1
|
Huang J, Li Z, Bi X, Tang M, Qiu C, Qin F, Yuan H. Manipulation of Cooper-Pair Tunneling via Domain Structure in a van der Waals Ferromagnetic Josephson Junction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314190. [PMID: 38885314 DOI: 10.1002/adma.202314190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Ferromagnetic Josephson junctions play a key role in understanding the interplay between superconductivity and ferromagnetism in condensed matter physics. The magnetic domain structures of the ferromagnet in such junctions can significantly affect the tunneling of the superconducting Cooper pairs due to the strong interactions between Cooper pairs and local magnetic moments in the ferromagnetic tunnel barrier. However, the underlying microscopic mechanism of relevant quasiparticle tunneling processes with magnetic domain structures remains largely unexplored. Here, the manipulation of Cooper-pair tunneling in the NbSe2/Cr2Ge2Te6/NbSe2 ferromagnetic Josephson junction is demonstrated by using a multidomain ferromagnetic barrier with anisotropic magnetic moments. The evolution of up-, down-magnetized domain and Bloch domain structures in Cr2Ge2Te6 barrier under external magnetic fields leads to the enhancement of the critical tunneling supercurrent and an unconventional dual-peak feature with two local maxima in the field-dependent critical current curve. The phenomenon of magnetic-field-modulated critical tunneling supercurrent can be well explained by the competition between the coherence length of tunneling Cooper pairs and the size of magnetic domain walls in Cr2Ge2Te6 barrier. This kind of ferromagnetic Josephson junction provides an intriguing material system for manipulating Cooper-pair tunneling by tuning the local magnetic moments within magnetic Josephson junction devices.
Collapse
Affiliation(s)
- Junwei Huang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210000, China
| | - Zeya Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210000, China
| | - Xiangyu Bi
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210000, China
| | - Ming Tang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210000, China
| | - Caiyu Qiu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210000, China
| | - Feng Qin
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210000, China
| | - Hongtao Yuan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210000, China
| |
Collapse
|
2
|
Jeon KR, Hazra BK, Kim JK, Jeon JC, Han H, Meyerheim HL, Kontos T, Cottet A, Parkin SSP. Chiral antiferromagnetic Josephson junctions as spin-triplet supercurrent spin valves and d.c. SQUIDs. NATURE NANOTECHNOLOGY 2023; 18:747-753. [PMID: 36997754 PMCID: PMC10359187 DOI: 10.1038/s41565-023-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2023] [Indexed: 06/19/2023]
Abstract
Spin-triplet supercurrent spin valves are of practical importance for the realization of superconducting spintronic logic circuits. In ferromagnetic Josephson junctions, the magnetic-field-controlled non-collinearity between the spin-mixer and spin-rotator magnetizations switches the spin-polarized triplet supercurrents on and off. Here we report an antiferromagnetic equivalent of such spin-triplet supercurrent spin valves in chiral antiferromagnetic Josephson junctions as well as a direct-current superconducting quantum interference device. We employ the topological chiral antiferromagnet Mn3Ge, in which the Berry curvature of the band structure produces fictitious magnetic fields, and the non-collinear atomic-scale spin arrangement accommodates triplet Cooper pairing over long distances (>150 nm). We theoretically verify the observed supercurrent spin-valve behaviours under a small magnetic field of <2 mT for current-biased junctions and the direct-current superconducting quantum interference device functionality. Our calculations reproduce the observed hysteretic field interference of the Josephson critical current and link these to the magnetic-field-modulated antiferromagnetic texture that alters the Berry curvature. Our work employs band topology to control the pairing amplitude of spin-triplet Cooper pairs in a single chiral antiferromagnet.
Collapse
Affiliation(s)
- Kun-Rok Jeon
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany.
- Department of Physics, Chung-Ang University (CAU), Seoul, Republic of Korea.
| | | | - Jae-Keun Kim
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
| | - Jae-Chun Jeon
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
| | - Hyeon Han
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
| | | | - Takis Kontos
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Audrey Cottet
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| | - Stuart S P Parkin
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany.
| |
Collapse
|
3
|
Hu G, Wang C, Wang S, Zhang Y, Feng Y, Wang Z, Niu Q, Zhang Z, Xiang B. Long-range skin Josephson supercurrent across a van der Waals ferromagnet. Nat Commun 2023; 14:1779. [PMID: 36997575 PMCID: PMC10063542 DOI: 10.1038/s41467-023-37603-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
The emerging field of superconducting spintronics promises new quantum device architectures without energy dissipation. When entering a ferromagnet, a supercurrent commonly behaves as a spin singlet that decays rapidly; in contrast, a spin-triplet supercurrent can transport over much longer distances, and is therefore more desirable, but so far has been observed much less frequently. Here, by using the van der Waals ferromagnet Fe3GeTe2 (F) and spin-singlet superconductor NbSe2 (S), we construct lateral Josephson junctions of S/F/S with accurate interface control to realize long-range skin supercurrent. The observed supercurrent across the ferromagnet can extend over 300 nm, and exhibits distinct quantum interference patterns in an external magnetic field. Strikingly, the supercurrent displays pronounced skin characteristics, with its density peaked at the surfaces or edges of the ferromagnet. Our central findings shed new light on the convergence of superconductivity and spintronics based on two-dimensional materials.
Collapse
Affiliation(s)
- Guojing Hu
- Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Changlong Wang
- Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Shasha Wang
- Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Ying Zhang
- Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Yan Feng
- Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Zhi Wang
- School of Physics, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Qian Niu
- School of Physical Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, 230026, Hefei, China
| | - Bin Xiang
- Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
4
|
Han J, Lv C, Yang W, Wang X, Wei G, Zhao W, Lin X. Large tunneling magnetoresistance in van der Waals magnetic tunnel junctions based on FeCl 2 films with interlayer antiferromagnetic couplings. NANOSCALE 2023; 15:2067-2078. [PMID: 36594492 DOI: 10.1039/d2nr05684d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antiferromagnets (AFMs) are some of the most promising candidates for next-generation magnetic memory technology owing to their advantages over conventional ferromagnets (FMs), such as zero stray field and THz-range magnetic resonance frequency. Motivated by the recent synthesis of FeCl2 films with interlayer AFM and intralayer FM couplings, we investigated the magnetic properties of few-layer FeCl2 and the spin-dependent transmissions of graphite/bilayer FeCl2/graphite and Au/n-layer FeCl2/Au magnetic tunnel junctions (MTJs) using first-principles calculations combined with the nonequilibrium Green's function. The interlayer AFM coupling of FeCl2 is certified to be stable and independent of the stacking orders and relative displacement between layers. Furthermore, based on the Au electrode with better conductive performance than the graphite electrode and monolayer 1T-FeCl2 with complete spin polarization, high Curie temperature and large magnetic anisotropic energy, a high tunnel magnetoresistance (TMR) ratio of 2.7 × 103% is achieved in Au/bilayer FeCl2/Au MTJs at zero bias and it increases with different layers of FeCl2 (n = 2-10). These excellent spin transport properties of Au/n-layer FeCl2/Au MTJs based on two-dimensional (2D) AFM barriers with out-of-plane magnetization directions suggest their great potential for application in high-reliability, high-speed and high-density spintronic devices.
Collapse
Affiliation(s)
- Jiangchao Han
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China.
| | - Chen Lv
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China.
| | - Wei Yang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China.
| | - Xinhe Wang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China.
| | - Guodong Wei
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China.
| | - Weisheng Zhao
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China.
| | - Xiaoyang Lin
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
5
|
Bordoloi A, Zannier V, Sorba L, Schönenberger C, Baumgartner A. Spin cross-correlation experiments in an electron entangler. Nature 2022; 612:454-458. [PMID: 36424409 DOI: 10.1038/s41586-022-05436-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
Correlations are fundamental in describing many-body systems. However, in experiments, correlations are notoriously difficult to assess on a microscopic scale, especially for electron spins. Even though it is firmly established theoretically that the electrons in a Cooper pair1 of a superconductor form maximally spin-entangled singlet states with opposite spin projections2-4, no spin correlation experiments have been demonstrated so far. Here we report the direct measurement of the spin cross-correlations between the currents of a Cooper pair splitter5-13, an electronic device that emits electrons originating from Cooper pairs. We use ferromagnetic split-gates14,15, compatible with nearby superconducting structures, to individually spin polarize the transmissions of the quantum dots in the two electronic paths, which act as tunable spin filters. The signals are detected in standard transport and in highly sensitive transconductance experiments. We find that the spin cross-correlation is negative, consistent with spin singlet emission, and deviates from the ideal value mostly due to the overlap of the Zeeman split quantum dot states. Our results demonstrate a new route to perform spin correlation experiments in nano-electronic devices, especially suitable for those relying on magnetic field sensitive superconducting elements, like triplet or topologically non-trivial superconductors16-18, or to perform Bell tests with massive particles19,20.
Collapse
Affiliation(s)
- Arunav Bordoloi
- Department of Physics, University of Basel, Basel, Switzerland.
- Department of Physics, University of Maryland, College Park, MD, USA.
| | - Valentina Zannier
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Lucia Sorba
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Christian Schönenberger
- Department of Physics, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Andreas Baumgartner
- Department of Physics, University of Basel, Basel, Switzerland.
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Yan GQ, Li S, Lu H, Huang M, Xiao Y, Wernert L, Brock JA, Fullerton EE, Chen H, Wang H, Du CR. Quantum Sensing and Imaging of Spin-Orbit-Torque-Driven Spin Dynamics in the Non-Collinear Antiferromagnet Mn 3 Sn. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200327. [PMID: 35322479 DOI: 10.1002/adma.202200327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Novel non-collinear antiferromagnets with spontaneous time-reversal symmetry breaking, non-trivial band topology, and unconventional transport properties have received immense research interest over the past decade due to their rich physics and enormous promise in technological applications. One of the central focuses in this emerging field is exploring the relationship between the microscopic magnetic structure and exotic material properties. Here, nanoscale imaging of both spin-orbit-torque-induced deterministic magnetic switching and chiral spin rotation in non-collinear antiferromagnet Mn3 Sn films using nitrogen-vacancy (NV) centers are reported. Direct evidence of the off-resonance dipole-dipole coupling between the spin dynamics in Mn3 Sn and proximate NV centers is also demonstrated by NV relaxometry measurements. These results demonstrate the unique capabilities of NV centers in accessing the local information of the magnetic order and dynamics in these emergent quantum materials and suggest new opportunities for investigating the interplay between topology and magnetism in a broad range of topological magnets.
Collapse
Affiliation(s)
- Gerald Q Yan
- Department of Physics, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Senlei Li
- Department of Physics, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Hanyi Lu
- Department of Physics, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Mengqi Huang
- Department of Physics, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Yuxuan Xiao
- Center for Memory and Recording Research, University of California, La Jolla, San Diego, CA, 92093-0401, USA
| | - Luke Wernert
- Department of Physics, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey A Brock
- Center for Memory and Recording Research, University of California, La Jolla, San Diego, CA, 92093-0401, USA
| | - Eric E Fullerton
- Center for Memory and Recording Research, University of California, La Jolla, San Diego, CA, 92093-0401, USA
| | - Hua Chen
- Department of Physics, Colorado State University, Fort Collins, CO, 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, 80523, USA
| | - Hailong Wang
- Center for Memory and Recording Research, University of California, La Jolla, San Diego, CA, 92093-0401, USA
| | - Chunhui Rita Du
- Department of Physics, University of California, La Jolla, San Diego, CA, 92093, USA
- Center for Memory and Recording Research, University of California, La Jolla, San Diego, CA, 92093-0401, USA
| |
Collapse
|
7
|
Xu SY, Ma Q. Supercurrents in a topological antiferromagnet. NATURE MATERIALS 2021; 20:1306-1307. [PMID: 34561626 DOI: 10.1038/s41563-021-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Su-Yang Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Qiong Ma
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|