1
|
Gaba A, Yousefi M, Bhattacharjee S, Chelico L. Variability in HIV-1 transmitted/founder virus susceptibility to combined APOBEC3F and APOBEC3G host restriction. J Virol 2025; 99:e0160624. [PMID: 39714157 PMCID: PMC11784016 DOI: 10.1128/jvi.01606-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Several APOBEC3 enzymes restrict HIV-1 by deaminating cytosine to form uracil in single-stranded proviral (-)DNA. However, HIV-1 Vif counteracts their activity by inducing their proteasomal degradation. This counteraction by Vif is incomplete, as evidenced by footprints of APOBEC3-mediated mutations within integrated proviral genomes of people living with HIV-1. The relative contributions of multiple APOBEC3s in HIV-1 restriction are not fully understood. Here, we investigated the activity of co-expressed APOBEC3F and APOBEC3G against HIV-1 Subtype B and Subtype C transmitted/founder viruses. We determined that APOBEC3F interacts with APOBEC3G through its N-terminal domain. We provide evidence that this results in protection of APOBEC3F from Vif-mediated degradation because the APOBEC3F N-terminal domain contains residues required for recognition by Vif. We also found that HIV-1 Subtype C Vifs, but not Subtype B Vifs, were less active against APOBEC3G when APOBEC3F and APOBEC3G were co-expressed. Consequently, when APOBEC3F and APOBEC3G were expressed together in a single cycle of HIV-1 replication, only HIV-1 Subtype C viruses showed a decrease in relative infectivity compared to when APOBEC3G was expressed alone. Inspection of Vif amino acid sequences revealed that differences in amino acids adjacent to conserved sequences influenced the Vif-mediated APOBEC3 degradation ability. Altogether, the data provide a possible mechanism for how combined expression of APOBEC3F and APOBEC3G could contribute to mutagenesis of HIV-1 proviral genomes despite the presence of Vif and provide evidence for variability in the Vif-mediated APOBEC3 degradation ability of transmitted/founder viruses.IMPORTANCEAPOBEC3 enzymes suppress HIV-1 infection by inducing cytosine deamination in proviral DNA but are hindered by HIV-1 Vif, which leads to APOBEC3 proteasomal degradation. Moving away from traditional studies that used lab-adapted HIV-1 Subtype B viruses and singular APOBEC3 enzymes, we examined how transmitted/founder isolates of HIV-1 replicated in the presence of APOBEC3F and APOBEC3G. We determined that APOBEC3F interacts with APOBEC3G through its N-terminal domain and that APOBEC3F, like APOBEC3G, has Vif-mediated degradation determinants in the N-terminal domain. This enabled APOBEC3F to be partially resistant to Vif-mediated degradation. We also demonstrated that Subtype C is more susceptible than Subtype B HIV-1 to combined APOBEC3F/APOBEC3G restriction and identified Vif variations influencing APOBEC3 degradation ability. Importantly, Vif amino acid variation outside of previously identified conserved regions mediated APOBEC3 degradation and HIV-1 Vif subtype-specific differences. Altogether, we identified factors that affect susceptibility to APOBEC3F/APOBEC3G restriction.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maria Yousefi
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shreoshri Bhattacharjee
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Chen Z, Eggerman TL, Bocharov AV, Baranova IN, Vishnyakova TG, Patterson AP. APOBEC-1 cofactors regulate APOBEC3-induced mutations in hepatitis B virus. J Virol 2025:e0187924. [PMID: 39868801 DOI: 10.1128/jvi.01879-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/06/2024] [Indexed: 01/28/2025] Open
Abstract
APOBEC3 proteins (A3s) play an important role in host innate immunity against viruses and DNA mutations in cancer. A3s-induced mutations in both viral and human DNA genomes vary significantly from non-lethal mutations in viruses to localized hypermutations, such as kataegis in cancer. How A3s are regulated remains largely unknown. Since A3s exist in complexes and belong to the same family as APOBEC-1 (A1), which requires cofactors to be functional, we investigated the role of A1 cofactors and other A3 potentially associated hnRNPs on A3 mutational activity using hepatitis B virus (HBV) cellular replication as a model. We found that A1-associated cofactors and other hnRNPs were involved in A3 mutational activity regulation, and their regulatory effect was dependent on the strength of A3 association with hnRNPs with an order of A3C > 3G>3B and A1 cofactors > other hnRNPs. A1 cofactors had a strong protein interaction with A3 and significantly increased A3 mutational activity by co-expression. Endogenous gene expression knockdown by siRNA had the opposite decrease effect. Disruption of the protein interactions between A3 and hnRNPs through A3G and A3B mutagenesis decreased A3 mutational activity significantly, even to a level of near total loss, indicating that A1 cofactors and hnRNPs are required for A3 mutational activity. HBV genome-wide mutation analyses showed that A1 cofactors significantly increased A3C accessibility to HBV (-)DNA and A3C-induced mutational efficiency to generate kataegis-like hypermutation. These data demonstrate that A1 cofactors and hnRNPs are closely associated with A3s and may play an important regulatory role under physiological conditions. IMPORTANCE As human host restriction factors, A3s play an important role against viral infections. A3s are also major mutagenic drivers of cancer. However, why A3-induced mutations vary significantly from non-lethal mutations in virus to localized hypermutations in cancer remains unknown. We found that A1 cofactor and other hnRNPs are not only associated with A3 complexes but also play important regulatory roles in A3-induced mutation activities. A1 cofactors like GRY-RBP significantly increased A3 accessibility and mutational efficiency to its single-strand DNA substrate during HBV reverse transcription to generate hypermutations. Disruption of the A3 protein association with hnRNPs by A3 mutagenesis diminished A3 mutational activity. This finding not only reveals a regulatory mechanism for A3-induced mutation but also indicates that A3-associated cellular factors can be a potential target for regulating A3-induced mutation for cancer therapeutics.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Campagna R, Nonne C, Antonelli G, Turriziani O. Archived HIV-1 Drug Resistance Mutations: Role of Proviral HIV-1 DNA Genotype for the Management of Virological Responder People Living with HIV. Viruses 2024; 16:1697. [PMID: 39599811 PMCID: PMC11599110 DOI: 10.3390/v16111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Despite its effectiveness in controlling plasma viremia, antiretroviral therapy (ART) cannot target proviral DNA, which remains an obstacle to HIV-1 eradication. When treatment is interrupted, the reservoirs can act as a source of viral rebound, highlighting the value of proviral DNA as an additional source of information on an individual's overall resistance burden. In cases where the viral load is too low for successful HIV-1 RNA genotyping, HIV-1 DNA can help identify resistance mutations in treated individuals. The absence of treatment history, the need to adjust ART despite undetectable viremia, or the presence of LLV further support the use of genotypic resistance tests (GRTs) on HIV-1 DNA. Conventionally, GRTs have been achieved through Sanger sequencing, but the advances in NGS are leading to an increase in its use, allowing the detection of minority variants present in less than 20% of the viral population. The clinical significance of these mutations remains under debate, with interpretations varying based on context. Additionally, proviral DNA is subject to APOBEC3-induced hypermutation, which can lead to defective, nonviable viral genomes, a factor that must be considered when performing GRTs on HIV-1 DNA.
Collapse
Affiliation(s)
- Roberta Campagna
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.N.); (G.A.); (O.T.)
| | | | | | | |
Collapse
|
4
|
Yang H, Pacheco J, Kim K, Bokani A, Ito F, Ebrahimi D, Chen XS. Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain. Nat Commun 2024; 15:8773. [PMID: 39389938 PMCID: PMC11467180 DOI: 10.1038/s41467-024-52671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
APOBEC3G, part of the AID/APOBEC cytidine deaminase family, is crucial for antiviral immunity. It has two zinc-coordinated cytidine-deaminase domains. The non-catalytic N-terminal domain strongly binds to nucleic acids, whereas the C-terminal domain catalyzes C-to-U editing in single-stranded DNA. The interplay between the two domains is not fully understood. Here, we show that DNA editing function of rhesus macaque APOBEC3G on linear and hairpin loop DNA is enhanced by AA or GA dinucleotide motifs present downstream in the 3'-direction of the target-C editing sites. The effective distance between AA/GA and the target-C sites is contingent on the local DNA secondary structure. We present two co-crystal structures of rhesus macaque APOBEC3G bound to ssDNA containing AA and GA, revealing the contribution of the non-catalytic domain in capturing AA/GA DNA. Our findings elucidate the molecular mechanism of APOBEC3G's cooperative function, which is critical for its antiviral role and its contribution to mutations in cancer genomes.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ayub Bokani
- School of Engineering and Technology, CQUniversity, Sydney, NSW, 2000, Australia
| | - Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Hu Y, Delviks-Frankenberry KA, Wu C, Arizaga F, Pathak VK, Xiong Y. Structural insights into PPP2R5A degradation by HIV-1 Vif. Nat Struct Mol Biol 2024; 31:1492-1501. [PMID: 38789685 DOI: 10.1038/s41594-024-01314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
HIV-1 Vif recruits host cullin-RING-E3 ubiquitin ligase and CBFβ to degrade the cellular APOBEC3 antiviral proteins through diverse interactions. Recent evidence has shown that Vif also degrades the regulatory subunits PPP2R5(A-E) of cellular protein phosphatase 2A to induce G2/M cell cycle arrest. As PPP2R5 proteins bear no functional or structural resemblance to A3s, it is unclear how Vif can recognize different sets of proteins. Here we report the cryogenic-electron microscopy structure of PPP2R5A in complex with HIV-1 Vif-CBFβ-elongin B-elongin C at 3.58 Å resolution. The structure shows PPP2R5A binds across the Vif molecule, with biochemical and cellular studies confirming a distinct Vif-PPP2R5A interface that partially overlaps with those for A3s. Vif also blocks a canonical PPP2R5A substrate-binding site, indicating that it suppresses the phosphatase activities through both degradation-dependent and degradation-independent mechanisms. Our work identifies critical Vif motifs regulating the recognition of diverse A3 and PPP2R5A substrates, whereby disruption of these host-virus protein interactions could serve as potential targets for HIV-1 therapeutics.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Fidel Arizaga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Zhao H, Wu Z, Wang Z, Ru J, Wang S, Li Y, Hou S, Zhang Y, Wang X. Genomic Landscape and Regulation of RNA Editing in Pekin Ducks Susceptible to Duck Hepatitis A Virus Genotype 3 Infection. Int J Mol Sci 2024; 25:10413. [PMID: 39408741 PMCID: PMC11476845 DOI: 10.3390/ijms251910413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
RNA editing is increasingly recognized as a post-transcriptional modification that directly affects viral infection by regulating RNA stability and recoding proteins. the duck hepatitis A virus genotype 3 (DHAV-3) infection is seriously detrimental to the Asian duck industry. However, the landscape and roles of RNA editing in the susceptibility and resistance of Pekin ducks to DHAV-3 remain unclear. Here, we profiled dynamic RNA editing events in liver tissue and investigated their potential functions during DHAV-3 infection in Pekin ducks. We identified 11,067 informative RNA editing sites in liver tissue from DHAV-3-susceptible and -resistant ducklings at three time points during virus infection. Differential RNA editing sites (DRESs) between S and R ducks were dynamically changed during infection, which were enriched in genes associated with vesicle-mediated transport and immune-related pathways. Moreover, we predicted and experimentally verified that RNA editing events in 3'-UTR could result in loss or gain of miRNA-mRNA interactions, thereby changing the expression of target genes. We also found a few DRESs in coding sequences (CDSs) that altered the amino acid sequences of several proteins that were vital for viral infection. Taken together, these data suggest that dynamic RNA editing has significant potential to tune physiological processes in response to virus infection in Pekin ducks, thus contributing to host differential susceptibility to DHAV-3.
Collapse
Affiliation(s)
- Haonao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| | - Zezhong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| | - Jinlong Ru
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| | - Shuaiqin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.W.); (S.H.)
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| | - Shuisheng Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.W.); (S.H.)
| | - Yunsheng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.W.); (S.H.)
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| |
Collapse
|
7
|
Begum MSTM, Bokani A, Rajib SA, Soleimanpour M, Maeda Y, Yoshimura K, Satou Y, Ebrahimi D, Ikeda T. Potential Role of APOBEC3 Family Proteins in SARS-CoV-2 Replication. Viruses 2024; 16:1141. [PMID: 39066304 PMCID: PMC11281575 DOI: 10.3390/v16071141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired multiple mutations since its emergence. Analyses of the SARS-CoV-2 genomes from infected patients exhibit a bias toward C-to-U mutations, which are suggested to be caused by the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) cytosine deaminase proteins. However, the role of A3 enzymes in SARS-CoV-2 replication remains unclear. To address this question, we investigated the effect of A3 family proteins on SARS-CoV-2 replication in the myeloid leukemia cell line THP-1 lacking A3A to A3G genes. The Wuhan, BA.1, and BA.5 variants had comparable viral replication in parent and A3A-to-A3G-null THP-1 cells stably expressing angiotensin-converting enzyme 2 (ACE2) protein. On the other hand, the replication and infectivity of these variants were abolished in A3A-to-A3G-null THP-1-ACE2 cells in a series of passage experiments over 20 days. In contrast to previous reports, we observed no evidence of A3-induced SARS-CoV-2 mutagenesis in the passage experiments. Furthermore, our analysis of a large number of publicly available SARS-CoV-2 genomes did not reveal conclusive evidence for A3-induced mutagenesis. Our studies suggest that A3 family proteins can positively contribute to SARS-CoV-2 replication; however, this effect is deaminase-independent.
Collapse
Affiliation(s)
- MST Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ayub Bokani
- School of Engineering and Technology, CQ University, Sydney, NSW 2000, Australia
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | | | - Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nursing, Kibi International University, Takahashi 716-8508, Japan
| | | | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
8
|
Arribas L, Menéndez-Arias L, Betancor G. May I Help You with Your Coat? HIV-1 Capsid Uncoating and Reverse Transcription. Int J Mol Sci 2024; 25:7167. [PMID: 39000271 PMCID: PMC11241228 DOI: 10.3390/ijms25137167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid is a protein core formed by multiple copies of the viral capsid (CA) protein. Inside the capsid, HIV-1 harbours all the viral components required for replication, including the genomic RNA and viral enzymes reverse transcriptase (RT) and integrase (IN). Upon infection, the RT transforms the genomic RNA into a double-stranded DNA molecule that is subsequently integrated into the host chromosome by IN. For this to happen, the viral capsid must open and release the viral DNA, in a process known as uncoating. Capsid plays a key role during the initial stages of HIV-1 replication; therefore, its stability is intimately related to infection efficiency, and untimely uncoating results in reverse transcription defects. How and where uncoating takes place and its relationship with reverse transcription is not fully understood, but the recent development of novel biochemical and cellular approaches has provided unprecedented detail on these processes. In this review, we present the latest findings on the intricate link between capsid stability, reverse transcription and uncoating, the different models proposed over the years for capsid uncoating, and the role played by other cellular factors on these processes.
Collapse
Affiliation(s)
- Laura Arribas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain;
| | - Gilberto Betancor
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
9
|
Jang GM, Annan Sudarsan AK, Shayeganmehr A, Prando Munhoz E, Lao R, Gaba A, Granadillo Rodríguez M, Love RP, Polacco BJ, Zhou Y, Krogan NJ, Kaake RM, Chelico L. Protein Interaction Map of APOBEC3 Enzyme Family Reveals Deamination-Independent Role in Cellular Function. Mol Cell Proteomics 2024; 23:100755. [PMID: 38548018 PMCID: PMC11070599 DOI: 10.1016/j.mcpro.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination-independent antiviral activity through protein and nucleic acid interactions. If expression levels are misregulated, some APOBEC3 enzymes can access the human genome leading to deamination and mutagenesis, contributing to cancer initiation and evolution. While APOBEC3 enzymes are known to interact with large ribonucleoprotein complexes, the function and RNA dependence are not entirely understood. To further understand their cellular roles, we determined by affinity purification mass spectrometry (AP-MS) the protein interaction network for the human APOBEC3 enzymes and mapped a diverse set of protein-protein and protein-RNA mediated interactions. Our analysis identified novel RNA-mediated interactions between APOBEC3C, APOBEC3H Haplotype I and II, and APOBEC3G with spliceosome proteins, and APOBEC3G and APOBEC3H Haplotype I with proteins involved in tRNA methylation and ncRNA export from the nucleus. In addition, we identified RNA-independent protein-protein interactions with APOBEC3B, APOBEC3D, and APOBEC3F and the prefoldin family of protein-folding chaperones. Interaction between prefoldin 5 (PFD5) and APOBEC3B disrupted the ability of PFD5 to induce degradation of the oncogene cMyc, implicating the APOBEC3B protein interaction network in cancer. Altogether, the results uncover novel functions and interactions of the APOBEC3 family and suggest they may have fundamental roles in cellular RNA biology, their protein-protein interactions are not redundant, and there are protein-protein interactions with tumor suppressors, suggesting a role in cancer biology. Data are available via ProteomeXchange with the identifier PXD044275.
Collapse
Affiliation(s)
- Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Arun Kumar Annan Sudarsan
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arzhang Shayeganmehr
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika Prando Munhoz
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Reanna Lao
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Amit Gaba
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Milaid Granadillo Rodríguez
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
| | - Yuan Zhou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA.
| | - Linda Chelico
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
10
|
Yang H, Pacheco J, Kim K, Ebrahimi D, Ito F, Chen XS. Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584510. [PMID: 38559028 PMCID: PMC10980023 DOI: 10.1101/2024.03.11.584510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
APOBEC3G (A3G) belongs to the AID/APOBEC cytidine deaminase family and is essential for antiviral immunity. It contains two zinc-coordinated cytidine-deaminase (CD) domains. The N-terminal CD1 domain is non-catalytic but has a strong affinity for nucleic acids, whereas the C-terminal CD2 domain catalyzes C-to-U editing in single-stranded DNA. The interplay between the two domains in DNA binding and editing is not fully understood. Here, our studies on rhesus macaque A3G (rA3G) show that the DNA editing function in linear and hairpin loop DNA is greatly enhanced by AA or GA dinucleotide motifs present downstream (in the 3'-direction) but not upstream (in the 5'-direction) of the target-C editing sites. The effective distance between AA/GA and the target-C sites depends on the local DNA secondary structure. We present two co-crystal structures of rA3G bound to ssDNA containing AA and GA, revealing the contribution of the non-catalytic CD1 domain in capturing AA/GA DNA and explaining our biochemical observations. Our structural and biochemical findings elucidate the molecular mechanism underlying the cooperative function between the non-catalytic and the catalytic domains of A3G, which is critical for its antiviral role and its contribution to genome mutations in cancer.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
11
|
Chintala K, Yandrapally S, Faiz W, Kispotta CR, Sarkar S, Mishra K, Banerjee S. The nuclear pore protein NUP98 impedes LTR-driven basal gene expression of HIV-1, viral propagation, and infectivity. Front Immunol 2024; 15:1330738. [PMID: 38449868 PMCID: PMC10914986 DOI: 10.3389/fimmu.2024.1330738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Nucleoporins (NUPs) are cellular effectors of human immunodeficiency virus-1 (HIV-1) replication that support nucleocytoplasmic trafficking of viral components. However, these also non-canonically function as positive effectors, promoting proviral DNA integration into the host genome and viral gene transcription, or as negative effectors by associating with HIV-1 restriction factors, such as MX2, inhibiting the replication of HIV-1. Here, we investigated the regulatory role of NUP98 on HIV-1 as we observed a lowering of its endogenous levels upon HIV-1 infection in CD4+ T cells. Using complementary experiments in NUP98 overexpression and knockdown backgrounds, we deciphered that NUP98 negatively affected HIV-1 long terminal repeat (LTR) promoter activity and lowered released virus levels. The negative effect on promoter activity was independent of HIV-1 Tat, suggesting that NUP98 prevents the basal viral gene expression. ChIP-qPCR showed NUP98 to be associated with HIV-1 LTR, with the negative regulatory element (NRE) of HIV-1 LTR playing a dominant role in NUP98-mediated lowering of viral gene transcription. Truncated mutants of NUP98 showed that the attenuation of HIV-1 LTR-driven transcription is primarily contributed by its N-terminal region. Interestingly, the virus generated from the producer cells transiently expressing NUP98 showed lower infectivity, while the virus generated from NUP98 knockdown CD4+ T cells showed higher infectivity as assayed in TZM-bl cells, corroborating the anti-HIV-1 properties of NUP98. Collectively, we show a new non-canonical function of a nucleoporin adding to the list of moonlighting host factors regulating viral infections. Downregulation of NUP98 in a host cell upon HIV-1 infection supports the concept of evolutionary conflicts between viruses and host antiviral factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
12
|
Ikeda T, Shimizu R, Nasser H, Carpenter MA, Cheng AZ, Brown WL, Sauter D, Harris RS. APOBEC3 degradation is the primary function of HIV-1 Vif determining virion infectivity in the myeloid cell line THP-1. mBio 2023; 14:e0078223. [PMID: 37555667 PMCID: PMC10470580 DOI: 10.1128/mbio.00782-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023] Open
Abstract
HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4+ T lymphocytes and macrophages. Previous studies have demonstrated that the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4+ T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4+ T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins during viral replication is currently unknown. Herein, we describe the development and characterization of A3F-, A3F/A3G-, and A3A-to-A3G-null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F-null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G-null cells. Remarkably, disruption of A3A-A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during infectious HIV-1 production from THP-1 cells is the targeting and degradation of A3 enzymes. IMPORTANCE HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wild-type HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for fully infectious HIV-1 production from THP-1 cells.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
13
|
Nikolaitchik OA, Islam S, Kitzrow JP, Duchon A, Cheng Z, Liu Y, Rawson JMO, Shao W, Nikolaitchik M, Kearney MF, Maldarelli F, Musier-Forsyth K, Pathak VK, Hu WS. HIV-1 usurps transcription start site heterogeneity of host RNA polymerase II to maximize replication fitness. Proc Natl Acad Sci U S A 2023; 120:e2305103120. [PMID: 37252967 PMCID: PMC10266039 DOI: 10.1073/pnas.2305103120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
HIV-1 relies on host RNA polymeraseII (Pol II) to transcribe its genome and uses multiple transcription start sites (TSS), including three consecutive guanosines located near the U3-R junction, to generate transcripts containing three, two, and one guanosine at the 5' end, referred to as 3G, 2G, and 1G RNA, respectively. The 1G RNA is preferentially selected for packaging, indicating that these 99.9% identical RNAs exhibit functional differences and highlighting the importance of TSS selection. Here, we demonstrate that TSS selection is regulated by sequences between the CATA/TATA box and the beginning of R. Furthermore, we have generated two HIV-1 mutants with distinct 2-nucleotide modifications that predominantly express 3G RNA or 1G RNA. Both mutants can generate infectious viruses and undergo multiple rounds of replication in T cells. However, both mutants exhibit replication defects compared to the wild-type virus. The 3G-RNA-expressing mutant displays an RNA genome-packaging defect and delayed replication kinetics, whereas the 1G-RNA-expressing mutant exhibits reduced Gag expression and a replication fitness defect. Additionally, reversion of the latter mutant is frequently observed, consistent with sequence correction by plus-strand DNA transfer during reverse transcription. These findings demonstrate that HIV-1 maximizes its replication fitness by usurping the TSS heterogeneity of host RNA Pol II to generate unspliced RNAs with different specialized roles in viral replication. The three consecutive guanosines at the junction of U3 and R may also maintain HIV-1 genome integrity during reverse transcription. These studies reveal the intricate regulation of HIV-1 RNA and complex replication strategy.
Collapse
Affiliation(s)
- Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Saiful Islam
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Jonathan P. Kitzrow
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Zetao Cheng
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Yang Liu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Maria Nikolaitchik
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Mary F. Kearney
- Translation Research Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Frank Maldarelli
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Ohio State University, Columbus, OH43210
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| |
Collapse
|
14
|
Dudley JP. APOBECs: Our fickle friends? PLoS Pathog 2023; 19:e1011364. [PMID: 37200235 DOI: 10.1371/journal.ppat.1011364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Affiliation(s)
- Jaquelin P Dudley
- Department of Molecular Biosciences and LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
15
|
Ikeda T, Shimizu R, Nasser H, Carpenter MA, Cheng AZ, Brown WL, Sauter D, Harris RS. APOBEC3 degradation is the primary function of HIV-1 Vif for virus replication in the myeloid cell line THP-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534666. [PMID: 37034786 PMCID: PMC10081227 DOI: 10.1101/2023.03.28.534666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4 + T lymphocytes and macrophages. Previous studies have demonstrated that the APOBEC3 (A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4 + T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4 + T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins or has additional essential targets during viral replication is currently unknown. Herein, we describe the development and characterization of A3F -, A3F/A3G -, and A3A -to- A3G -null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F -null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G -null cells. Remarkably, disruption of A3Aâ€"A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during HIV-1 replication in THP-1 cells is the targeting and degradation of A3 enzymes. Importance HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wildtype HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for HIV-1 replication in THP-1 cells.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 8600811, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41511, Egypt
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
16
|
Bao Q, Zhou J. Various strategies for developing APOBEC3G protectors to circumvent human immunodeficiency virus type 1. Eur J Med Chem 2023; 250:115188. [PMID: 36773550 DOI: 10.1016/j.ejmech.2023.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Host restriction factor APOBEC3G (A3G) efficiently restricts Vif-deficient HIV-1 by being packaged with progeny virions and causing the G to A mutation during HIV-1 viral DNA synthesis as the progeny virus infects new cells. HIV-1 expresses Vif protein to resist the activity of A3G by mediating A3G degradation. This process requires the self-association of Vif in concert with A3G proteins, protein chaperones, and factors of the ubiquitination machinery, which are potential targets to discover novel anti-HIV drugs. This review will describe compounds that have been reported so far to inhibit viral replication of HIV-1 by protecting A3G from Vif-mediated degradation.
Collapse
Affiliation(s)
- Qiqi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
17
|
Li YL, Langley CA, Azumaya CM, Echeverria I, Chesarino NM, Emerman M, Cheng Y, Gross JD. The structural basis for HIV-1 Vif antagonism of human APOBEC3G. Nature 2023; 615:728-733. [PMID: 36754086 PMCID: PMC10033410 DOI: 10.1038/s41586-023-05779-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles1-4. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation. Diversification of A3 allows host escape from Vif whereas adaptations in Vif enable cross-species transmission of primate lentiviruses. How this 'molecular arms race' plays out at the structural level is unknown. Here, we report the cryogenic electron microscopy structure of human APOBEC3G (A3G) bound to HIV-1 Vif, and the hijacked cellular proteins that promote ubiquitin-mediated proteolysis. A small surface explains the molecular arms race, including a cross-species transmission event that led to the birth of HIV-1. Unexpectedly, we find that RNA is a molecular glue for the Vif-A3G interaction, enabling Vif to repress A3G by ubiquitin-dependent and -independent mechanisms. Our results suggest a model in which Vif antagonizes A3G by intercepting it in its most dangerous form for the virus-when bound to RNA and on the pathway to packaging-to prevent viral restriction. By engaging essential surfaces required for restriction, Vif exploits a vulnerability in A3G, suggesting a general mechanism by which RNA binding helps to position key residues necessary for viral antagonism of a host antiviral gene.
Collapse
Affiliation(s)
- Yen-Li Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Caroline A Langley
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Caleigh M Azumaya
- Fred Hutchinson Cancer Center, Electron Microscopy Shared Resource, Seattle, WA, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yifan Cheng
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
18
|
Stability of APOBEC3F in the Presence of the APOBEC3 Antagonist HIV-1 Vif Increases at the Expense of Co-Expressed APOBEC3H Haplotype I. Viruses 2023; 15:v15020463. [PMID: 36851677 PMCID: PMC9960753 DOI: 10.3390/v15020463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The seven human APOBEC3 enzymes (APOBEC3A through H, excluding E) are host restriction factors. Most of the APOBEC3 enzymes can restrict HIV-1 replication with different efficiencies. The HIV-1 Vif protein combats APOBEC3-mediated restriction by inducing ubiquitination and degradation in the proteasome. APOBEC3F and APOBEC3G can hetero-oligomerize, which increases their restriction capacity and resistance to Vif. Here we determined if APOBEC3C, APOBEC3F, or APOBEC3G could hetero-oligomerize with APOBEC3H haplotype I. APOBEC3H haplotype I has a short half-life in cells due to ubiquitination and degradation by host proteins, but is also resistant to Vif. We hypothesized that hetero-oligomerization with APOBEC3H haplotype I may result in less Vif-mediated degradation of the interacting APOBEC3 and stabilize APOBEC3H haplotype I, resulting in more efficient HIV-1 restriction. Although we found that all three APOBEC3s could interact with APOBEC3H haplotype I, only APOBEC3F affected APOBEC3H haplotype I by surprisingly accelerating its proteasomal degradation. However, this increased APOBEC3F levels in cells and virions in the absence or presence of Vif and enabled APOBEC3F-mediated restriction of HIV-1 in the presence of Vif. Altogether, the data suggest that APOBEC3 enzymes can co-regulate each other at the protein level and that they cooperate to ensure HIV-1 inactivation rather than evolution.
Collapse
|
19
|
Ajoge HO, Renner TM, Bélanger K, Greig M, Dankar S, Kohio HP, Coleman MD, Ndashimye E, Arts EJ, Langlois MA, Barr SD. Antiretroviral APOBEC3 cytidine deaminases alter HIV-1 provirus integration site profiles. Nat Commun 2023; 14:16. [PMID: 36627271 PMCID: PMC9832166 DOI: 10.1038/s41467-022-35379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
APOBEC3 (A3) proteins are host-encoded deoxycytidine deaminases that provide an innate immune barrier to retroviral infection, notably against HIV-1. Low levels of deamination are believed to contribute to the genetic evolution of HIV-1, while intense catalytic activity of these proteins can induce catastrophic hypermutation in proviral DNA leading to near-total HIV-1 restriction. So far, little is known about how A3 cytosine deaminases might impact HIV-1 proviral DNA integration sites in human chromosomal DNA. Using a deep sequencing approach, we analyze the influence of catalytic active and inactive APOBEC3F and APOBEC3G on HIV-1 integration site selections. Here we show that DNA editing is detected at the extremities of the long terminal repeat regions of the virus. Both catalytic active and non-catalytic A3 mutants decrease insertions into gene coding sequences and increase integration sites into SINE elements, oncogenes and transcription-silencing non-B DNA features. Our data implicates A3 as a host factor influencing HIV-1 integration site selection and also promotes what appears to be a more latent expression profile.
Collapse
Affiliation(s)
- Hannah O Ajoge
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Tyler M Renner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kasandra Bélanger
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew Greig
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hinissan P Kohio
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Macon D Coleman
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Emmanuel Ndashimye
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Eric J Arts
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Ottawa Center for Infection, Immunity and Inflammation (CI3), Ottawa, ON, Canada.
| | - Stephen D Barr
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada.
| |
Collapse
|
20
|
Ito F, Alvarez-Cabrera AL, Liu S, Yang H, Shiriaeva A, Zhou ZH, Chen XS. Structural basis for HIV-1 antagonism of host APOBEC3G via Cullin E3 ligase. SCIENCE ADVANCES 2023; 9:eade3168. [PMID: 36598981 PMCID: PMC9812381 DOI: 10.1126/sciadv.ade3168] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Human APOBEC3G (A3G) is a virus restriction factor that inhibits HIV-1 replication and triggers lethal hypermutation on viral reverse transcripts. HIV-1 viral infectivity factor (Vif) breaches this host A3G immunity by hijacking a cellular E3 ubiquitin ligase complex to target A3G for ubiquitination and degradation. The molecular mechanism of A3G targeting by Vif-E3 ligase is unknown, limiting the antiviral efforts targeting this host-pathogen interaction crucial for HIV-1 infection. Here, we report the cryo-electron microscopy structures of A3G bound to HIV-1 Vif in complex with T cell transcription cofactor CBF-β and multiple components of the Cullin-5 RING E3 ubiquitin ligase. The structures reveal unexpected RNA-mediated interactions of Vif with A3G primarily through A3G's noncatalytic domain, while A3G's catalytic domain is poised for ubiquitin transfer. These structures elucidate the molecular mechanism by which HIV-1 Vif hijacks the host ubiquitin ligase to specifically target A3G to establish infection and offer structural information for the rational development of antiretroviral therapeutics.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ana L. Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Genetic, Molecular, and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Yang H, Kim K, Li S, Pacheco J, Chen XS. Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G. Nat Commun 2022; 13:7498. [PMID: 36470880 PMCID: PMC9722718 DOI: 10.1038/s41467-022-35201-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
An essential step in restricting HIV infectivity by the antiviral factor APOBEC3G is its incorporation into progeny virions via binding to HIV RNA. However, the mechanism of APOBEC3G capturing viral RNA is unknown. Here, we report crystal structures of a primate APOBEC3G bound to different types of RNAs, revealing that APOBEC3G specifically recognizes unpaired 5'-AA-3' dinucleotides, and to a lesser extent, 5'-GA-3' dinucleotides. APOBEC3G binds to the common 3'A in the AA/GA motifs using an aromatic/hydrophobic pocket in the non-catalytic domain. It binds to the 5'A or 5'G in the AA/GA motifs using an aromatic/hydrophobic groove conformed between the non-catalytic and catalytic domains. APOBEC3G RNA binding property is distinct from that of the HIV nucleocapsid protein recognizing unpaired guanosines. Our findings suggest that the sequence-specific RNA recognition is critical for APOBEC3G virion packaging and restricting HIV infectivity.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Shuxing Li
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089 USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
22
|
Immune-Related Gene Profile in HIV-Infected Patients with Discordant Immune Response. IRANIAN BIOMEDICAL JOURNAL 2022; 26:485-91. [PMID: 36380676 PMCID: PMC9841224 DOI: 10.52547/ibj.3750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Background: In spite of many reports on persistent low CD4 T cell counts and change in immune-related gene expression level in patients with HIV infection, there is still uncertainty about significant association between gene expression level and HIV infection in patients with and without discordant immune response (DIR). The aim of this study was to compare the expression level of CD4, CCL5, IFN-γ, STAT1, APOBEC3G, CD45, and ICAM-1 genes in HIV-1-positive patients with and without DIR. Methods Methods: In this study, 30 HIV-1-positive patients (15 patients with and 15 patients without DIR [control group]) were included. PBMCs of the patients were collected through density radient centrifugation with Ficoll-Hypaque. RNeasy Plus Mini kit was used to extract RNA. Relative expression levels of CD4, CCL5, IFN-γ, STAT1, APOBEC3G, CD45, and ICAM-1 genes were evaluated by real-time PCR. The data were analyzed using one-way ANOVA. Results Results: CD4 T cell counts were significantly lower in DIR patients than the control group (p < 0.01). While there was no significant difference in the relative expression levels of CD4, CCL5, IFN-γ, STAT1, CD45, and ICAM-1 between patients with DIR and control group, APOBEC3G expression level was significantly higher in the patients with DIR as compare to the control group (p < 0.01). Conclusion Conclusion: Our findings suggest a significantly higher APOBEC3G expression level in patients with DIR, suggesting the potential role of APOBEC3G in patients with immunological discordance besides its suppressing role in HIV-1 infection. Confirmation of this hypothesis requires further research.
Collapse
|
23
|
Barzak FM, Ryan TM, Mohammadzadeh N, Harjes S, Kvach MV, Kurup HM, Krause KL, Chelico L, Filichev VV, Harjes E, Jameson GB. Small-Angle X-ray Scattering (SAXS) Measurements of APOBEC3G Provide Structural Basis for Binding of Single-Stranded DNA and Processivity. Viruses 2022; 14:1974. [PMID: 36146779 PMCID: PMC9505750 DOI: 10.3390/v14091974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
APOBEC3 enzymes are polynucleotide deaminases, converting cytosine to uracil on single-stranded DNA (ssDNA) and RNA as part of the innate immune response against viruses and retrotransposons. APOBEC3G is a two-domain protein that restricts HIV. Although X-ray single-crystal structures of individual catalytic domains of APOBEC3G with ssDNA as well as full-length APOBEC3G have been solved recently, there is little structural information available about ssDNA interaction with the full-length APOBEC3G or any other two-domain APOBEC3. Here, we investigated the solution-state structures of full-length APOBEC3G with and without a 40-mer modified ssDNA by small-angle X-ray scattering (SAXS), using size-exclusion chromatography (SEC) immediately prior to irradiation to effect partial separation of multi-component mixtures. To prevent cytosine deamination, the target 2'-deoxycytidine embedded in 40-mer ssDNA was replaced by 2'-deoxyzebularine, which is known to inhibit APOBEC3A, APOBEC3B and APOBEC3G when incorporated into short ssDNA oligomers. Full-length APOBEC3G without ssDNA comprised multiple multimeric species, of which tetramer was the most scattering species. The structure of the tetramer was elucidated. Dimeric interfaces significantly occlude the DNA-binding interface, whereas the tetrameric interface does not. This explains why dimers completely disappeared, and monomeric protein species became dominant, when ssDNA was added. Data analysis of the monomeric species revealed a full-length APOBEC3G-ssDNA complex that gives insight into the observed "jumping" behavior revealed in studies of enzyme processivity. This solution-state SAXS study provides the first structural model of ssDNA binding both domains of APOBEC3G and provides data to guide further structural and enzymatic work on APOBEC3-ssDNA complexes.
Collapse
Affiliation(s)
- Fareeda M. Barzak
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Timothy M. Ryan
- SAXS/WAXS, Australian Synchrotron/ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Nazanin Mohammadzadeh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Stefan Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Maksim V. Kvach
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Harikrishnan M. Kurup
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Linda Chelico
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Vyacheslav V. Filichev
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Geoffrey B. Jameson
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
24
|
Rawson JMO, Nikolaitchik OA, Shakya S, Keele BF, Pathak VK, Hu WS. Transcription Start Site Heterogeneity and Preferential Packaging of Specific Full-Length RNA Species Are Conserved Features of Primate Lentiviruses. Microbiol Spectr 2022; 10:e0105322. [PMID: 35736240 PMCID: PMC9430795 DOI: 10.1128/spectrum.01053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
HIV-1 must package its RNA genome to generate infectious viruses. Recent studies have revealed that during genome packaging, HIV-1 not only excludes cellular mRNAs, but also distinguishes among full-length viral RNAs. Using NL4-3 and MAL molecular clones, multiple transcription start sites (TSS) were identified, which generate full-length RNAs that differ by only a few nucleotides at the 5' end. However, HIV-1 selectively packages RNAs containing one guanosine (1G RNA) over RNAs with three guanosines (3G RNA) at the 5' end. Thus, the 5' context of HIV-1 full-length RNA can affect its function. To determine whether the regulation of genome packaging by TSS usage is unique to NL4-3 and MAL, we examined 15 primate lentiviruses including transmitted founder viruses of HIV-1, HIV-2, and several simian immunodeficiency viruses (SIVs). We found that all 15 viruses used multiple TSS to some extent. However, the level of TSS heterogeneity in infected cells varied greatly, even among closely related viruses belonging to the same subtype. Most viruses also exhibited selective packaging of specific full-length viral RNA species into particles. These findings demonstrate that TSS heterogeneity and selective packaging of certain full-length viral RNA species are conserved features of primate lentiviruses. In addition, an SIV strain closely related to the progenitor virus that gave rise to HIV-1 group M, the pandemic pathogen, exhibited TSS usage similar to some HIV-1 strains and preferentially packaged 1G RNA. These findings indicate that multiple TSS usage and selective packaging of a particular unspliced RNA species predate the emergence of HIV-1. IMPORTANCE Unspliced HIV-1 RNA serves two important roles during viral replication: as the virion genome and as the template for translation of Gag/Gag-Pol. Previous studies of two HIV-1 molecular clones have concluded that the TSS usage affects unspliced HIV-1 RNA structures and functions. To investigate the evolutionary origin of this replication strategy, we determined TSS of HIV-1 RNA in infected cells and virions for 15 primate lentiviruses. All HIV-1 isolates examined, including several transmitted founder viruses, utilized multiple TSS and selected a particular RNA species for packaging. Furthermore, these features were observed in SIVs related to the progenitors of HIV-1, suggesting that these characteristics originated from the ancestral viruses. HIV-2, SIVs related to HIV-2, and other SIVs also exhibited multiple TSS and preferential packaging of specific unspliced RNA species, demonstrating that this replication strategy is broadly conserved across primate lentiviruses.
Collapse
Affiliation(s)
- Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Saurabh Shakya
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
25
|
Carcone A, Journo C, Dutartre H. Is the HTLV-1 Retrovirus Targeted by Host Restriction Factors? Viruses 2022; 14:v14081611. [PMID: 35893677 PMCID: PMC9332716 DOI: 10.3390/v14081611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T cell leukemia/lymphoma (ATLL) and of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), was identified a few years before Human Immunodeficiency Virus (HIV). However, forty years later, our comprehension of HTLV-1 immune detection and the host immune responses to HTLV-1 is far more limited than for HIV. In addition to innate and adaptive immune responses that rely on specialized cells of the immune system, host cells may also express a range of antiviral factors that inhibit viral replication at different stages of the cycle, in a cell-autonomous manner. Multiple antiviral factors allowing such an intrinsic immunity have been primarily and extensively described in the context HIV infection. Here, we provide an overview of whether known HIV restriction factors might act on HTLV-1 replication. Interestingly, many of them do not exert any antiviral activity against HTLV-1, and we discuss viral replication cycle specificities that could account for these differences. Finally, we highlight future research directions that could help to identify antiviral factors specific to HTLV-1.
Collapse
|
26
|
A Conserved uORF Regulates APOBEC3G Translation and Is Targeted by HIV-1 Vif Protein to Repress the Antiviral Factor. Biomedicines 2021; 10:biomedicines10010013. [PMID: 35052693 PMCID: PMC8773096 DOI: 10.3390/biomedicines10010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels (transcription, translation, and protein degradation) that altogether reduce the levels of A3G in cells and prevent its incorporation into viral particles. How Vif affects A3G translation remains unclear. Here, we uncovered the importance of a short conserved uORF (upstream ORF) located within two critical stem-loop structures of the 5′ untranslated region (5′-UTR) of A3G mRNA for this process. A3G translation occurs through a combination of leaky scanning and translation re-initiation and the presence of an intact uORF decreases the extent of global A3G translation under normal conditions. Interestingly, the uORF is also absolutely required for Vif-mediated translation inhibition and redirection of A3G mRNA into stress granules. Overall, we discovered that A3G translation is regulated by a small uORF conserved in the human population and that Vif uses this specific feature to repress its translation.
Collapse
|
27
|
Selective packaging of HIV-1 RNA genome is guided by the stability of 5' untranslated region polyA stem. Proc Natl Acad Sci U S A 2021; 118:2114494118. [PMID: 34873042 DOI: 10.1073/pnas.2114494118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
To generate infectious virus, HIV-1 must package two copies of its full-length RNA into particles. HIV-1 transcription initiates from multiple, neighboring sites, generating RNA species that only differ by a few nucleotides at the 5' end, including those with one (1G) or three (3G) 5' guanosines. Strikingly, 1G RNA is preferentially packaged into virions over 3G RNA. We investigated how HIV-1 distinguishes between these nearly identical RNAs using in-gel chemical probing combined with recently developed computational tools for determining RNA conformational ensembles, as well as cell-based assays to quantify the efficiency of RNA packaging into viral particles. We found that 1G and 3G RNAs fold into distinct structural ensembles. The 1G RNA, but not the 3G RNA, primarily adopts conformations with an intact polyA stem, exposed dimerization initiation site, and multiple, unpaired guanosines known to mediate Gag binding. Furthermore, we identified mutants that exhibited altered genome selectivity and packaged 3G RNA efficiently. In these mutants, both 1G and 3G RNAs fold into similar conformational ensembles, such that they can no longer be distinguished. Our findings demonstrate that polyA stem stability guides RNA-packaging selectivity. These studies also uncover the mechanism by which HIV-1 selects its genome for packaging: 1G RNA is preferentially packaged because it exposes structural elements that promote RNA dimerization and Gag binding.
Collapse
|
28
|
Gaba A, Hix MA, Suhail S, Flath B, Boysan B, Williams DR, Pelletier T, Emerman M, Morcos F, Cisneros GA, Chelico L. Divergence in Dimerization and Activity of Primate APOBEC3C. J Mol Biol 2021; 433:167306. [PMID: 34666043 PMCID: PMC9202443 DOI: 10.1016/j.jmb.2021.167306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022]
Abstract
The APOBEC3 (A3) family of single-stranded DNA cytidine deaminases are host restriction factors that inhibit lentiviruses, such as HIV-1, in the absence of the Vif protein that causes their degradation. Deamination of cytidine in HIV-1 (−)DNA forms uracil that causes inactivating mutations when uracil is used as a template for (+)DNA synthesis. For APOBEC3C (A3C), the chimpanzee and gorilla orthologues are more active than human A3C, and we determined that Old World Monkey A3C from rhesus macaque (rh) is not active against HIV-1. Biochemical, virological, and coevolutionary analyses combined with molecular dynamics simulations showed that the key amino acids needed to promote rhA3C antiviral activity, 44, 45, and 144, also promoted dimerization and changes to the dynamics of loop 1, near the enzyme active site. Although forced evolution of rhA3C resulted in a similar dimer interface with hominid A3C, the key amino acid contacts were different. Overall, our results determine the basis for why rhA3C is less active than human A3C and establish the amino acid network for dimerization and increased activity. Based on identification of the key amino acids determining Old World Monkey antiviral activity we predict that other Old World Monkey A3Cs did not impart anti-lentiviral activity, despite fixation of a key residue needed for hominid A3C activity. Overall, the coevolutionary analysis of the A3C dimerization interface presented also provides a basis from which to analyze dimerization interfaces of other A3 family members.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada. https://twitter.com/optimist1023
| | - Mark A Hix
- Department of Chemistry, University of North Texas, Denton, TX, USA. https://twitter.com/markahix
| | - Sana Suhail
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA. https://twitter.com/sakuraa_329
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Brock Boysan
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Danielle R Williams
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. https://twitter.com/dani_renee_
| | - Tomas Pelletier
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. https://twitter.com/memerman
| | - Faruck Morcos
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA. https://twitter.com/MorcosLab
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, TX, USA. https://twitter.com/CisnerosRes
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
29
|
Armenia D, Santoro MM, Bellocchi MC, Carioti L, Galli L, Galli A, Scutari R, Salsi E, Mussini C, Sterrantino G, Calza L, Rossetti B, Zazzi M, Castagna A. Viral resistance burden and APOBEC editing correlate with virological response in heavily treatment-experienced people living with multi-drug resistant HIV. Int J Antimicrob Agents 2021; 59:106492. [PMID: 34871747 DOI: 10.1016/j.ijantimicag.2021.106492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/15/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The impact of drug resistance mutational load and APOBEC editing in heavily treatment-experienced (HTE) people living with multidrug-resistant HIV has not been investigated. MATERIAL AND METHODS This study explored the HIV-DNA and HIV-RNA mutational load of drug resistance and APOBEC-related mutations through next-generation sequencing (NGS, Illumina MiSeq) in 20 failing HTE participants enrolled in the PRESTIGIO registry. RESULTS The patients showed high levels of both HIV-DNA (4.5 [4.0-5.2] log10 copies/106 T-CD4+ cell) and HIV-RNA (4.5 [4.1-5.0] log10 copies/mL) with complex resistance patterns in both compartments. Among the 255 drug-resistant mutations found, 66.3% were concordantly detected in both HIV-DNA and HIV-RNA; 71.3% of mutations were already present in historical Sanger genotypes. At an intra-patient frequency > 5%, a considerable proportion of mutations detected through DNA-NGS were found in historical genotypes but not through RNA-NGS, and few patients had APOBEC-related mutations. Of 14 patients who switched therapy, the five who failed treatment had DNA resistance with higher intra-patient frequency and higher DNA/RNA mutational load in a context of tendentially less pronounced APOBEC editing compared with those who responded. CONCLUSIONS Using NGS in HIV-DNA and HIV-RNA together with APOBEC editing evaluation might help to identify HTE individuals with MDR who are more prone to experience virological failure.
Collapse
Affiliation(s)
- Daniele Armenia
- Saint Camillus International University of Health Sciences, Rome, Italy; Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Luca Carioti
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Galli
- Clinic of Infectious Diseases, Istituto Scientifico San Raffaele, Milano, Italy
| | - Andrea Galli
- Clinic of Infectious Diseases, Istituto Scientifico San Raffaele, Milano, Italy
| | - Rossana Scutari
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Gaetana Sterrantino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | | | - Antonella Castagna
- Clinic of Infectious Diseases, Istituto Scientifico San Raffaele, Milano, Italy; Clinic of Infectious Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|
30
|
Tseng YY, Kuan CY, Mibayashi M, Chen CJ, Palese P, Albrecht RA, Hsu WL. Interaction between NS1 and Cellular MAVS Contributes to NS1 Mitochondria Targeting. Viruses 2021; 13:1909. [PMID: 34696339 PMCID: PMC8537625 DOI: 10.3390/v13101909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus nonstructural protein 1 (NS1) plays an important role in evading host innate immunity. NS1 inhibits interferon (IFN) responses via multiple mechanisms, including sequestering dsRNA and suppressing retinoic acid-inducible gene I (RIG-I) signaling by interacting with RIG-I and tripartite motif-containing protein 25 (TRIM25). In the current study, we demonstrated the mitochondrial localization of NS1 at the early stage of influenza virus infection. Since NS1 does not contain mitochondria-targeting signals, we suspected that there is an association between the NS1 and mitochondrial proteins. This hypothesis was tested by demonstrating the interaction of NS1 with mitochondrial antiviral-signaling protein (MAVS) in a RIG-I-independent manner. Importantly, the association with MAVS facilitated the mitochondrial localization of NS1 and thereby significantly impeded MAVS-mediated Type I IFN production.
Collapse
Affiliation(s)
- Yeu-Yang Tseng
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 402, Taiwan; (Y.-Y.T.); (C.-Y.K.)
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Chih-Ying Kuan
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 402, Taiwan; (Y.-Y.T.); (C.-Y.K.)
| | - Masaki Mibayashi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (C.-J.C.); (P.P.); (R.A.A.)
| | - Chi-Jene Chen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (C.-J.C.); (P.P.); (R.A.A.)
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (C.-J.C.); (P.P.); (R.A.A.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (C.-J.C.); (P.P.); (R.A.A.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 402, Taiwan; (Y.-Y.T.); (C.-Y.K.)
| |
Collapse
|
31
|
APOBEC3F Constitutes a Barrier to Successful Cross-Species Transmission of Simian Immunodeficiency Virus SIVsmm to Humans. J Virol 2021; 95:e0080821. [PMID: 34132575 DOI: 10.1128/jvi.00808-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Simian immunodeficiency virus infecting sooty mangabeys (SIVsmm) has been transmitted to humans on at least nine occasions, giving rise to human immunodeficiency virus type 2 (HIV-2) groups A to I. SIVsmm isolates replicate in human T cells and seem capable of overcoming major human restriction factors without adaptation. However, only groups A and B are responsible for the HIV-2 epidemic in sub-Saharan Africa, and it is largely unclear whether adaptive changes were associated with spread in humans. To address this, we examined the sensitivity of infectious molecular clones (IMCs) of five HIV-2 strains and representatives of five different SIVsmm lineages to various APOBEC3 proteins. We confirmed that SIVsmm strains replicate in human T cells, albeit with more variable replication fitness and frequently lower efficiency than HIV-2 IMCs. Efficient viral propagation was generally dependent on intact vif genes, highlighting the need for counteraction of APOBEC3 proteins. On average, SIVsmm was more susceptible to inhibition by human APOBEC3D, -F, -G, and -H than HIV-2. For example, human APOBEC3F reduced infectious virus yield of SIVsmm by ∼80% but achieved only ∼40% reduction in the case of HIV-2. Functional and mutational analyses of human- and monkey-derived alleles revealed that an R128T polymorphism in APOBEC3F contributes to species-specific counteraction by HIV-2 and SIVsmm Vifs. In addition, a T84S substitution in SIVsmm Vif increased its ability to counteract human APOBEC3F. Altogether, our results confirm that SIVsmm Vif proteins show intrinsic activity against human APOBEC3 proteins but also demonstrate that epidemic HIV-2 strains evolved an increased ability to counteract this class of restriction factors during human adaptation. IMPORTANCE Viral zoonoses pose a significant threat to human health, and it is important to understand determining factors. SIVs infecting great apes gave rise to HIV-1. In contrast, SIVs infecting African monkey species have not been detected in humans, with one notable exception. SIVsmm from sooty mangabeys has crossed the species barrier to humans on at least nine independent occasions and seems capable of overcoming many innate defense mechanisms without adaptation. Here, we confirmed that SIVsmm Vif proteins show significant activity against human APOBEC3 proteins. Our analyses also revealed, however, that different lineages of SIVsmm are significantly more susceptible to inhibition by various human APOBEC3 proteins than HIV-2 strains. Mutational analyses suggest that an R128T substitution in APOBEC3F and a T84S change in Vif contribute to species-specific counteraction by HIV-2 and SIVsmm. Altogether, our results support that epidemic HIV-2 strains acquired increased activity against human APOBEC3 proteins to clear this restrictive barrier.
Collapse
|
32
|
Chintala K, Mohareer K, Banerjee S. Dodging the Host Interferon-Stimulated Gene Mediated Innate Immunity by HIV-1: A Brief Update on Intrinsic Mechanisms and Counter-Mechanisms. Front Immunol 2021; 12:716927. [PMID: 34394123 PMCID: PMC8358655 DOI: 10.3389/fimmu.2021.716927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Host restriction factors affect different phases of a viral life cycle, contributing to innate immunity as the first line of defense against viruses, including HIV-1. These restriction factors are constitutively expressed, but triggered upon infection by interferons. Both pre-integration and post-integration events of the HIV-1 life cycle appear to play distinct roles in the induction of interferon-stimulated genes (ISGs), many of which encode antiviral restriction factors. However, HIV-1 counteracts the mechanisms mediated by these restriction factors through its encoded components. Here, we review the recent findings of pathways that lead to the induction of ISGs, and the mechanisms employed by the restriction factors such as IFITMs, APOBEC3s, MX2, and ISG15 in preventing HIV-1 replication. We also reflect on the current understanding of the counter-mechanisms employed by HIV-1 to evade innate immune responses and overcome host restriction factors. Overall, this mini-review provides recent insights into the HIV-1-host cross talk bridging the understanding between intracellular immunity and research avenues in the field of therapeutic interventions against HIV-1.
Collapse
|
33
|
Sadeghpour S, Khodaee S, Rahnama M, Rahimi H, Ebrahimi D. Human APOBEC3 Variations and Viral Infection. Viruses 2021; 13:1366. [PMID: 34372572 PMCID: PMC8310219 DOI: 10.3390/v13071366] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Human APOBEC3 (apolipoprotein B mRNA-editing catalytic polypeptide-like 3) enzymes are capable of inhibiting a wide range of endogenous and exogenous viruses using deaminase and deaminase-independent mechanisms. These enzymes are essential components of our innate immune system, as evidenced by (a) their strong positive selection and expansion in primates, (b) the evolution of viral counter-defense mechanisms, such as proteasomal degradation mediated by HIV Vif, and (c) hypermutation and inactivation of a large number of integrated HIV-1 proviruses. Numerous APOBEC3 single nucleotide polymorphisms, haplotypes, and splice variants have been identified in humans. Several of these variants have been reported to be associated with differential antiviral immunity. This review focuses on the current knowledge in the field about these natural variations and their roles in infectious diseases.
Collapse
Affiliation(s)
- Shiva Sadeghpour
- Department of Biological Science, University of California Irvine, Irvine, CA 92697, USA;
| | - Saeideh Khodaee
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA;
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
34
|
Gaba A, Flath B, Chelico L. Examination of the APOBEC3 Barrier to Cross Species Transmission of Primate Lentiviruses. Viruses 2021; 13:1084. [PMID: 34200141 PMCID: PMC8228377 DOI: 10.3390/v13061084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transmission of viruses from animal hosts into humans have led to the emergence of several diseases. Usually these cross-species transmissions are blocked by host restriction factors, which are proteins that can block virus replication at a specific step. In the natural virus host, the restriction factor activity is usually suppressed by a viral antagonist protein, but this is not the case for restriction factors from an unnatural host. However, due to ongoing viral evolution, sometimes the viral antagonist can evolve to suppress restriction factors in a new host, enabling cross-species transmission. Here we examine the classical case of this paradigm by reviewing research on APOBEC3 restriction factors and how they can suppress human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). APOBEC3 enzymes are single-stranded DNA cytidine deaminases that can induce mutagenesis of proviral DNA by catalyzing the conversion of cytidine to promutagenic uridine on single-stranded viral (-)DNA if they escape the HIV/SIV antagonist protein, Vif. APOBEC3 degradation is induced by Vif through the proteasome pathway. SIV has been transmitted between Old World Monkeys and to hominids. Here we examine the adaptations that enabled such events and the ongoing impact of the APOBEC3-Vif interface on HIV in humans.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| |
Collapse
|
35
|
McDonnell MM, Karvonen SC, Gaba A, Flath B, Chelico L, Emerman M. Highly-potent, synthetic APOBEC3s restrict HIV-1 through deamination-independent mechanisms. PLoS Pathog 2021; 17:e1009523. [PMID: 34170969 PMCID: PMC8266076 DOI: 10.1371/journal.ppat.1009523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/08/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
The APOBEC3 (A3) genes encode cytidine deaminase proteins with potent antiviral and anti-retroelement activity. This locus is characterized by duplication, recombination, and deletion events that gave rise to the seven A3s found in primates. These include three single deaminase domain A3s (A3A, A3C, and A3H) and four double deaminase domain A3s (A3B, A3D, A3F, and A3G). The most potent of the A3 proteins against HIV-1 is A3G. However, it is not clear if double deaminase domain A3s have a generalized functional advantage to restrict HIV-1. In order to test whether superior restriction factors could be created by genetically linking single A3 domains into synthetic double domains, we linked A3C and A3H single domains in novel combinations. We found that A3C/A3H double domains acquired enhanced antiviral activity that is at least as potent, if not better than, A3G. Although these synthetic double domain A3s package into budding virions more efficiently than their respective single domains, this does not fully explain their gain of antiviral potency. The antiviral activity is conferred both by cytidine-deaminase dependent and independent mechanisms, with the latter correlating to an increase in RNA binding affinity. T cell lines expressing this A3C-A3H super restriction factor are able to control replicating HIV-1ΔVif infection to similar levels as A3G. Together, these data show that novel combinations of A3 domains are capable of gaining potent antiviral activity to levels similar to the most potent genome-encoded A3s, via a primarily non-catalytic mechanism.
Collapse
Affiliation(s)
- Mollie M. McDonnell
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Suzanne C. Karvonen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
36
|
Degradation-Independent Inhibition of APOBEC3G by the HIV-1 Vif Protein. Viruses 2021; 13:v13040617. [PMID: 33916704 PMCID: PMC8066197 DOI: 10.3390/v13040617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin–proteasome system plays an important role in the cell under normal physiological conditions but also during viral infections. Indeed, many auxiliary proteins from the (HIV-1) divert this system to its own advantage, notably to induce the degradation of cellular restriction factors. For instance, the HIV-1 viral infectivity factor (Vif) has been shown to specifically counteract several cellular deaminases belonging to the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 or A3) family (A3A to A3H) by recruiting an E3-ubiquitin ligase complex and inducing their polyubiquitination and degradation through the proteasome. Although this pathway has been extensively characterized so far, Vif has also been shown to impede A3s through degradation-independent processes, but research on this matter remains limited. In this review, we describe our current knowledge regarding the degradation-independent inhibition of A3s, and A3G in particular, by the HIV-1 Vif protein, the molecular mechanisms involved, and highlight important properties of this small viral protein.
Collapse
|
37
|
Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions. Viruses 2021; 13:v13030497. [PMID: 33802945 PMCID: PMC8002816 DOI: 10.3390/v13030497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.
Collapse
|
38
|
Uriu K, Kosugi Y, Ito J, Sato K. The Battle between Retroviruses and APOBEC3 Genes: Its Past and Present. Viruses 2021; 13:124. [PMID: 33477360 PMCID: PMC7830460 DOI: 10.3390/v13010124] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
The APOBEC3 family of proteins in mammals consists of cellular cytosine deaminases and well-known restriction factors against retroviruses, including lentiviruses. APOBEC3 genes are highly amplified and diversified in mammals, suggesting that their evolution and diversification have been driven by conflicts with ancient viruses. At present, lentiviruses, including HIV, the causative agent of AIDS, are known to encode a viral protein called Vif to overcome the antiviral effects of the APOBEC3 proteins of their hosts. Recent studies have revealed that the acquisition of an anti-APOBEC3 ability by lentiviruses is a key step in achieving successful cross-species transmission. Here, we summarize the current knowledge of the interplay between mammalian APOBEC3 proteins and viral infections and introduce a scenario of the coevolution of mammalian APOBEC3 genes and viruses.
Collapse
Affiliation(s)
- Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; (K.U.); (J.I.)
- Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| | - Yusuke Kosugi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan;
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; (K.U.); (J.I.)
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; (K.U.); (J.I.)
- Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| |
Collapse
|
39
|
Hakata Y, Miyazawa M. Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins. Microorganisms 2020; 8:microorganisms8121976. [PMID: 33322756 PMCID: PMC7764128 DOI: 10.3390/microorganisms8121976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Correspondence: ; Tel.: +81-72-367-7660
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
40
|
Ramdas P, Sahu AK, Mishra T, Bhardwaj V, Chande A. From Entry to Egress: Strategic Exploitation of the Cellular Processes by HIV-1. Front Microbiol 2020; 11:559792. [PMID: 33343516 PMCID: PMC7746852 DOI: 10.3389/fmicb.2020.559792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/05/2020] [Indexed: 01/23/2023] Open
Abstract
HIV-1 employs a rich arsenal of viral factors throughout its life cycle and co-opts intracellular trafficking pathways. This exquisitely coordinated process requires precise manipulation of the host microenvironment, most often within defined subcellular compartments. The virus capitalizes on the host by modulating cell-surface proteins and cleverly exploiting nuclear import pathways for post entry events, among other key processes. Successful virus–cell interactions are indeed crucial in determining the extent of infection. By evolving defenses against host restriction factors, while simultaneously exploiting host dependency factors, the life cycle of HIV-1 presents a fascinating montage of an ongoing host–virus arms race. Herein, we provide an overview of how HIV-1 exploits native functions of the host cell and discuss recent findings that fundamentally change our understanding of the post-entry replication events.
Collapse
Affiliation(s)
- Pavitra Ramdas
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Sahu
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Tarun Mishra
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Vipin Bhardwaj
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| |
Collapse
|
41
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
42
|
Ling G, Miller D, Nielsen R, Stern A. A Bayesian Framework for Inferring the Influence of Sequence Context on Point Mutations. Mol Biol Evol 2020; 37:893-903. [PMID: 31651955 PMCID: PMC7038660 DOI: 10.1093/molbev/msz248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The probability of point mutations is expected to be highly influenced by the flanking nucleotides that surround them, known as the sequence context. This phenomenon may be mainly attributed to the enzyme that modifies or mutates the genetic material, because most enzymes tend to have specific sequence contexts that dictate their activity. Here, we develop a statistical model that allows for the detection and evaluation of the effects of different sequence contexts on mutation rates from deep population sequencing data. This task is computationally challenging, as the complexity of the model increases exponentially as the context size increases. We established our novel Bayesian method based on sparse model selection methods, with the leading assumption that the number of actual sequence contexts that directly influence mutation rates is minuscule compared with the number of possible sequence contexts. We show that our method is highly accurate on simulated data using pentanucleotide contexts, even when accounting for noisy data. We next analyze empirical population sequencing data from polioviruses and HIV-1 and detect a significant enrichment in sequence contexts associated with deamination by the cellular deaminases ADAR 1/2 and APOBEC3G, respectively. In the current era, where next-generation sequencing data are highly abundant, our approach can be used on any population sequencing data to reveal context-dependent base alterations and may assist in the discovery of novel mutable sites or editing sites.
Collapse
Affiliation(s)
- Guy Ling
- School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Danielle Miller
- School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA.,Department of Statistics, University of California, Berkeley, Berkeley, CA.,Center for Computational Biology at UC Berkeley (CCB), Berkeley, CA
| | - Adi Stern
- School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel.,Edmond J. Safra Center for Bioinformatics at Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
43
|
Maiti A, Myint W, Delviks-Frankenberry KA, Hou S, Kanai T, Balachandran V, Sierra Rodriguez C, Tripathi R, Kurt Yilmaz N, Pathak VK, Schiffer CA, Matsuo H. Crystal Structure of a Soluble APOBEC3G Variant Suggests ssDNA to Bind in a Channel that Extends between the Two Domains. J Mol Biol 2020; 432:6042-6060. [PMID: 33098858 DOI: 10.1016/j.jmb.2020.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytosine deaminase that can restrict HIV-1 infection by mutating the viral genome. A3G consists of a non-catalytic N-terminal domain (NTD) and a catalytic C-terminal domain (CTD) connected by a short linker. While the CTD catalyzes cytosine deamination, the NTD is believed to provide additional affinity for ssDNA. Structures of both A3G domains have been solved individually; however, a full-length A3G structure has been challenging. Recently, crystal structures of full-length rhesus macaque A3G variants were solved which suggested dimerization mechanisms and RNA binding surfaces, whereas the dimerization appeared to compromise catalytic activity. We determined the crystal structure of a soluble variant of human A3G (sA3G) at 2.5 Å and from these data generated a model structure of wild-type A3G. This model demonstrated that the NTD was rotated 90° relative to the CTD along the major axis of the molecule, an orientation that forms a positively charged channel connected to the CTD catalytic site, consisting of NTD loop-1 and CTD loop-3. Structure-based mutations, in vitro deamination and DNA binding assays, and HIV-1 restriction assays identify R24, located in the NTD loop-1, as essential to a critical interaction with ssDNA. Furthermore, sA3G was shown to bind a deoxy-cytidine dinucleotide near the catalytic Zn2+, yet not in the catalytic position, where the interactions between deoxy-cytidines and CTD loop-1 and loop-7 residues were different from those formed with substrate. These new interactions suggest a mechanism explaining why A3G exhibits a 3' to 5' directional preference in processive deamination.
Collapse
Affiliation(s)
- Atanu Maiti
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Wazo Myint
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tapan Kanai
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Chemistry, Banasthali University, Banasthali 304022, Rajasthan, India
| | | | | | - Rashmi Tripathi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hiroshi Matsuo
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
44
|
Murine Leukemia Virus P50 Protein Counteracts APOBEC3 by Blocking Its Packaging. J Virol 2020; 94:JVI.00032-20. [PMID: 32641479 DOI: 10.1128/jvi.00032-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/01/2020] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) family members are cytidine deaminases that play important roles in intrinsic responses to retrovirus infection. Complex retroviruses like human immunodeficiency virus type 1 (HIV-1) encode the viral infectivity factor (Vif) protein to counteract APOBEC3 proteins. Vif induces degradation of APOBEC3G and other APOBEC3 proteins and thereby prevents their packaging into virions. It is not known if murine leukemia virus (MLV) encodes a Vif-like protein. Here, we show that the MLV P50 protein, produced from an alternatively spliced gag RNA, interacts with the C terminus of mouse APOBEC3 and prevents its packaging without causing its degradation. By infecting APOBEC3 knockout (KO) and wild-type (WT) mice with Friend or Moloney MLV P50-deficient viruses, we found that APOBEC3 restricts the mutant viruses more than WT viruses in vivo Replication of P50-mutant viruses in an APOBEC3-expressing stable cell line was also much slower than that of WT viruses, and overexpressing P50 in this cell line enhanced mutant virus replication. Thus, MLV encodes a protein, P50, that overcomes APOBEC3 restriction by preventing its packaging into virions.IMPORTANCE MLV has existed in mice for at least a million years, in spite of the existence of host restriction factors that block infection. Although MLV is considered a simple retrovirus compared to lentiviruses, it does encode proteins generated from alternatively spliced RNAs. Here, we show that P50, generated from an alternatively spliced RNA encoded in gag, counteracts APOBEC3 by blocking its packaging. MLV also encodes a protein, glycoGag, that increases capsid stability and limits APOBEC3 access to the reverse transcription complex (RTC). Thus, MLV has evolved multiple means of preventing APOBEC3 from blocking infection, explaining its survival as an infectious pathogen in mice.
Collapse
|
45
|
Insights into Sensing of Murine Retroviruses. Viruses 2020; 12:v12080836. [PMID: 32751803 PMCID: PMC7472155 DOI: 10.3390/v12080836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Retroviruses are major causes of disease in animals and human. Better understanding of the initial host immune response to these viruses could provide insight into how to limit infection. Mouse retroviruses that are endemic in their hosts provide an important genetic tool to dissect the different arms of the innate immune system that recognize retroviruses as foreign. Here, we review what is known about the major branches of the innate immune system that respond to mouse retrovirus infection, Toll-like receptors and nucleic acid sensors, and discuss the importance of these responses in activating adaptive immunity and controlling infection.
Collapse
|
46
|
Meshesha M, Esadze A, Cui J, Churgulia N, Sahu SK, Stivers JT. Deficient uracil base excision repair leads to persistent dUMP in HIV proviruses during infection of monocytes and macrophages. PLoS One 2020; 15:e0235012. [PMID: 32663205 PMCID: PMC7360050 DOI: 10.1371/journal.pone.0235012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 11/19/2022] Open
Abstract
Non-dividing cells of the myeloid lineage such as monocytes and macrophages are target cells of HIV that have low dNTP pool concentrations and elevated levels of dUTP, which leads to frequent incorporation of dUMP opposite to A during reverse transcription ("uracilation"). One factor determining the fate of dUMP in proviral DNA is the host cell uracil base excision repair (UBER) system. Here we explore the relative UBER capacity of monocytes (MC) and monocyte-derived macrophages (MDM) and the fate of integrated uracilated viruses in both cell types to understand the implications of viral dUMP on HIV diversification and infectivity. We find that the kinetics for MC infection is compatible with their lifetime in vivo and their near absence of hUNG2 activity is consistent with the retention of viral dUMP at high levels at least until differentiation into macrophages, where UBER becomes possible. Overexpression of human uracil DNA glycosylase in MDM prior to infection resulted in rapid removal of dUMP from HIV cDNA and near complete depletion of dUMP-containing viral copies. This finding establishes that the low hUNG2 expression level in these cells limits UBER but that hUNG2 is restrictive against uracilated viruses. In contrast, overexpression of hUNG2 after viral integration did not accelerate the excision of uracils, suggesting that they may poorly accessible in the context of chromatin. We found that viral DNA molecules with incorporated dUMP contained unique (+) strand transversion mutations that were not observed when dUMP was absent (G→T, T→A, T→G, A→C). These observations and other considerations suggest that dUMP introduces errors predominantly during (-) strand synthesis when the template is RNA. Overall, the likelihood of producing a functional virus from in vitro infection of MC is about 50-fold and 300-fold reduced as compared to MDM and activated T cells. The results implicate viral dUMP incorporation in MC and MDM as a potential viral diversification and restriction pathway during human HIV infection.
Collapse
Affiliation(s)
- Mesfin Meshesha
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alexandre Esadze
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Junru Cui
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Natela Churgulia
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Sushil Kumar Sahu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - James T. Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
47
|
Di Giorgio S, Martignano F, Torcia MG, Mattiuz G, Conticello SG. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. SCIENCE ADVANCES 2020; 6:eabb5813. [PMID: 32596474 PMCID: PMC7299625 DOI: 10.1126/sciadv.abb5813] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/05/2020] [Indexed: 05/13/2023]
Abstract
The COVID-19 outbreak has become a global health risk, and understanding the response of the host to the SARS-CoV-2 virus will help to combat the disease. RNA editing by host deaminases is an innate restriction process to counter virus infection, but it is not yet known whether this process operates against coronaviruses. Here, we analyze RNA sequences from bronchoalveolar lavage fluids obtained from coronavirus-infected patients. We identify nucleotide changes that may be signatures of RNA editing: adenosine-to-inosine changes from ADAR deaminases and cytosine-to-uracil changes from APOBEC deaminases. Mutational analysis of genomes from different strains of Coronaviridae from human hosts reveals mutational patterns consistent with those observed in the transcriptomic data. However, the reduced ADAR signature in these data raises the possibility that ADARs might be more effective than APOBECs in restricting viral propagation. Our results thus suggest that both APOBECs and ADARs are involved in coronavirus genome editing, a process that may shape the fate of both virus and patient.
Collapse
Affiliation(s)
- Salvatore Di Giorgio
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Filippo Martignano
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Florence, Firenze 50139, Italy
| | - Giorgio Mattiuz
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Firenze 50139, Italy
| | - Silvestro G. Conticello
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
48
|
Delviks-Frankenberry KA, Desimmie BA, Pathak VK. Structural Insights into APOBEC3-Mediated Lentiviral Restriction. Viruses 2020; 12:E587. [PMID: 32471198 PMCID: PMC7354603 DOI: 10.3390/v12060587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/18/2023] Open
Abstract
Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins-A3G, A3F, A3H, and A3D-restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent proteasomal degradation in the virus producing cells. In this review, we summarize our current understanding of the role of human A3 proteins as barriers against HIV-1 infection, how Vif overcomes their antiviral activity, and highlight recent structural and functional insights into A3-mediated restriction of lentiviruses.
Collapse
Affiliation(s)
| | | | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; (K.A.D.-F.); (B.A.D.)
| |
Collapse
|
49
|
Abstract
As a part of the innate immune system, humans encode proteins that inhibit viruses such as HIV-1. These broadly acting antiviral proteins do not protect humans from viral infections because viruses encode proteins that antagonize the host antiviral proteins to evade the innate immune system. One such example of a host antiviral protein is APOBEC3C (A3C), which weakly inhibits HIV-1. Here, we show that we can improve the antiviral activity of A3C by duplicating the DNA sequence to create a synthetic tandem domain and, furthermore, that the proteins thus generated are relatively resistant to the viral antagonist Vif. Together, these data give insights about how nature has evolved a defense against viral pathogens such as HIV. Humans encode proteins, called restriction factors, that inhibit replication of viruses such as HIV-1. The members of one family of antiviral proteins, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; shortened here to A3), act by deaminating cytidines to uridines during the reverse transcription reaction of HIV-1. The A3 locus encodes seven genes, named A3A to A3H. These genes have either one or two cytidine deaminase domains, and several of these A3s potently restrict HIV-1. A3C, which has only a single cytidine deaminase domain, however, inhibits HIV-1 only very weakly. We tested novel double domain protein combinations by genetically linking two A3C genes to make a synthetic tandem domain protein. This protein created a “super restriction factor” that had more potent antiviral activity than the native A3C protein, which correlated with increased packaging into virions. Furthermore, disabling one of the active sites of the synthetic tandem domain protein resulted in an even greater increase in the antiviral activity—recapitulating a similar evolution seen in A3F and A3G (double domain A3s that use only a single catalytically active deaminase domain). These A3C tandem domain proteins do not have an increase in mutational activity but instead inhibit formation of reverse transcription products, which correlates with their ability to form large higher-order complexes in cells. Finally, the A3C-A3C super restriction factor largely escaped antagonism by the HIV-1 viral protein Vif.
Collapse
|
50
|
Radwan MO, Takaya D, Koga R, Iwamaru K, Tateishi H, Ali TF, Takaori-Kondo A, Otsuka M, Honma T, Fujita M. Interruption of Vif/Elongin C interaction: In silico and experimental elucidation of the underlying molecular mechanism of benzimidazole-based APOBEC3G stabilizers. Bioorg Med Chem 2020; 28:115409. [DOI: 10.1016/j.bmc.2020.115409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 11/26/2022]
|