1
|
Moazzami Gudarzi M, Slizovskiy S, Mao B, Tovari E, Pinter G, Sanderson D, Asaad M, Xiang Y, Wang Z, Guo J, Spencer BF, Geim A, Fal’ko VI, Kretinin AV. Ultimate Charge Transport Regimes in Doping-Controlled Graphene Laminates: Phonon-Assisted Processes Revealed by the Linear Magnetoresistance. ACS NANO 2024; 18:22172-22180. [PMID: 39116121 PMCID: PMC11342362 DOI: 10.1021/acsnano.4c05512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Understanding and controlling the electrical properties of solution-processed 2D materials is key to further printed electronics progress. Here, we demonstrate that the thermolysis of the aromatic intercalants utilized in nanosheet exfoliation for graphene laminates allows for high intrinsic mobility and the simultaneous control of doping type (n- and p-) and concentration over a wide range. We establish that the intraflake mobility is high by observing a linear magnetoresistance of such solution-processed graphene laminates and using it to devolve the interflake tunneling and intralayer magnetotransport. Consequently, we determine the temperature dependencies of the inter- and intralayer characteristics. The intraflake transport appears to be dominated by electron-phonon scattering processes at temperatures T > 20 K, while the interflake transport is governed by phonon-assisted tunneling. In particular, we identify the efficiency of phonon-assisted tunneling as the main limiting factor for electrical conductivity in graphene laminates at room temperature. We also demonstrate a thermoelectric sensitivity of around 50 μV·K-1 in a solution-processed metal-free graphene-based thermocouple.
Collapse
Affiliation(s)
- Mohsen Moazzami Gudarzi
- Department
of Physics and Astronomy, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Sergey Slizovskiy
- Department
of Physics and Astronomy, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Boyang Mao
- Department
of Physics and Astronomy, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Cambridge
Graphene Centre, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Endre Tovari
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gergo Pinter
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David Sanderson
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Maryana Asaad
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ying Xiang
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Zhiyuan Wang
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Jianqiang Guo
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ben F. Spencer
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Alexandra Geim
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Vladimir I. Fal’ko
- Department
of Physics and Astronomy, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- National
Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute for Advanced Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Andrey V. Kretinin
- Department
of Physics and Astronomy, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- National
Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Lammers A, Hsu HH, Sundaram S, Gagnon KA, Kim S, Lee JH, Tung YC, Eyckmans J, Chen CS. Rapid Tissue Perfusion Using Sacrificial Percolation of Anisotropic Networks. MATTER 2024; 7:2184-2204. [PMID: 39221109 PMCID: PMC11360881 DOI: 10.1016/j.matt.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tissue engineering has long sought to rapidly generate perfusable vascularized tissues with vessel sizes spanning those seen in humans. Current techniques such as biological 3D printing (top-down) and cellular self-assembly (bottom-up) are resource intensive and have not overcome the inherent tradeoff between vessel resolution and assembly time, limiting their utility and scalability for engineering tissues. We present a flexible and scalable technique termed SPAN - Sacrificial Percolation of Anisotropic Networks, where a network of perfusable channels is created throughout a tissue in minutes, irrespective of its size. Conduits with length scales spanning arterioles to capillaries are generated using pipettable alginate fibers that interconnect above a percolation density threshold and are then degraded within constructs of arbitrary size and shape. SPAN is readily used within common tissue engineering processes, can be used to generate endothelial cell-lined vasculature in a multi-cell type construct, and paves the way for rapid assembly of perfusable tissues.
Collapse
Affiliation(s)
- Alex Lammers
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Heng-Hua Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Subramanian Sundaram
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Keith A. Gagnon
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sudong Kim
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joshua H. Lee
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jeroen Eyckmans
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher S. Chen
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
3
|
Salter P, Villar MP, Lloret F, Reyes DF, Krueger M, Henderson CS, Araujo D, Jackman RB. Laser Engineering Nanocarbon Phases within Diamond for Science and Electronics. ACS NANO 2024; 18:2861-2871. [PMID: 38232330 PMCID: PMC10832029 DOI: 10.1021/acsnano.3c07116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Diamond, as the densest allotrope of carbon, displays a range of exemplary material properties that are attractive from a device perspective. Despite diamond displaying high carbon-carbon bond strength, ultrashort (femtosecond) pulse laser radiation can provide sufficient energy for highly localized internal breakdown of the diamond lattice. The less-dense carbon structures generated on lattice breakdown are subject to significant pressure from the surrounding diamond matrix, leading to highly unusual formation conditions. By tailoring the laser dose delivered to the diamond, it is shown that it is possible to create continuously modified internal tracks with varying electrical conduction properties. In addition to the widely reported conducting tracks, conditions leading to semiconducting and insulating written tracks have been identified. High-resolution transmission electron microscopy (HRTEM) is used to visualize the structural transformations taking place and provide insight into the different conduction regimes. The HRTEM reveals a highly diverse range of nanocarbon structures are generated by the laser irradiation, including many signatures for different so-called diaphite complexes, which have been seen in meteorite samples and seem to mediate the laser-induced breakdown of the diamond. This work offers insight into possible formation methods for the diamond and related nanocarbon phases found in meteorites.
Collapse
Affiliation(s)
- Patrick
S. Salter
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, U.K.
| | - M. Pilar Villar
- Department
of the Science of Materials, University
of Cadiz, 11510, Puerto Real, Spain
| | - Fernando Lloret
- Department
of the Science of Materials, University
of Cadiz, 11510, Puerto Real, Spain
| | - Daniel F. Reyes
- Department
of the Science of Materials, University
of Cadiz, 11510, Puerto Real, Spain
| | - Marta Krueger
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, U.K.
| | - Calum S. Henderson
- London
Centre for Nanotechnology and Department of Electronic and Electrical
Engineering, UCL (University College London), 17−19 Gordon Street, London, WC1H 0AH, U.K.
| | - Daniel Araujo
- Department
of the Science of Materials, University
of Cadiz, 11510, Puerto Real, Spain
| | - Richard B. Jackman
- London
Centre for Nanotechnology and Department of Electronic and Electrical
Engineering, UCL (University College London), 17−19 Gordon Street, London, WC1H 0AH, U.K.
| |
Collapse
|
4
|
Chen CH, Lai YT, Chen CF, Wu PT, Su KJ, Hsu SY, Dai GJ, Huang ZY, Hsu CL, Lee SY, Shen CH, Chen HY, Lee CC, Hsieh DR, Lin YF, Chao TS, Lo ST. Single-Gate In-Transistor Readout of Current Superposition and Collapse Utilizing Quantum Tunneling and Ferroelectric Switching. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301206. [PMID: 37282350 DOI: 10.1002/adma.202301206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/01/2023] [Indexed: 06/08/2023]
Abstract
In nanostructure assemblies, the superposition of current paths forms microscopic electric circuits, and different circuit networks produce varying results, particularly when utilized as transistor channels for computing applications. However, the intricate nature of assembly networks and the winding paths of commensurate currents hinder standard circuit modeling. Inspired by the quantum collapse of superposition states for information decoding in quantum circuits, the implementation of analogous current path collapse to facilitate the detection of microscopic circuits by modifying their network topology is explored. Here, the superposition and collapse of current paths in gate-all-around polysilicon nanosheet arrays are demonstrated to enrich the computational resources within transistors by engineering the channel length and quantity. Switching the ferroelectric polarization of Hf0.5 Zr0.5 O2 gate dielectric, which drives these transistors out-of-equilibrium, decodes the output polymorphism through circuit topological modifications. Furthermore, a protocol for the single-electron readout of ferroelectric polarization is presented with tailoring the channel coherence. The introduction of lateral path superposition results into intriguing metal-to-insulator transitions due to transient behavior of ferroelectric switching. This ability to adjust the current networks within transistors and their interaction with ferroelectric polarization in polycrystalline nanostructures lays the groundwork for generating diverse current characteristics as potential physical databases for optimization-based computing.
Collapse
Affiliation(s)
- Ching-Hung Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yu-Ting Lai
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ciao-Fen Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Department of Physics, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pei-Tzu Wu
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Kuan-Jung Su
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Sheng-Yang Hsu
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Guo-Jin Dai
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Zan-Yi Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chien-Lung Hsu
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Shen-Yang Lee
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chuan-Hui Shen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hsin-Yu Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chia-Chin Lee
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Dong-Ru Hsieh
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yen-Fu Lin
- Department of Physics, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tien-Sheng Chao
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Shun-Tsung Lo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
5
|
Zhu Z, Kim JS, Moody MJ, Lauhon LJ. Edge and Interface Resistances Create Distinct Trade-Offs When Optimizing the Microstructure of Printed van der Waals Thin-Film Transistors. ACS NANO 2023; 17:575-586. [PMID: 36573755 DOI: 10.1021/acsnano.2c09527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inks based on two-dimensional (2D) materials could be used to tune the properties of printed electronics while maintaining compatibility with scalable manufacturing processes. However, a very wide range of performances have been reported in printed thin-film transistors in which the 2D channel material exhibits considerable variation in microstructure. The lack of quantitative physics-based relationships between film microstructure and transistor performance limits the codesign of exfoliation, sorting, and printing processes to inefficient empirical approaches. To rationally guide the development of 2D inks and related processing, we report a gate-dependent resistor network model that establishes distinct microstructure-performance relationships created by near-edge and intersheet resistances in printed van der Waals thin-film transistors. The model is calibrated by analyzing electrical output characteristics of model transistors consisting of overlapping 2D nanosheets with varied thicknesses that are mechanically exfoliated and transferred. Kelvin probe force microscopy analysis on the model transistors leads to the discovery that the nanosheet edges, not the intersheet resistance, limit transport due to their impact on charge carrier depletion and scattering. Our model suggests that when transport in a 2D material network is limited by the near-edge resistance, the optimum nanosheet thickness is dictated by a trade-off between charged impurity screening and gate screening, and the film mobilities are more sensitive to variations in printed nanosheet density. Removal of edge states can enable the realization of higher mobilities with thinner nanosheets due to reduced junction resistances and reduced gate screening. Our analysis of the influence of nanosheet edges on the effective film mobility not only examines the prospects of extant exfoliation methods to achieve the optimum microstructure but also provides important perspectives on processes that are essential to maximizing printed film performance.
Collapse
Affiliation(s)
- Zhehao Zhu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Joon-Seok Kim
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Michael J Moody
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| |
Collapse
|
6
|
In situ synthesis of hierarchically-assembled three-dimensional ZnS nanostructures and 3D printed visualization. Sci Rep 2022; 12:16955. [PMID: 36216856 PMCID: PMC9550785 DOI: 10.1038/s41598-022-21297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Nanomaterials have gained enormous interest in improving the performance of energy harvest systems, biomedical devices, and high-strength composites. Many studies were performed fabricating more elaborate and heterogeneous nanostructures then the structures were characterized using TEM tomographic images, upgrading the fabrication technique. Despite the effort, intricate fabrication process, agglomeration characteristic, and non-uniform output were still limited to presenting the 3D panoramic views straightforwardly. Here we suggested in situ synthesis method to prepare complex and hierarchically-assembled nanostructures that consisted of ZnS nanowire core and nanoparticles under Ag2S catalyst. We demonstrated that the vaporized Zn and S were solidified in different shapes of nanostructures with the temperatures solely. To our knowledge, this is the first demonstration of synthesizing heterogeneous nanostructures, consisting of a nanowire from the vapor-liquid-solid and then nanoparticles from the vapor-solid grown mechanism by in situ temperature control. The obtained hierarchically-assembled ZnS nanostructures were characterized by various TEM technologies, verifying the crystal growth mechanism. Lastly, electron tomography and 3D printing enabled the nanoscale structures to visualize with centimeter scales. The 3D printing from randomly fabricated nanomaterials is rarely performed to date. The collaborating work could offer a better opportunity to fabricate advanced and sophisticated nanostructures.
Collapse
|
7
|
Milano G, Miranda E, Ricciardi C. Connectome of memristive nanowire networks through graph theory. Neural Netw 2022; 150:137-148. [DOI: 10.1016/j.neunet.2022.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022]
|
8
|
Franklin GF, Balocchi A, Taberna PL, Barnabe A, Barbosa JB, Blei M, Tongay S, Marie X, Urita K, Chane-Ching JY. Mitigation of Edge and Surface States Effects in Two-Dimensional WS 2 for Photocatalytic H 2 Generation. CHEMSUSCHEM 2022; 15:e202200169. [PMID: 35230739 DOI: 10.1002/cssc.202200169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Large scale development of the 2D transition metal di-chalcogenides (TMDC) relies on landmark improvement in performance, which could emerge from nanostructuration. Using p-WS2 nanoflakes with different degrees of exfoliation and fracturing, perspectives were provided to develop high-surface-area 2D p-WS2 films for the photocatalytic hydrogen generation. The critical role of inter-nanoflakes contacts within high-surface-area 2D films was demonstrated, highlighting the benefit of plane/plane versus edge/plane contacts. Evidence of the high density of surface states displayed by these 2D films was provided through electrochemical measurements. In addition to operating as recombination centers, the surface states were shown to give rise to deleterious Fermi-level pinning (FLP), which dramatically decreased the efficiency of charge carrier separation. Lastly, promising strategies yielding FLP suppression via surface states modification were proposed. In particular, use of a multifunctional ultrathin film displaying healing, catalytic, and n-type semiconduction properties was shown to greatly enhance charge carrier separation and transport to the photo-electrode/electrolyte interface. When the 2D photoelectrodes were fabricated with the above prerequisites (i. e., a high proportion of plane/plane contacts and a successful surface states chemical modification), a photocurrent up to 4.5 mA cm-2 was achieved for the first time on 2D p-WS2 photocathodes for hydrogen generation.
Collapse
Affiliation(s)
| | - Andrea Balocchi
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France
| | - Pierre-Louis Taberna
- UPS, CNRS, CIRIMAT, Université de Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France
| | - Antoine Barnabe
- UPS, CNRS, CIRIMAT, Université de Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France
| | - Juliana Barros Barbosa
- UPS, CNRS, CIRIMAT, Université de Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France
| | - Mark Blei
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, 85287, USA
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, 85287, USA
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France
| | - Koki Urita
- Department of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Jean Yves Chane-Ching
- UPS, CNRS, CIRIMAT, Université de Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France
| |
Collapse
|
9
|
Wang S, Huang Z, Shi W, Lee D, Wang Q, Shang W, Stein Y, Shao-Horn Y, Deng T, Wardle BL, Cui K. Unzipping Carbon Nanotube Bundles through NH-π Stacking for Enhanced Electrical and Thermal Transport. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28583-28592. [PMID: 34110139 DOI: 10.1021/acsami.1c01382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bundling of single-walled carbon nanotubes (SWCNTs) significantly undermines their superior thermal and electrical properties. Realizing stable, homogeneous, and surfactant-free dispersion of SWCNTs in solvents and composites has long been regarded as a key challenge. Here, we report amine-containing aromatic and cyclohexane molecules, which are common chain extenders (CEs) for epoxy curing in industry, can be used to effectively disperse CNTs. We achieve single-tube-level dispersion of SWCNTs in CE solvents, as demonstrated by the strong chirality-dependent absorption and photoluminescence emission. The SWCNT-CE dispersion remains stable under ambient conditions for months. The excellent dispersibility and stability are attributed to the formation of an n-type charge-transfer complex through the NH-π interaction between the amine group of CEs and the delocalized π bond of SWCNTs, which is confirmed by the negative Seebeck coefficient of the CE-functionalized SWCNT films, the red shift of the G band in the Raman spectra, and the NH-π peak in X-ray photoelectron spectroscopy. The high dispersibility of CEs significantly improves the electrical and thermal transport of macroscale CNT assemblies. The sheet resistance of the CE-dispersed SWCNT thin films reaches 161 Ω sq-1 at 80.8% optical transmittance after functional modification by HNO3. Moreover, the CEs cross-link CNTs and epoxy molecules, forming a pathway for phonon transport in CNT/epoxy nanocomposites. The thermal conductivity of the CE-CNT-epoxy composite is enhanced by 1850% compared with the original epoxy, which is the highest enhancement reported to date for CNT/epoxy nanocomposites. The CE-based NH-π interaction provides a new paradigm for the effective and stable dispersion of SWCNTs in a facile and scalable process.
Collapse
Affiliation(s)
- Shuiliang Wang
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhequn Huang
- Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Shi
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dongwook Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qixiang Wang
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Shang
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yosi Stein
- Analog Devices Inc. (ADI), Norwood, Massachusetts 02062, United States
| | - Yang Shao-Horn
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tao Deng
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Center for Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Brian L Wardle
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kehang Cui
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Center for Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Wei X, Zhao Y, Zhuang Y, Hernandez R. Engineered nanoparticle network models for autonomous computing. J Chem Phys 2021; 154:214702. [PMID: 34240993 DOI: 10.1063/5.0048898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Materials that exhibit synaptic properties are a key target for our effort to develop computing devices that mimic the brain intrinsically. If successful, they could lead to high performance, low energy consumption, and huge data storage. A 2D square array of engineered nanoparticles (ENPs) interconnected by an emergent polymer network is a possible candidate. Its behavior has been observed and characterized using coarse-grained molecular dynamics (CGMD) simulations and analytical lattice network models. Both models are consistent in predicting network links at varying temperatures, free volumes, and E-field (E⃗) strengths. Hysteretic behavior, synaptic short-term plasticity and long-term plasticity-necessary for brain-like data storage and computing-have been observed in CGMD simulations of the ENP networks in response to E-fields. Non-volatility properties of the ENP networks were also confirmed to be robust to perturbations in the dielectric constant, temperature, and affine geometry.
Collapse
Affiliation(s)
- Xingfei Wei
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yinong Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yi Zhuang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
11
|
Paul Inbaraj CR, Mathew RJ, Ulaganathan RK, Sankar R, Kataria M, Lin HY, Chen YT, Hofmann M, Lee CH, Chen YF. A Bi-Anti-Ambipolar Field Effect Transistor. ACS NANO 2021; 15:8686-8693. [PMID: 33970616 DOI: 10.1021/acsnano.1c00762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multistate logic is recognized as a promising approach to increase the device density of microelectronics, but current approaches are offset by limited performance and large circuit complexity. We here demonstrate a route toward increased integration density that is enabled by a mechanically tunable device concept. Bi-anti-ambipolar transistors (bi-AATs) exhibit two distinct peaks in their transconductance and can be realized by a single 2D-material heterojunction-based solid-state device. Dynamic deformation of the device reveals the co-occurrence of two conduction pathways to be the origin of this previously unobserved behavior. Initially, carrier conduction proceeds through the junction edge, but illumination and application of strain can increase the recombination rate in the junction sufficiently to support an alternative carrier conduction path through the junction area. Optical characterization reveals a tunable emission pattern and increased optoelectronic responsivity that corroborates our model. Strain control permits the optimization of the conduction efficiency through both pathways and can be employed in quaternary inverters for future multilogic applications.
Collapse
Affiliation(s)
- Christy Roshini Paul Inbaraj
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Nano-science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Roshan Jesus Mathew
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Nano-science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | | | - Raman Sankar
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Monika Kataria
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Hsia Yu Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yit-Tsong Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Mario Hofmann
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hao Lee
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yang-Fang Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Centre for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Yun G, Tang SY, Lu H, Zhang S, Dickey MD, Li W. Hybrid‐Filler Stretchable Conductive Composites: From Fabrication to Application. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000080] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering University of Wollongong Wollongong NSW 2522 Australia
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Hongda Lu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering University of Wollongong Wollongong NSW 2522 Australia
| | - Shiwu Zhang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes Department of Precision Machinery and Instrumentation University of Science and Technology of China Hefei Anhui 230027 China
| | - Michael D. Dickey
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
13
|
Abstract
The conservation field is experiencing a rapid increase in the amount, variety, and quality of spatial data that can help us understand species movement and landscape connectivity patterns. As interest grows in more dynamic representations of movement potential, modelers are often limited by the capacity of their analytic tools to handle these datasets. Technology developments in software and high-performance computing are rapidly emerging in many fields, but uptake within conservation may lag, as our tools or our choice of computing language can constrain our ability to keep pace. We recently updated Circuitscape, a widely used connectivity analysis tool developed by Brad McRae and Viral Shah, by implementing it in Julia, a high-performance computing language. In this initial re-code (Circuitscape 5.0) and later updates, we improved computational efficiency and parallelism, achieving major speed improvements, and enabling assessments across larger extents or with higher resolution data. Here, we reflect on the benefits to conservation of strengthening collaborations with computer scientists, and extract examples from a collection of 572 Circuitscape applications to illustrate how through a decade of repeated investment in the software, applications have been many, varied, and increasingly dynamic. Beyond empowering continued innovations in dynamic connectivity, we expect that faster run times will play an important role in facilitating co-production of connectivity assessments with stakeholders, increasing the likelihood that connectivity science will be incorporated in land use decisions.
Collapse
|