
36
|
Lee J, Seo Y, Kang DW, Park S, Kim H, Kim J, Kim K, Hong CS, Lim DW, Lee E. Reversible ammonia uptake at room temperature in a robust and tunable metal-organic framework. RSC Adv 2022; 12:7605-7611. [PMID: 35424727 PMCID: PMC8982270 DOI: 10.1039/d2ra01270g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Ammonia is useful for the production of fertilizers and chemicals for modern technology, but its high toxicity and corrosiveness are harmful to the environment and human health. Here, we report the recyclable and tunable ammonia adsorption using a robust imidazolium-based MOF (JCM-1) that uptakes 5.7 mmol g−1 of NH3 at 298 K reversibly without structural deformation. Furthermore, a simple substitution of NO3− with Cl− in a post-synthetic manner leads to an increase in the NH3 uptake capacity of JCM-1(Cl−) up to 7.2 mmol g−1. Recyclable and tunable ammonia adsorption with JCM-1 and JCM-1(Cl−) at room temperature occurs reversibly without structural decomposition.![]()
Collapse
Affiliation(s)
- Jaechul Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Younggyu Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
| | - Seungjae Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Hyunyong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jaheon Kim
- Department of Chemistry, Soongsil University Seoul 06978 Republic of Korea
| | - Kimoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea .,Division of Advanced Materials Science, Pohang University of Science and Technology Pohang 37673 Republic of Korea.,Center for Self-assembly and Complexity, Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
| | - Dae-Woon Lim
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan.,Department of Chemistry and Medical Chemistry, Yonsei University Wonju 26493 Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea .,Division of Advanced Materials Science, Pohang University of Science and Technology Pohang 37673 Republic of Korea
| |
Collapse
|
37
|
Han Z, Li J, Lu W, Wang K, Chen Y, Zhang X, Lin L, Han X, Teat SJ, Frogley MD, Yang S, Shi W, Cheng P. A {Ni
12
}‐Wheel‐Based Metal–Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zongsu Han
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Jiangnan Li
- Department of Chemistry University of Manchester Manchester M13 9PL UK
| | - Wanpeng Lu
- Department of Chemistry University of Manchester Manchester M13 9PL UK
| | - Kunyu Wang
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Yinlin Chen
- Department of Chemistry University of Manchester Manchester M13 9PL UK
| | - Xiaoping Zhang
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Longfei Lin
- Beijing National Laboratory for Molecular Science Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xue Han
- Department of Chemistry University of Manchester Manchester M13 9PL UK
| | - Simon J. Teat
- Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Mark D. Frogley
- Diamond Light Source Harwell Science Campus Oxfordshire OX11 0DE UK
| | - Sihai Yang
- Department of Chemistry University of Manchester Manchester M13 9PL UK
| | - Wei Shi
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Peng Cheng
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
38
|
Iodinated vs non-iodinated: Comparison of sorption selectivity by [Zn2(bdc)2dabco]n and superstructural 2-iodoterephtalate-based metal–organic framework. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Dettmann MA, Cavalcante LSR, Magdaleno C, Masalkovaitė K, Vong D, Dull JT, Rand BP, Daemen LL, Goldman N, Faller R, Moulé AJ. Comparing the Expense and Accuracy of Methods to Simulate Atomic Vibrations in Rubrene. J Chem Theory Comput 2021; 17:7313-7320. [PMID: 34818006 DOI: 10.1021/acs.jctc.1c00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Atomic vibrations can inform about materials properties from hole transport in organic semiconductors to correlated disorder in metal-organic frameworks. Currently, there are several methods for predicting these vibrations using simulations, but the accuracy-efficiency tradeoffs have not been examined in depth. In this study, rubrene is used as a model system to predict atomic vibrational properties using six different simulation methods: density functional theory, density functional tight binding, density functional tight binding with a Chebyshev polynomial-based correction, a trained machine learning model, a pretrained machine learning model called ANI-1, and a classical forcefield model. The accuracy of each method is evaluated by comparison to the experimental inelastic neutron scattering spectrum. All methods discussed here show some accuracy across a wide energy region, though the Chebyshev-corrected tight-binding method showed the optimal combination of high accuracy with low expense. We then offer broad simulation guidelines to yield efficient, accurate results for inelastic neutron scattering spectrum prediction.
Collapse
Affiliation(s)
- Makena A Dettmann
- University of California Davis, Davis, California 95616, United States
| | | | - Corina Magdaleno
- University of California Davis, Davis, California 95616, United States
| | | | - Daniel Vong
- University of California Davis, Davis, California 95616, United States
| | - Jordan T Dull
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Barry P Rand
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Luke L Daemen
- Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nir Goldman
- University of California Davis, Davis, California 95616, United States.,Lawrence Livermore National Lab, Livermore, California 94550, United States
| | - Roland Faller
- University of California Davis, Davis, California 95616, United States
| | - Adam J Moulé
- University of California Davis, Davis, California 95616, United States
| |
Collapse
|
40
|
Chen X, Wang T, Shi J, Lv W, Han Y, Zeng M, Yang J, Hu N, Su Y, Wei H, Zhou Z, Yang Z, Zhang Y. A Novel Artificial Neuron-Like Gas Sensor Constructed from CuS Quantum Dots/Bi 2S 3 Nanosheets. NANO-MICRO LETTERS 2021; 14:8. [PMID: 34859321 PMCID: PMC8639894 DOI: 10.1007/s40820-021-00740-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/23/2021] [Indexed: 05/07/2023]
Abstract
Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring. Gas sensors based on conventional bulk materials often suffer from their poor surface-sensitive sites, leading to a very low gas adsorption ability. Moreover, the charge transportation efficiency is usually inhibited by the low defect density of surface-sensitive area than that in the interior. In this work, a gas sensing structure model based on CuS quantum dots/Bi2S3 nanosheets (CuS QDs/Bi2S3 NSs) inspired by artificial neuron network is constructed. Simulation analysis by density functional calculation revealed that CuS QDs and Bi2S3 NSs can be used as the main adsorption sites and charge transport pathways, respectively. Thus, the high-sensitivity sensing of NO2 can be realized by designing the artificial neuron-like sensor. The experimental results showed that the CuS QDs with a size of about 8 nm are highly adsorbable, which can enhance the NO2 sensitivity due to the rich sensitive sites and quantum size effect. The Bi2S3 NSs can be used as a charge transfer network channel to achieve efficient charge collection and transmission. The neuron-like sensor that simulates biological smell shows a significantly enhanced response value (3.4), excellent responsiveness (18 s) and recovery rate (338 s), low theoretical detection limit of 78 ppb, and excellent selectivity for NO2. Furthermore, the developed wearable device can also realize the visual detection of NO2 through real-time signal changes.
Collapse
Affiliation(s)
- Xinwei Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tao Wang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jia Shi
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wen Lv
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yutong Han
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Wei
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhihua Zhou
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yafei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
41
|
Yang S, Han Z, Li J, Lu W, Wang K, Chern Y, Zhang X, Lin L, Han X, Teat S, Frogley M, Shi W, Cheng P. A {Ni12}-Wheel-Based Metal-Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angew Chem Int Ed Engl 2021; 61:e202115585. [PMID: 34843165 DOI: 10.1002/anie.202115585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/07/2022]
Abstract
Air pollutions by SO 2 and NO 2 have caused significant risks on the environment and human health. Understanding the mechanism of active sites within capture materials is of fundamental importance to the development of new clean-up technologies. Here we report the crystallographic observation of reversible coordinative binding of SO 2 and NO 2 on open Ni(II) sites in a metal-organic framework (NKU-100) incorporating an unprecedented {Ni 12 }-wheel, which exhibits six open Ni(II) sites on desolvation. Immobilised gas molecules are further stabilised by cooperative host-guest interactions comprised of hydrogen bonds, π ··· π interactions and dipole interactions. At 298 K and 1.0 bar, NKU-100 shows adsorption uptakes of 6.21 and 5.80 mmol g -1 for SO 2 and NO 2 , respectively. Dynamic breakthrough experiments have confirmed the selective retention of SO 2 and NO 2 at low concentrations under dry conditions. This work will inspire the future design of efficient sorbents for the capture of SO 2 and NO 2 .
Collapse
Affiliation(s)
- Sihai Yang
- University of Manchester, School of Chemistry, School of Chemistry, University of Manchester, M13 9PL, Manchester, UNITED KINGDOM
| | | | - Jiangnan Li
- The University of Manchester, School of Chemistry, UNITED KINGDOM
| | - Wanpeng Lu
- The University of Manchester, School of Chemistry, UNITED KINGDOM
| | - Kunyun Wang
- Nankai University, Department of Chemistry, CHINA
| | - Yinlin Chern
- The University of Manchester, School of Chemistry, UNITED KINGDOM
| | | | - Longfei Lin
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Xue Han
- The University of Manchester, School of Chemistry, UNITED KINGDOM
| | - Simon Teat
- Lawrence Berkeley National Laboratory: E O Lawrence Berkeley National Laboratory, chemistry, UNITED STATES
| | | | - Wei Shi
- Nankai University, College of Chemistry, CHINA
| | - Peng Cheng
- Nankai University, Department of Chemistry, CHINA
| |
Collapse
|
42
|
Lin L, Han X, Han B, Yang S. Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chem Soc Rev 2021; 50:11270-11292. [PMID: 34632985 DOI: 10.1039/d1cs00039j] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of efficient catalysts to break down and convert woody biomass will be a paradigm shift in delivering the global target of sustainable economy and environment via the use of cheap, highly abundant, and renewable carbon resources. However, such development is extremely challenging due to the complexity of lignocellulose, and today most biomass is treated simply as waste. The solution lies in the design of multifunctional catalysts that can place effective control on substrate activation and product selectivity. This is, however, severely hindered by the lack of fundamental understanding of (i) the precise role of active sites, and (ii) the catalyst-substrate chemistry that underpins the catalytic activity. Moreover, active sites alone often cannot deliver the desired selectivity of products, and full understanding of the microenvironment of the active sites is urgently needed. Here, we review key recent advances in the study of reaction mechanisms of biomass conversion over emerging heterogeneous catalysts. These insights will inform the design of future catalytic systems showing improved activity and selectivity.
Collapse
Affiliation(s)
- Longfei Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
43
|
Percival SJ, Henkelis SE, Li M, Schindelholz ME, Krumhansl JL, Small LJ, Lobo RF, Nenoff TM. Nickel-Loaded SSZ-13 Zeolite-Based Sensor for the Direct Electrical Readout Detection of NO 2. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Stephen J. Percival
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Susan E. Henkelis
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Muyuan Li
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mara E. Schindelholz
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - James L. Krumhansl
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Leo J. Small
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Raul F. Lobo
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tina M. Nenoff
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
44
|
Sun M, Hanif A, Wang T, Yang C, Tsang DCW, Shang J. Chrysanthemum flower like silica with highly dispersed Cu nanoparticles as a high-performance NO 2 adsorbent. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126400. [PMID: 34329035 DOI: 10.1016/j.jhazmat.2021.126400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric NO2 removal is urgent and necessary due to its negative effects on the eco-system. Here we developed the chrysanthemum flower-like silica (KCC-1) loaded with highly dispersed copper nanoparticles for efficient NO2 removal under ambient conditions. We carefully studied the NO2 removal performance of Cu-KCC-1 materials with different copper loadings (0, 5, 10, and 15 wt%) and demonstrated the Cu0 nanoparticles (10 wt%) boosted the NO2 removal capacity of KCC-1 by up to 51 times. KCC-1 loaded with 10 wt% of copper was verified to be the best-performing adsorbents, featuring an efficient NO2 removal capacity of 3.63 mmol/g and a moderate NO release (11.3%), which was primarily attributed to the presence of Cu0 nanoparticles. The mechanistic study unveiled that the loaded Cu0 particles served as active adsorption sites for NO2 molecules and reduced the NO2 dissociation by covering the sites primarily responsible for NO2 dissociation (i.e., oxygen vacancies). This work affords a promising adsorbent for NO2 abatement under ambient conditions. The new knowledge established in developing adsorbents for NO2 would promote future research in this emerging and niche area of air pollution control.
Collapse
Affiliation(s)
- Mingzhe Sun
- City University of Hong Kong Shenzhen Research Institute, Nanshan District, Shenzhen 518000, PR China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Aamir Hanif
- City University of Hong Kong Shenzhen Research Institute, Nanshan District, Shenzhen 518000, PR China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, Islamic University of Science and Technology, Awantipora 192122, Jammu and Kashmir, India
| | - Tianqi Wang
- City University of Hong Kong Shenzhen Research Institute, Nanshan District, Shenzhen 518000, PR China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chao Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jin Shang
- City University of Hong Kong Shenzhen Research Institute, Nanshan District, Shenzhen 518000, PR China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
45
|
Wang TL, Zhou ZF, Liu JF, Hou XD, Zhou Z, Dai YL, Hou ZY, Chen F, Zheng LP. Donut-like MOFs of copper/nicotinic acid and composite hydrogels with superior bioactivity for rh-bFGF delivering and skin wound healing. J Nanobiotechnology 2021; 19:275. [PMID: 34503490 PMCID: PMC8427876 DOI: 10.1186/s12951-021-01014-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background Skin injury and the resultant defects are common clinical problems, and usually lead to chronic skin ulcers and even life-threatening diseases. Copper, an essential trace element of human body, has been reported to promote the regeneration of skin by stimulating proliferation of endothelial cell and enhance angiogenesis. Results Herein, we have prepared a new donut-like metal–organic frameworks (MOF) of copper-nicotinic acid (CuNA) by a simple solvothermal reaction. The rough surface of CuNA is beneficial for loading/release basic fibroblast growth factor (bFGF). The CuNAs with/without bFGF are easily processed into a light-responsive composite hydrogel with GelMA, which not only show excellent mechanical properties, but also display superior biocompatibility, antibacterial ability and bioactivity. Moreover, in the in vivo full-thickness defect model of skin wound, the resultant CuNA-bFGF@GelMA hydrogels significantly accelerate the wound healing, by simultaneously inhibiting the inflammatory response, promoting the new blood vessels formation and the deposition of collagen and elastic fibers. Conclusions Considering the superior biocompatibility, antibacterial ability and bioactivity, the CuNA and its composite light-responsive hydrogel system will be promising in the applications of skin and even other tissue regeneration. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01014-z.
Collapse
Affiliation(s)
- Tian-Long Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Zi-Fei Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China.,Shanghai Trauma Emergency Center, Shanghai, 200072, China
| | - Jun-Feng Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Xiao-Dong Hou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Zhi Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Yun-Lu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, 999078, Macau SAR, China
| | - Zhi-Yong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China.
| | - Long-Po Zheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China. .,Shanghai Trauma Emergency Center, Shanghai, 200072, China.
| |
Collapse
|
46
|
Zhang A, Liu B, Liu M, Xie Z, Wang D, Feng G. The adsorption properties of defect controlled metal-organic frameworks of UiO-66. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118842] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Zhang F, Shang H, Wang L, Wang Y, Yang J, Xia Y, Li H, Li L, Li J. Construction of a Porous Metal-Organic Framework with a High Density of Open Cr Sites for Record N 2 /O 2 Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100866. [PMID: 34346090 DOI: 10.1002/adma.202100866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The removal of low concentration N2 is of great significance and challenging in the industrial production of high-purity O2 . Herein, a chromium-based metal-organic framework, namely, TYUT-96Cr, is reported, which has an unprecedented N2 capture capacity of 37.46 cm3 cm-3 and N2 /O2 (5:95, v/v) selectivity up to 26.95 (298 K and 1 bar), thus setting new benchmarks for all reported metal-organic frameworks and commercially used ones (Li-LSX and 13X). Breakthrough experiments reveal that N2 can be directly extracted from various N2 /O2 (79:21, 50:50, 5:95, and 1:99, v/v) mixtures by this material, affording a record-high O2 -production scale with 99.99% purity. Density functional theory calculations and in situ infrared spectroscopy studies demonstrate that the high-density open Cr (III) sites in TYUT-96Cr can behave as effective Lewis acidic sites, thus resulting in a strong affinity toward N2 . The high N2 adsorption selectivity, exceptional separation performance, and ultrahigh structural stability render this porous material with great potential for this important industrial application.
Collapse
Affiliation(s)
- Feifei Zhang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| | - Hua Shang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| | - Yong Wang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| | - Jiangfeng Yang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| | - Yuanhua Xia
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621999, P. R. China
| | - Hao Li
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621999, P. R. China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| |
Collapse
|
48
|
Thompho S, Fritzsche S, Chokbunpiam T, Remsungnen T, Janke W, Hannongbua S. Adsorption and the Chemical Reaction N 2O 4 ↔ 2NO 2 in the Presence of N 2 in a Gas Phase Connected with a Carbon Nanotube. ACS OMEGA 2021; 6:17342-17352. [PMID: 34278120 PMCID: PMC8280629 DOI: 10.1021/acsomega.1c01459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 05/17/2023]
Abstract
The paper shows, by molecular simulations, that a CNT (9,9) carbon nanotube allows very efficient separation of nitrogen oxides (NO x ) from N2, that has in good approximation properties of the complete air mixture. Gibbs ensemble Monte Carlo simulations are used to describe the adsorption. The permanent chemical reaction between N2O4 and NO2, which occurs simultaneously to adsorption, is treated by the reactive Monte Carlo simulation. A very high selectivity has been found. For a low pressure and at T = 298 K, an adsorption/reaction selectivity between NO x and N2 can reach values up to 3 × 103.
Collapse
Affiliation(s)
- Somphob Thompho
- Pharmaceutical
Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| | - Siegfried Fritzsche
- Institute
of Theoretical Physics, Leipzig University, 04081 Leipzig, Germany
| | - Tatiya Chokbunpiam
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Tawun Remsungnen
- Faculty
of Interdisciplinary Studies, Khon Kaen
University, Nong Khai 43000, Thailand
| | - Wolfhard Janke
- Institute
of Theoretical Physics, Faculty of Physics and Geosciences, Leipzig University, 04081 Leipzig, Germany
| | - Supot Hannongbua
- Computational
Chemistry Unit Cell (CCUC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
49
|
Magott M, Gaweł B, Sarewicz M, Reczyński M, Ogorzały K, Makowski W, Pinkowicz D. Large breathing effect induced by water sorption in a remarkably stable nonporous cyanide-bridged coordination polymer. Chem Sci 2021; 12:9176-9188. [PMID: 34276948 PMCID: PMC8261731 DOI: 10.1039/d1sc02060a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
While metal-organic frameworks (MOFs) are at the forefront of cutting-edge porous materials, extraordinary sorption properties can also be observed in Prussian Blue Analogs (PBAs) and related materials comprising extremely short bridging ligands. Herein, we present a bimetallic nonporous cyanide-bridged coordination polymer (CP) {[Mn(imH)]2[Mo(CN)8]} n (1Mn; imH = imidazole) that can efficiently and reversibly capture and release water molecules over tens of cycles without any fatigue despite being based on one of the shortest bridging ligands known - the cyanide. The sorption performance of {[Mn(imH)]2[Mo(CN)8]} n matches or even outperforms MOFs that are typically selected for water harvesting applications with perfect sorption reversibility and very low desorption temperatures. Water sorption in 1Mn is possible due to the breathing effect (accompanied by a dramatic cyanide-framework transformation) occurring in three well-defined steps between four different crystal phases studied structurally by X-ray diffraction structural analysis. Moreover, the capture of H2O by 1Mn switches the EPR signal intensity of the MnII centres, which has been demonstrated by in situ EPR measurements and enables monitoring of the hydration level of 1Mn by EPR. The sorption of water in 1Mn controls also its photomagnetic behavior at the cryogenic regime, thanks to the presence of the [MoIV(CN)8]4- photomagnetic chromophore in the structure. These observations demonstrate the extraordinary sorption potential of cyanide-bridged CPs and the possibility to merge it with the unique physical properties of this class of compounds arising from their bimetallic character (e.g. photomagnetism and long-range magnetic ordering).
Collapse
Affiliation(s)
- Michał Magott
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Bartłomiej Gaweł
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU) 7491 Trondheim Norway
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 30-387 Kraków Poland
| | - Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Karolina Ogorzały
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Wacław Makowski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
50
|
|