1
|
Liang H, Qi H, Chen J, Wang Y, Liu M, Sun X, Wang C, Xia T, Feng X, Feng S, Chen C, Zheng D. Assembly and analysis of the first complete mitochondrial genome sequencing of main Tea-oil Camellia cultivars Camellia drupifera (Theaceae): revealed a multi-branch mitochondrial conformation for Camellia. BMC PLANT BIOLOGY 2025; 25:13. [PMID: 39754047 PMCID: PMC11697926 DOI: 10.1186/s12870-024-05996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited. RESULTS In this study, we first reconstructed the entire mitochondrial genome of C. drupifera to gain insights into its genetic structure and evolutionary history. Through our analysis, we observed a characteristic multi-branched configuration in the mitochondrial genomes of C. drupifera. A thorough examination of the protein-coding regions (PCGs) across Camellia species identified gene losses that occurred during their evolution. Notably, repeat sequences showed a weak correlation between the abundance of simple sequence repeats (SSRs) and genome size of Camellia. Additionally, despite of the considerable variations in the sizes of Camellia mitochondrial genomes, there was little diversity in GC content and gene composition. The phylogenetic tree derived from mitochondrial data was inconsistent with that generated from chloroplast data. CONCLUSIONS In conclusion, our study provides valuable insights into the molecular characteristics and evolutionary mechanisms of multi-branch mitochondrial structures in Camellia. The high-resolution mitogenome of C. drupifera enhances our understanding of multi-branch mitogenomes and lays a solid groundwork for future advancements in genomic improvement and germplasm innovation within Tea-oil Camellia.
Collapse
Affiliation(s)
- Heng Liang
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Huasha Qi
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Jiali Chen
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Yidan Wang
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Moyang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuxiu Sun
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Chunmei Wang
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Tengfei Xia
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Xuejie Feng
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Cheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daojun Zheng
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China.
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China.
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China.
| |
Collapse
|
2
|
Záhonová K, Kaur H, Furgason CC, Smirnova AV, Dunfield PF, Dacks JB. Comparative Analysis of Protist Communities in Oilsands Tailings Using Amplicon Sequencing and Metagenomics. Environ Microbiol 2025; 27:e70029. [PMID: 39797470 PMCID: PMC11724239 DOI: 10.1111/1462-2920.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 01/13/2025]
Abstract
The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress. Oilsands-associated protist communities have mainly been evaluated using amplicon sequencing of the 18S rRNA V4 region; however, this barcode may overlook important protist groups. This study examined how community assessment methods between the V4 and V9 regions differ in representing protist diversity across four oilsands-associated environments. The V9 barcode identified more operational taxonomical units (OTUs) for Discoba, Metamonada and Amoebozoa compared with the V4. A comparative shotgun metagenomics approach revealed few eukaryotic contigs but did recover a complete Paramicrosporidia mitochondrial genome, only the second publicly available from microsporidians. Both V4 and V9 markers were informative for assessing community diversity in oilsands-associated environments and are most effective when combined for a comprehensive taxonomic estimate, particularly in anoxic environments.
Collapse
Affiliation(s)
- Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
- Department of Parasitology, Faculty of ScienceCharles UniversityVestecCzech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Angela V. Smirnova
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Peter F. Dunfield
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
| |
Collapse
|
3
|
Takaramoto S, Fainsod S, Nagata T, Rozenberg A, Béjà O, Inoue K. HulaCCR1, a pump-like cation channelrhodopsin discovered in a lake microbiome. J Mol Biol 2024; 436:168844. [PMID: 39476949 DOI: 10.1016/j.jmb.2024.168844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Channelrhodopsins are light-gated ion channels consisting of seven transmembrane helices and a retinal chromophore, which are used as popular optogenetic tools for modulating neuronal activity. Cation channelrhodopsins (CCRs), first recognized as the photoreceptors in the chlorophyte Chlamydomonas reinhardtii, have since been identified in diverse species of green algae, as well in other unicellular eukaryotes. The CCRs from non-chlorophyte species are commonly referred to as bacteriorhodopsin-like cation channelrhodopsins, or BCCRs, as most of them feature the three characteristic amino acid residues of the "DTD motif" in the third transmembrane helix (TM3 or helix C) matching the canonical DTD motif of the well-studied archaeal light-driven proton pump bacteriorhodopsin. Here, we report characterization of HulaCCR1, a novel BCCR identified through metatranscriptomic analysis of a unicellular eukaryotic community in Lake Hula, Israel. Interestingly, HulaCCR1 has an ETD motif in which the first residue of the canonical motif is substituted for glutamate. Electrophysiological measurements of the wild-type and a mutant with a DTD motif of HulaCCR1 suggest the critical role of the first glutamate in spectral tuning and channel gating. Additionally, HulaCCR1 exhibits long extensions at the N- and C-termini. Photocurrents recorded from a truncated variant without the signal peptide predicted at the N-terminus were diminished, and membrane localization of the truncated variant significantly decreased, indicating that the signal peptide is important for membrane trafficking of HulaCCR1. These characteristics of HulaCCR1 would be related to a new biological significance in the original unidentified species, distinct from those known for other BCCRs.
Collapse
Affiliation(s)
- Shunki Takaramoto
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Shai Fainsod
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Andrey Rozenberg
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel; The Nancy and Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
4
|
Jackson VLN, Grevesse T, Kilias ES, Onda DFL, Young KF, Allen MJ, Walsh DA, Lovejoy C, Monier A. Vulnerability of Arctic Ocean microbial eukaryotes to sea ice loss. Sci Rep 2024; 14:28896. [PMID: 39572565 PMCID: PMC11582671 DOI: 10.1038/s41598-024-77821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
The Arctic Ocean (AO) is changing at an unprecedented rate, with ongoing sea ice loss, warming and freshening impacting the extent and duration of primary productivity over summer months. Surface microbial eukaryotes are vulnerable to such changes, but basic knowledge of the spatial variability of surface communities is limited. Here, we sampled microbial eukaryotes in surface waters of the Beaufort Sea from four contrasting environments: the Canada Basin (open ocean), the Mackenzie Trough (river-influenced), the Nuvuk region (coastal) and the under-ice system of the Canada Basin. Microbial community structure and composition varied significantly among the systems, with the most phylogenetically diverse communities being found in the more coastal systems. Further analysis of environmental factors showed potential vulnerability to change in the most specialised community, which was found in the samples taken in water immediately beneath the sea ice, and where the community was distinguished by rare species. In the context of ongoing sea ice loss, specialised ice-associated microbial assemblages may transition towards more generalist assemblages, with implications for the eventual loss of biodiversity and associated ecosystem function in the Arctic Ocean.
Collapse
Affiliation(s)
- Victoria L N Jackson
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Thomas Grevesse
- Biology Department, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Estelle S Kilias
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Deo F L Onda
- The Marine Science Institute, University of the Philippines, Manila, Philippines
| | | | | | - David A Walsh
- Biology Department, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Connie Lovejoy
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Adam Monier
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
5
|
Oppermann J, Rozenberg A, Fabrin T, González-Cabrera C, Parker R, Béjà O, Prigge M, Hegemann P. Robust optogenetic inhibition with red-light-sensitive anion-conducting channelrhodopsins. eLife 2024; 12:RP90100. [PMID: 39401075 PMCID: PMC11473104 DOI: 10.7554/elife.90100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels widely used to optically activate or silence selected electrogenic cells, such as individual brain neurons. Here, we describe identifying and characterizing a set of anion-conducting ChRs (ACRs) from diverse taxa and representing various branches of the ChR phylogenetic tree. The Mantoniella squamata ACR (MsACR1) showed high sensitivity to yellow-green light (λmax at 555 nm) and was further engineered for optogenetic applications. A single amino-acid substitution that mimicked red-light-sensitive rhodopsins like Chrimson shifted the photosensitivity 20 nm toward red light and accelerated photocurrent kinetics. Hence, it was named red and accelerated ACR, raACR. Both wild-type and mutant are capable optical silencers at low light intensities in mouse neurons in vitro and in vivo, while raACR offers a higher temporal resolution.
Collapse
Affiliation(s)
- Johannes Oppermann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu BerlinBerlinGermany
| | - Andrey Rozenberg
- Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Thomaz Fabrin
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Cristian González-Cabrera
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Rafael Parker
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Oded Béjà
- Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Matthias Prigge
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Center for Behavioral Brain Sciences, CBBSMagdeburgGermany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
6
|
Moreira D, Blaz J, Kim E, Eme L. A gene-rich mitochondrion with a unique ancestral protein transport system. Curr Biol 2024; 34:3812-3819.e3. [PMID: 39084221 DOI: 10.1016/j.cub.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Mitochondria originated from an ancient endosymbiosis involving an alphaproteobacterium.1,2,3 Over time, these organelles reduced their gene content massively, with most genes being transferred to the host nucleus before the last eukaryotic common ancestor (LECA).4 This process has yielded varying gene compositions in modern mitogenomes, including the complete loss of this organellar genome in some extreme cases.5,6,7,8,9,10,11,12,13,14 At the other end of the spectrum, jakobids harbor the most gene-rich mitogenomes, encoding 60-66 proteins.8 Here, we introduce the mitogenome of Mantamonas sphyraenae, a protist from the deep-branching CRuMs supergroup.15,16 Remarkably, it boasts the most gene-rich mitogenome outside of jakobids, by housing 91 genes, including 62 protein-coding ones. These include rare homologs of the four subunits of the bacterial-type cytochrome c maturation system I (CcmA, CcmB, CcmC, and CcmF) alongside a unique ribosomal protein S6. During the early evolution of mitochondria, gene transfer from the proto-mitochondrial endosymbiont to the nucleus became possible thanks to systems facilitating the transport of proteins synthesized in the host cytoplasm back to the mitochondrion. In addition to the universally found eukaryotic protein import systems, jakobid mitogenomes were reported to uniquely encode the SecY transmembrane protein of the Sec general secretory pathway, whose evolutionary origin was however unclear. The Mantamonas mitogenome not only encodes SecY but also SecA, SecE, and SecG, making it the sole eukaryote known to house a complete mitochondrial Sec translocation system. Furthermore, our phylogenetic and comparative genomic analyses provide compelling evidence for the alphaproteobacterial origin of this system, establishing its presence in LECA.
Collapse
Affiliation(s)
- David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France.
| | - Jazmin Blaz
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
| | - Eunsoo Kim
- Division of EcoScience, Ewha Womans University, Seoul, South Korea; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Laura Eme
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Eme L, Tamarit D. Microbial Diversity and Open Questions about the Deep Tree of Life. Genome Biol Evol 2024; 16:evae053. [PMID: 38620144 PMCID: PMC11018274 DOI: 10.1093/gbe/evae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
In this perspective, we explore the transformative impact and inherent limitations of metagenomics and single-cell genomics on our understanding of microbial diversity and their integration into the Tree of Life. We delve into the key challenges associated with incorporating new microbial lineages into the Tree of Life through advanced phylogenomic approaches. Additionally, we shed light on enduring debates surrounding various aspects of the microbial Tree of Life, focusing on recent advances in some of its deepest nodes, such as the roots of bacteria, archaea, and eukaryotes. We also bring forth current limitations in genome recovery and phylogenomic methodology, as well as new avenues of research to uncover additional key microbial lineages and resolve the shape of the Tree of Life.
Collapse
Affiliation(s)
- Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif sur-Yvette, France
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht 3584CH, The Netherlands
| |
Collapse
|
9
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
10
|
Jessu A, Delafont V, Moyen JL, Biet F, Samba-Louaka A, Héchard Y. Characterization of Rosculus vilicus sp. nov., a rhizarian amoeba interacting with Mycobacterium avium subsp. paratuberculosis. Front Microbiol 2023; 14:1324985. [PMID: 38188567 PMCID: PMC10770858 DOI: 10.3389/fmicb.2023.1324985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Free-living amoebae are described as potential reservoirs for pathogenic bacteria in the environment. It has been hypothesized that this might be the case for Mycobacterium avium subsp. paratuberculosis, the bacterium responsible for paratuberculosis. In a previous work, we isolated an amoeba from a water sample in the environment of infected cattle and showed that this amoeba was associated with Mycobacterium avium subsp. paratuberculosis. While a partial 18S rRNA gene has allowed us to suggest that this amoeba was Rosculus-like, at that time we were not able to sub-cultivate it. In the present study, we succeeded in cultivating this strain at 20-25°C. This amoeba is among the smallest (5-7 μm) described. The sequencing of the whole genome allowed us to extract the full 18S rRNA gene and propose this strain as a new species of the Rosculus genus, i.e., R. vilicus. Of note, the mitochondrial genome is particularly large (184,954 bp). Finally, we showed that this amoeba was able to phagocyte Mycobacterium avium subsp. paratuberculosis and that the bacterium was still observed within amoebae after at least 3 days. In conclusion, we characterized a new environmental amoeba species at the cellular and genome level that was able to interact with Mycobacterium avium subsp. paratuberculosis. As a result, R. vilicus is a potential candidate as environmental reservoir for Mycobacterium avium subsp. paratuberculosis but further experiments are needed to test this hypothesis.
Collapse
Affiliation(s)
- Amélie Jessu
- Université de Poitiers, CNRS, EBI, Poitiers, France
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, Coulounieix-Chamiers, France
| | | | - Jean-Louis Moyen
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, Coulounieix-Chamiers, France
| | - Franck Biet
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, Coulounieix-Chamiers, France
| | | | - Yann Héchard
- Université de Poitiers, CNRS, EBI, Poitiers, France
| |
Collapse
|
11
|
Geiger O, Sanchez-Flores A, Padilla-Gomez J, Degli Esposti M. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. SCIENCE ADVANCES 2023; 9:eadh0066. [PMID: 37556552 PMCID: PMC10411912 DOI: 10.1126/sciadv.adh0066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 08/11/2023]
Abstract
We breathe at the molecular level when mitochondria in our cells consume oxygen to extract energy from nutrients. Mitochondria are characteristic cellular organelles that derive from aerobic bacteria and carry out oxidative phosphorylation and other key metabolic pathways in eukaryotic cells. The precise bacterial origin of mitochondria and, consequently, the ancestry of the aerobic metabolism of our cells remain controversial despite the vast genomic information that is now available. Here, we use multiple approaches to define the most likely living relatives of the ancestral bacteria from which mitochondria originated. These bacteria live in marine environments and exhibit the highest frequency of aerobic traits and genes for the metabolism of fundamental lipids that are present in the membranes of eukaryotes, sphingolipids, and cardiolipin.
Collapse
Affiliation(s)
- Otto Geiger
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, México
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformatica, Institute of Biotechnology, UNAM, Cuernavaca, México
| | | | | |
Collapse
|
12
|
Macher JN, Coots NL, Poh YP, Girard EB, Langerak A, Muñoz-Gómez SA, Sinha SD, Jirsová D, Vos R, Wissels R, Gile GH, Renema W, Wideman JG. Single-Cell Genomics Reveals the Divergent Mitochondrial Genomes of Retaria (Foraminifera and Radiolaria). mBio 2023; 14:e0030223. [PMID: 36939357 PMCID: PMC10127745 DOI: 10.1128/mbio.00302-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
Mitochondria originated from an ancient bacterial endosymbiont that underwent reductive evolution by gene loss and endosymbiont gene transfer to the nuclear genome. The diversity of mitochondrial genomes published to date has revealed that gene loss and transfer processes are ongoing in many lineages. Most well-studied eukaryotic lineages are represented in mitochondrial genome databases, except for the superphylum Retaria-the lineage comprising Foraminifera and Radiolaria. Using single-cell approaches, we determined two complete mitochondrial genomes of Foraminifera and two nearly complete mitochondrial genomes of radiolarians. We report the complete coding content of an additional 14 foram species. We show that foraminiferan and radiolarian mitochondrial genomes contain a nearly fully overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. In contrast to animals and fungi, many protists encode a diverse set of proteins on their mitochondrial genomes, including several ribosomal genes; however, some aerobic eukaryotic lineages (euglenids, myzozoans, and chlamydomonas-like algae) have reduced mitochondrial gene content and lack all ribosomal genes. Similar to these reduced outliers, we show that retarian mitochondrial genomes lack ribosomal protein and tRNA genes, contain truncated and divergent small and large rRNA genes, and contain only 14 or 15 protein-coding genes, including nad1, -3, -4, -4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6, and -9, with forams and radiolarians additionally carrying nad2 and nad6, respectively. In radiolarian mitogenomes, a noncanonical genetic code was identified in which all three stop codons encode amino acids. Collectively, these results add to our understanding of mitochondrial genome evolution and fill in one of the last major gaps in mitochondrial sequence databases. IMPORTANCE We present the reduced mitochondrial genomes of Retaria, the rhizarian lineage comprising the phyla Foraminifera and Radiolaria. By applying single-cell genomic approaches, we found that foraminiferan and radiolarian mitochondrial genomes contain an overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. An alternative genetic code was identified in radiolarian mitogenomes in which all three stop codons encode amino acids. Collectively, these results shed light on the divergent nature of the mitochondrial genomes from an ecologically important group, warranting further questions into the biological underpinnings of gene content variability and genetic code variation between mitochondrial genomes.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Nicole L. Coots
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yu-Ping Poh
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Elsa B. Girard
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Anouk Langerak
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | | | - Savar D. Sinha
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Dagmar Jirsová
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Rutger Vos
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Richard Wissels
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Willem Renema
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Jeremy G. Wideman
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
13
|
Ji YT, Zhou XJ, Yang Q, Lu YB, Wang J, Zou JX. Adaptive evolution characteristics of mitochondrial genomes in genus Aparapotamon (Brachyura, Potamidae) of freshwater crabs. BMC Genomics 2023; 24:193. [PMID: 37041498 PMCID: PMC10091551 DOI: 10.1186/s12864-023-09290-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/01/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Aparapotamon, a freshwater crab genus endemic to China, includes 13 species. The distribution of Aparapotamon spans the first and second tiers of China's terrain ladder, showing great altitudinal differences. To study the molecular mechanisms of adaptive evolution in Aparapotamon, we performed evolutionary analyses, including morphological, geographical, and phylogenetic analyses and divergence time estimation. We sequenced the mitogenomes of Aparapotamon binchuanense and Aparapotamon huizeense for the first time and resequenced three other mitogenomes of Aparapotamon grahami and Aparapotamon gracilipedum. These sequences were combined with NCBI sequences to perform comparative mitogenome analysis of all 13 Aparapotamon species, revealing mitogenome arrangement and the characteristics of protein-coding and tRNA genes. RESULTS A new species classification scheme of the genus Aparapotamon has been detected and verified by different aspects, including geographical, morphological, phylogenetics and comparative mitogenome analyses. Imprints from adaptive evolution were discovered in the mitochondrial genomes of group A, including the same codon loss at position 416 of the ND6 gene and the unique arrangement pattern of the tRNA-Ile gene. Multiple tRNA genes conserved or involved in adaptive evolution were detected. Two genes associated with altitudinal adaptation, ATP8 and ND6, which experienced positive selection, were identified for the first time in freshwater crabs. CONCLUSIONS Geological movements of the Qinghai-Tibet Plateau and Hengduan Mountains likely strongly impacted the speciation and differentiation of the four Aparapotamon groups. After some group A species dispersed from the Hengduan Mountain Range, new evolutionary characteristics emerged in their mitochondrial genomes, facilitating adaptation to the low-altitude environment of China's second terrain tier. Ultimately, group A species spread to high latitudes along the upper reaches of the Yangtze River, showing faster evolutionary rates, higher species diversity and the widest distribution.
Collapse
Affiliation(s)
- Yu-Tong Ji
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Xiao-Juan Zhou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Qian Yang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Yuan-Biao Lu
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Jun Wang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Jie-Xin Zou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China.
- Department of Parasitology, School of Basic Medical Science, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
14
|
Yazaki E, Yabuki A, Nishimura Y, Shiratori T, Hashimoto T, Inagaki Y. Microheliella maris possesses the most gene-rich mitochondrial genome in Diaphoretickes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genomes are very diverse, but their evolutionary history is unclear due to the lack of efforts to sequence those of protists (unicellular eukaryotes), which cover a major part of the eukaryotic tree. Cryptista comprises cryptophytes, goniomonads, kathablepharids, and Palpitomonas bilix, and their mitochondrial genomes (mt-genomes) are characterized by various gene contents, particularly the presence/absence of an ancestral (bacterial) system for the cytochrome c maturation system. To shed light on mt-genome evolution in Cryptista, we report the complete mt-genome of Microheliella maris, which was recently revealed to branch at the root of Cryptista. The M. maris mt-genome was reconstructed as a circular mapping chromosome of 61.2 kbp with a pair of inverted repeats (12.9 kbp) and appeared to be the most gene-rich among the mt-genomes of the members of Diaphoretickes (a mega-scale eukaryotic assembly including Archaeplastida, Cryptista, Haptista, and SAR) studied so far, carrying 53 protein-coding genes. With this newly sequenced mt-genome, we inferred and discussed the evolution of the mt-genome in Cryptista and Diaphoretickes.
Collapse
|
15
|
A divergent bacterium lives in association with bacterivorous protists in the ocean. Nat Microbiol 2022; 7:1335-1336. [PMID: 36002745 DOI: 10.1038/s41564-022-01199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Morón-López J, Vergara K, Sato M, Gajardo G, Ueki S. Intraspecies variation of the mitochondrial genome: An evaluation for phylogenetic approaches based on the conventional choices of genes and segments on mitogenome. PLoS One 2022; 17:e0273330. [PMID: 35980990 PMCID: PMC9387813 DOI: 10.1371/journal.pone.0273330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/07/2022] [Indexed: 12/01/2022] Open
Abstract
Intraspecies nucleotide sequence variation is a key to understanding the evolutionary history of a species, such as the geographic distribution and population structure. To date, numerous phylogenetic and population genetics studies have been conducted based on the sequences of a gene or an intergenic region on the mitochondrial genome (mtDNA), such as cytochrome c oxidase subunits or the D-loop. To evaluate the credibility of the usage of such 'classic' markers, we compared the phylogenetic inferences based on the analyses of the partial and entire mtDNA sequences. Importantly, the phylogenetic reconstruction based on the short marker sequences did not necessarily reproduce the tree topologies based on the analyses of the entire mtDNA. In addition, analyses on the datasets of various organisms revealed that the analyses based on the classic markers yielded phylogenetic trees with poor confidence in all tested cases compared to the results based on full-length mtDNA. These results demonstrated that phylogenetic analyses based on complete mtDNA sequences yield more insightful results compared to those based on mitochondrial genes and segments. To ameliorate the shortcomings of the classic markers, we identified a segment of mtDNA that may be used as an 'approximate marker' to closely reproduce the phylogenetic inference obtained from the entire mtDNA in the case of mammalian species, which can be utilized to design amplicon-seq-based studies. Our study demonstrates the importance of the choice of mitochondrial markers for phylogenetic analyses and proposes a novel approach to choosing appropriate markers for mammalian mtDNA that reproduces the phylogenetic inferences obtained from full-length mtDNA.
Collapse
Affiliation(s)
- Jesús Morón-López
- Institute of Plant Science and Resources, Okayama University, Kurashiki city, Okayama, Japan
| | - Karen Vergara
- Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda, Osorno, Chile
| | - Masanao Sato
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Gonzalo Gajardo
- Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda, Osorno, Chile
| | - Shoko Ueki
- Institute of Plant Science and Resources, Okayama University, Kurashiki city, Okayama, Japan
| |
Collapse
|
17
|
Łabędzka-Dmoch K, Rażew M, Gapińska M, Piątkowski J, Kolondra A, Salmonowicz H, Wenda JM, Nowotny M, Golik P. The Pet127 protein is a mitochondrial 5'-to-3' exoribonuclease from the PD-(D/E)XK superfamily involved in RNA maturation and intron degradation in yeasts. RNA (NEW YORK, N.Y.) 2022; 28:711-728. [PMID: 35197365 PMCID: PMC9014873 DOI: 10.1261/rna.079083.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 06/01/2023]
Abstract
Pet127 is a mitochondrial protein found in multiple eukaryotic lineages, but absent from several taxa, including plants and animals. Distant homology suggests that it belongs to the divergent PD-(D/E)XK superfamily which includes various nucleases and related proteins. Earlier yeast genetics experiments suggest that it plays a nonessential role in RNA degradation and 5' end processing. Our phylogenetic analysis suggests that it is a primordial eukaryotic invention that was retained in diverse groups, and independently lost several times in the evolution of other organisms. We demonstrate for the first time that the fungal Pet127 protein in vitro is a processive 5'-to-3' exoribonuclease capable of digesting various substrates in a sequence nonspecific manner. Mutations in conserved residues essential in the PD-(D/E)XK superfamily active site abolish the activity of Pet127. Deletion of the PET127 gene in the pathogenic yeast Candida albicans results in a moderate increase in the steady-state levels of several transcripts and in accumulation of unspliced precursors and intronic sequences of three introns. Mutations in the active site residues result in a phenotype identical to that of the deletant, confirming that the exoribonuclease activity is related to the physiological role of the Pet127 protein. Pet127 activity is, however, not essential for maintaining the mitochondrial respiratory activity in C. albicans.
Collapse
Affiliation(s)
- Karolina Łabędzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
| | - Michal Rażew
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Marta Gapińska
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
| | - Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
| | - Hanna Salmonowicz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
- Laboratory of Metabolic Quality Control, IMOL, Polish Academy of Sciences, Warsaw 00-783, Poland
| | - Joanna M Wenda
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Paweł Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
18
|
Abstract
The goals of the Earth Biogenome Project-to sequence the genomes of all eukaryotic life on earth-are as daunting as they are ambitious. The Darwin Tree of Life Project was founded to demonstrate the credibility of these goals and to deliver at-scale genome sequences of unprecedented quality for a biogeographic region: the archipelago of islands that constitute Britain and Ireland. The Darwin Tree of Life Project is a collaboration between biodiversity organizations (museums, botanical gardens, and biodiversity institutes) and genomics institutes. Together, we have built a workflow that collects specimens from the field, robustly identifies them, performs sequencing, generates high-quality, curated assemblies, and releases these openly for the global community to use to build future science and conservation efforts.
Collapse
|
19
|
Spatiotemporal Variations in Antarctic Protistan Communities Highlight Phytoplankton Diversity and Seasonal Dominance by a Novel Cryptophyte Lineage. mBio 2021; 12:e0297321. [PMID: 34903046 PMCID: PMC8669470 DOI: 10.1128/mbio.02973-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Andvord fjord in the West Antarctic Peninsula (WAP) is known for its productivity and abundant megafauna. Nevertheless, seasonal patterns of the molecular diversity and abundance of protistan community members underpinning WAP productivity remain poorly resolved. We performed spring and fall expeditions pursuing protistan diversity, abundance of photosynthetic taxa, and the connection to changing conditions. 18S rRNA amplicon sequence variant (ASV) profiles revealed diverse predatory protists spanning multiple eukaryotic supergroups, alongside enigmatic heterotrophs like the Picozoa. Among photosynthetic protists, cryptophyte contributions were notable. Analysis of plastid-derived 16S rRNA ASVs supported 18S ASV results, including a dichotomy between cryptophytes and diatom contributions previously reported in other Antarctic regions. We demonstrate that stramenopile and cryptophyte community structures have distinct attributes. Photosynthetic stramenopiles exhibit high diversity, with the polar diatom Fragilariopsis cylindrus, unidentified Chaetoceros species, and others being prominent. Conversely, ASV analyses followed by environmental full-length rRNA gene sequencing, electron microscopy, and flow cytometry revealed that a novel alga dominates the cryptophytes. Phylogenetic analyses established that TPG clade VII, as named here, is evolutionarily distinct from cultivated cryptophyte lineages. Additionally, cryptophyte cell abundance correlated with increased water temperature. Analyses of global data sets showed that clade VII dominates cryptophyte ASVs at Southern Ocean sites and appears to be endemic, whereas in the Arctic and elsewhere, Teleaulax amphioxeia and Plagioselmis prolonga dominate, although both were undetected in Antarctic waters. Collectively, our studies provide baseline data against which future change can be assessed, identify different diversification patterns between stramenopiles and cryptophytes, and highlight an evolutionarily distinct cryptophyte clade that thrives under conditions enhanced by warming.
Collapse
|
20
|
Thompson SRL, Lee DK, Lachance MA, Smith DR. Mutational Effects of Mobile Introns on the Mitochondrial Genomes of Metschnikowia Yeasts. Front Genet 2021; 12:785218. [PMID: 34804133 PMCID: PMC8601654 DOI: 10.3389/fgene.2021.785218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
It has been argued that DNA repair by homologous recombination in the context of endonuclease-mediated cleavage can cause mutations. To better understand this phenomenon, we examined homologous recombination following endonuclease cleavage in a native genomic context: the movement of self-splicing introns in the mitochondrial genomes of Metschnikowia yeasts. Self-splicing mitochondrial introns are mobile elements, which can copy and paste themselves at specific insertion sites in mitochondrial DNA using a homing endonuclease in conjunction with homologous recombination. Here, we explore the mutational effects of self-splicing introns by comparing sequence variation within the intron-rich cox1 and cob genes from 71 strains (belonging to 40 species) from the yeast genus Metschnikowia. We observed a higher density of single nucleotide polymorphisms around self-splicing-intron insertion sites. Given what is currently known about the movement of organelle introns, it is likely that their mutational effects result from the high binding affinity of endonucleases and their interference with repair machinery during homologous recombination (or, alternatively, via gene conversion occurring during the intron insertion process). These findings suggest that there are fitness costs to harbouring self-splicing, mobile introns and will help us better understand the risks associated with modern biotechnologies that use endonuclease-mediated homologous recombination, such as CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Scout R L Thompson
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Dong Kyung Lee
- Department of Biology, University of Western Ontario, London, ON, Canada
| | | | - David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
21
|
Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun 2021; 12:6651. [PMID: 34789758 PMCID: PMC8599508 DOI: 10.1038/s41467-021-26918-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we use single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.
Collapse
|
22
|
Macher JN, Wideman JG, Girard EB, Langerak A, Duijm E, Jompa J, Sadekov A, Vos R, Wissels R, Renema W. First report of mitochondrial COI in foraminifera and implications for DNA barcoding. Sci Rep 2021; 11:22165. [PMID: 34772985 PMCID: PMC8589990 DOI: 10.1038/s41598-021-01589-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences ("barcodes") of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands.
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Elsa B Girard
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Anouk Langerak
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | - Elza Duijm
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | | | - Aleksey Sadekov
- ARC Centre of Excellence for Coral Reef Studies, Ocean Graduate School, The University of Western Australia, Crawley, Australia
| | - Rutger Vos
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Richard Wissels
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | - Willem Renema
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Alacid E, Richards TA. A cell-cell atlas approach for understanding symbiotic interactions between microbes. Curr Opin Microbiol 2021; 64:47-59. [PMID: 34655935 DOI: 10.1016/j.mib.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Natural environments are composed of a huge diversity of microorganisms interacting with each other to form complex functional networks. Our understanding of the operative nature of host-symbiont associations is limited because propagating such associations in a laboratory is challenging. The advent of single-cell technologies applied to, for example, animal cells and apicomplexan parasites has revolutionized our understanding of development and disease. Such cell atlas approaches generate maps of cell-specific processes and variations within cellular populations. These methods can now be combined with cellular-imaging so that interaction stage versus transcriptome state can be quantized for microbe-microbe interactions. We predict that the combination of these methods applied to the study of symbioses will transform our understanding of many ecological interactions, including those sampled directly from natural environments.
Collapse
Affiliation(s)
- Elisabet Alacid
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Thomas A Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
24
|
Karlicki M, Antonowicz S, Karnkowska A. Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics 2021; 38:344-350. [PMID: 34570171 PMCID: PMC8722755 DOI: 10.1093/bioinformatics/btab672] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION With a large number of metagenomic datasets becoming available, eukaryotic metagenomics emerged as a new challenge. The proper classification of eukaryotic nuclear and organellar genomes is an essential step toward a better understanding of eukaryotic diversity. RESULTS We developed Tiara, a deep-learning-based approach for the identification of eukaryotic sequences in the metagenomic datasets. Its two-step classification process enables the classification of nuclear and organellar eukaryotic fractions and subsequently divides organellar sequences into plastidial and mitochondrial. Using the test dataset, we have shown that Tiara performed similarly to EukRep for prokaryotes classification and outperformed it for eukaryotes classification with lower calculation time. In the tests on the real data, Tiara performed better than EukRep in analyzing the small dataset representing eukaryotic cell microbiome and large dataset from the pelagic zone of oceans. Tiara is also the only available tool correctly classifying organellar sequences, which was confirmed by the recovery of nearly complete plastid and mitochondrial genomes from the test data and real metagenomic data. AVAILABILITY AND IMPLEMENTATION Tiara is implemented in python 3.8, available at https://github.com/ibe-uw/tiara and tested on Unix-based systems. It is released under an open-source MIT license and documentation is available at https://ibe-uw.github.io/tiara. Version 1.0.1 of Tiara has been used for all benchmarks. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michał Karlicki
- Institute of Evolutionary Biology, Faculty of Biology & Biological and Chemical Research Centre, University of Warsaw, Warszawa 02-089, Poland
| | - Stanisław Antonowicz
- Institute of Evolutionary Biology, Faculty of Biology & Biological and Chemical Research Centre, University of Warsaw, Warszawa 02-089, Poland
| | | |
Collapse
|
25
|
Tan MH, Loke S, Croft LJ, Gleason FH, Lange L, Pilgaard B, Trevathan-Tackett SM. First Genome of Labyrinthula sp., an Opportunistic Seagrass Pathogen, Reveals Novel Insight into Marine Protist Phylogeny, Ecology and CAZyme Cell-Wall Degradation. MICROBIAL ECOLOGY 2021; 82:498-511. [PMID: 33410934 DOI: 10.1007/s00248-020-01647-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Labyrinthula spp. are saprobic, marine protists that also act as opportunistic pathogens and are the causative agents of seagrass wasting disease (SWD). Despite the threat of local- and large-scale SWD outbreaks, there are currently gaps in our understanding of the drivers of SWD, particularly surrounding Labyrinthula spp. virulence and ecology. Given these uncertainties, we investigated the Labyrinthula genus from a novel genomic perspective by presenting the first draft genome and predicted proteome of a pathogenic isolate Labyrinthula SR_Ha_C, generated from a hybrid assembly of Nanopore and Illumina sequences. Phylogenetic and cross-phyla comparisons revealed insights into the evolutionary history of Stramenopiles. Genome annotation showed evidence of glideosome-type machinery and an apicoplast protein typically found in protist pathogens and parasites. Proteins involved in Labyrinthula SR_Ha_C's actin-myosin mode of transport, as well as carbohydrate degradation were also prevalent. Further, CAZyme functional predictions revealed a repertoire of enzymes involved in breakdown of cell-wall and carbohydrate storage compounds common to seagrasses. The relatively low number of CAZymes annotated from the genome of Labyrinthula SR_Ha_C compared to other Labyrinthulea species may reflect the conservative annotation parameters, a specialized substrate affinity and the scarcity of characterized protist enzymes. Inherently, there is high probability for finding both unique and novel enzymes from Labyrinthula spp. This study provides resources for further exploration of Labyrinthula spp. ecology and evolution, and will hopefully be the catalyst for new hypothesis-driven SWD research revealing more details of molecular interactions between the Labyrinthula genus and its host substrate.
Collapse
Affiliation(s)
- Mun Hua Tan
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Bio21 Institute, Melbourne, Victoria, Australia
| | - Stella Loke
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Laurence J Croft
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Frank H Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lene Lange
- BioEconomy, Research & Advisory, Valby, Copenhagen, Denmark
| | - Bo Pilgaard
- Protein Chemistry and Enzyme Technology, Department of Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stacey M Trevathan-Tackett
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
26
|
Song H, Chen Y, Liu F, Chen N. Large Differences in the Haptophyte Phaeocystis globosa Mitochondrial Genomes Driven by Repeat Amplifications. Front Microbiol 2021; 12:676447. [PMID: 34276607 PMCID: PMC8283788 DOI: 10.3389/fmicb.2021.676447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
The haptophyte Phaeocystis globosa is a well-known species for its pivotal role in global carbon and sulfur cycles and for its capability of forming harmful algal blooms (HABs) with serious ecological consequences. Its mitochondrial genome (mtDNA) sequence has been reported in 2014 but it remains incomplete due to its long repeat sequences. In this study, we constructed the first full-length mtDNA of P. globosa, which was a circular genome with a size of 43,585 bp by applying the PacBio single molecular sequencing method. The mtDNA of this P. globosa strain (CNS00066), which was isolated from the Beibu Gulf, China, encoded 19 protein-coding genes (PCGs), 25 tRNA genes, and two rRNA genes. It contained two large repeat regions of 6.7 kb and ∼14.0 kb in length, respectively. The combined length of these two repeat regions, which were missing from the previous mtDNA assembly, accounted for almost half of the entire mtDNA and represented the longest repeat region among all sequenced haptophyte mtDNAs. In this study, we tested the hypothesis that repeat unit amplification is a driving force for different mtDNA sizes. Comparative analysis of mtDNAs of five additional P. globosa strains (four strains obtained in this study, and one strain previously published) revealed that all six mtDNAs shared identical numbers of genes but with dramatically different repeat regions. A homologous repeat unit was identified but with hugely different numbers of copies in all P. globosa strains. Thus, repeat amplification may represent an important driving force of mtDNA evolution in P. globosa.
Collapse
Affiliation(s)
- Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,School of Earth and Planetary, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
27
|
Záhonová K, Lax G, Sinha SD, Leonard G, Richards TA, Lukeš J, Wideman JG. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans. BMC Biol 2021; 19:103. [PMID: 34001130 PMCID: PMC8130358 DOI: 10.1186/s12915-021-01035-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background The supergroup Euglenozoa unites heterotrophic flagellates from three major clades, kinetoplastids, diplonemids, and euglenids, each of which exhibits extremely divergent mitochondrial characteristics. Mitochondrial genomes (mtDNAs) of euglenids comprise multiple linear chromosomes carrying single genes, whereas mitochondrial chromosomes are circular non-catenated in diplonemids, but circular and catenated in kinetoplastids. In diplonemids and kinetoplastids, mitochondrial mRNAs require extensive and diverse editing and/or trans-splicing to produce mature transcripts. All known euglenozoan mtDNAs exhibit extremely short mitochondrial small (rns) and large (rnl) subunit rRNA genes, and absence of tRNA genes. How these features evolved from an ancestral bacteria-like circular mitochondrial genome remains unanswered. Results We sequenced and assembled 20 euglenozoan single-cell amplified genomes (SAGs). In our phylogenetic and phylogenomic analyses, three SAGs were placed within kinetoplastids, 14 within diplonemids, one (EU2) within euglenids, and two SAGs with nearly identical small subunit rRNA gene (18S) sequences (EU17/18) branched as either a basal lineage of euglenids, or as a sister to all euglenozoans. Near-complete mitochondrial genomes were identified in EU2 and EU17/18. Surprisingly, both EU2 and EU17/18 mitochondrial contigs contained multiple genes and one tRNA gene. Furthermore, EU17/18 mtDNA possessed several features unique among euglenozoans including full-length rns and rnl genes, six mitoribosomal genes, and nad11, all likely on a single chromosome. Conclusions Our data strongly suggest that EU17/18 is an early-branching euglenozoan with numerous ancestral mitochondrial features. Collectively these data contribute to untangling the early evolution of euglenozoan mitochondria. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01035-y.
Collapse
Affiliation(s)
- Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Savar D Sinha
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA
| | - Guy Leonard
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
28
|
A functional bacteria-derived restriction modification system in the mitochondrion of a heterotrophic protist. PLoS Biol 2021; 19:e3001126. [PMID: 33891594 PMCID: PMC8099122 DOI: 10.1371/journal.pbio.3001126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/05/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
The overarching trend in mitochondrial genome evolution is functional streamlining coupled with gene loss. Therefore, gene acquisition by mitochondria is considered to be exceedingly rare. Selfish elements in the form of self-splicing introns occur in many organellar genomes, but the wider diversity of selfish elements, and how they persist in the DNA of organelles, has not been explored. In the mitochondrial genome of a marine heterotrophic katablepharid protist, we identify a functional type II restriction modification (RM) system originating from a horizontal gene transfer (HGT) event involving bacteria related to flavobacteria. This RM system consists of an HpaII-like endonuclease and a cognate cytosine methyltransferase (CM). We demonstrate that these proteins are functional by heterologous expression in both bacterial and eukaryotic cells. These results suggest that a mitochondrion-encoded RM system can function as a toxin-antitoxin selfish element, and that such elements could be co-opted by eukaryotic genomes to drive biased organellar inheritance.
Collapse
|
29
|
Pyrih J, Pánek T, Durante IM, Rašková V, Cimrhanzlová K, Kriegová E, Tsaousis AD, Eliáš M, Lukeš J. Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria. Mol Biol Evol 2021; 38:3170-3187. [PMID: 33837778 PMCID: PMC8321541 DOI: 10.1093/molbev/msab090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
The main bacterial pathway for inserting proteins into the plasma membrane relies on the signal recognition particle (SRP), composed of the Ffh protein and an associated RNA component, and the SRP-docking protein FtsY. Eukaryotes use an equivalent system of archaeal origin to deliver proteins into the endoplasmic reticulum, whereas a bacteria-derived SRP and FtsY function in the plastid. Here we report on the presence of homologs of the bacterial Ffh and FtsY proteins in various unrelated plastid-lacking unicellular eukaryotes, namely Heterolobosea, Alveida, Goniomonas, and Hemimastigophora. The monophyly of novel eukaryotic Ffh and FtsY groups, predicted mitochondrial localization experimentally confirmed for Naegleria gruberi, and a strong alphaproteobacterial affinity of the Ffh group, collectively suggest that they constitute parts of an ancestral mitochondrial signal peptide-based protein-targeting system inherited from the last eukaryotic common ancestor, but lost from the majority of extant eukaryotes. The ability of putative signal peptides, predicted in a subset of mitochondrial-encoded N. gruberi proteins, to target a reporter fluorescent protein into the endoplasmic reticulum of Trypanosoma brucei, likely through their interaction with the cytosolic SRP, provided further support for this notion. We also illustrate that known mitochondrial ribosome-interacting proteins implicated in membrane protein targeting in opisthokonts (Mba1, Mdm38, and Mrx15) are broadly conserved in eukaryotes and nonredundant with the mitochondrial SRP system. Finally, we identified a novel mitochondrial protein (MAP67) present in diverse eukaryotes and related to the signal peptide-binding domain of Ffh, which may well be a hitherto unrecognized component of the mitochondrial membrane protein-targeting machinery.
Collapse
Affiliation(s)
- Jan Pyrih
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ignacio Miguel Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Kristýna Cimrhanzlová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Kriegová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
30
|
Graf JS, Schorn S, Kitzinger K, Ahmerkamp S, Woehle C, Huettel B, Schubert CJ, Kuypers MMM, Milucka J. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature 2021; 591:445-450. [PMID: 33658719 PMCID: PMC7969357 DOI: 10.1038/s41586-021-03297-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2021] [Indexed: 11/27/2022]
Abstract
Mitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis1,2. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution3. As a result, obligate anaerobic eukaryotes with mitochondrial remnants derive their energy mostly from fermentation4. Here we describe 'Candidatus Azoamicus ciliaticola', which is an obligate endosymbiont of an anaerobic ciliate and has a dedicated role in respiration and providing energy for its eukaryotic host. 'Candidatus A. ciliaticola' contains a highly reduced 0.29-Mb genome that encodes core genes for central information processing, the electron transport chain, a truncated tricarboxylic acid cycle, ATP generation and iron-sulfur cluster biosynthesis. The genome encodes a respiratory denitrification pathway instead of aerobic terminal oxidases, which enables its host to breathe nitrate instead of oxygen. 'Candidatus A. ciliaticola' and its ciliate host represent an example of a symbiosis that is based on the transfer of energy in the form of ATP, rather than nutrition. This discovery raises the possibility that eukaryotes with mitochondrial remnants may secondarily acquire energy-providing endosymbionts to complement or replace functions of their mitochondria.
Collapse
Affiliation(s)
- Jon S Graf
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Sina Schorn
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Katharina Kitzinger
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | - Christian Woehle
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Carsten J Schubert
- Surface Waters - Research and Management, Eawag, Kastanienbaum, Switzerland
| | | | - Jana Milucka
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
31
|
Smith DR. Depositing annotated sequences in GenBank: there needs to be a better way. Brief Funct Genomics 2020; 19:337-338. [PMID: 32886090 DOI: 10.1093/bfgp/elaa016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/14/2022] Open
Abstract
Submitting sequences to the National Center for Biotechnology Information (NCBI) is an integral part of research and the publication process for many disciplines within the life sciences, and it will only become more important as sequencing technologies continue to improve. Here, I argue that the available infrastructure and resources for uploading data to NCBI-especially the associated annotations of eukaryotic genomes-are inefficient, hard to use and sometimes just plain bad. This, in turn, is causing some researchers to forgo annotations entirely in their submissions. The time is overdue for the development of sophisticated, user-friendly software for depositing annotated sequences in GenBank.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London N6A 5B7, Canada
| |
Collapse
|
32
|
Žihala D, Salamonová J, Eliáš M. Evolution of the genetic code in the mitochondria of Labyrinthulea (Stramenopiles). Mol Phylogenet Evol 2020; 152:106908. [PMID: 32702525 DOI: 10.1016/j.ympev.2020.106908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023]
Abstract
Mitochondrial translation often exhibits departures from the standard genetic code, but the full spectrum of these changes has certainly not yet been described and the molecular mechanisms behind the changes in codon meaning are rarely studied. Here we report a detailed analysis of the mitochondrial genetic code in the stramenopile group Labyrinthulea (Labyrinthulomycetes) and their relatives. In the genus Aplanochytrium, UAG is not a termination codon but encodes tyrosine, in contrast to the unaffected meaning of the UAA codon. This change is evolutionarily independent of the reassignment of both UAG and UAA as tyrosine codons recently reported from two uncultivated labyrinthuleans (S2 and S4), which we show are not thraustochytrids as proposed before, but represent the clade LAB14 previously recognised in environmental 18S rRNA gene surveys. We provide rigorous evidence that the UUA codon in the mitochondria of all labyrinthuleans serves as a termination codon instead of encoding leucine, and propose that a sense-to-stop reassignment has also affected the AGG and AGA codons in the LAB14 clade. The distribution of the different forms of sense-to-stop and stop-to-sense reassignments correlates with specific modifications of the mitochondrial release factor mtRF2a in different subsets of labyrinthuleans, and with the unprecedented loss of mtRF1a in Aplanochytrium and perhaps also in the LAB14 clade, pointing towards a possible mechanistic basis of the code changes observed. Curiously, we show that labyrinthulean mitochondria also exhibit a sense-to-sense codon reassignment, manifested as AUA encoding methionine instead of isoleucine. Furthermore, we show that this change evolved independently in the uncultivated stramenopile lineage MAST8b, together with the reassignment of the AGR codons from arginine to serine. Altogether, our study has uncovered novel variants of the mitochondrial genetic code and previously unknown modifications of the mitochondrial translation machinery, further enriching our understanding of the rules governing the evolution of one of the central molecular process in the cell.
Collapse
Affiliation(s)
- David Žihala
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Jana Salamonová
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
33
|
Tobiasson V, Amunts A. Ciliate mitoribosome illuminates evolutionary steps of mitochondrial translation. eLife 2020; 9:59264. [PMID: 32553108 PMCID: PMC7326499 DOI: 10.7554/elife.59264] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
To understand the steps involved in the evolution of translation, we used Tetrahymena thermophila, a ciliate with high coding capacity of the mitochondrial genome, as the model organism and characterized its mitochondrial ribosome (mitoribosome) using cryo-EM. The structure of the mitoribosome reveals an assembly of 94-ribosomal proteins and four-rRNAs with an additional protein mass of ~700 kDa on the small subunit, while the large subunit lacks 5S rRNA. The structure also shows that the small subunit head is constrained, tRNA binding sites are formed by mitochondria-specific protein elements, conserved protein bS1 is excluded, and bacterial RNA polymerase binding site is blocked. We provide evidence for anintrinsic protein targeting system through visualization of mitochondria-specific mL105 by the exit tunnel that would facilitate the recruitment of a nascent polypeptide. Functional protein uS3m is encoded by three complementary genes from the nucleus and mitochondrion, establishing a link between genetic drift and mitochondrial translation. Finally, we reannotated nine open reading frames in the mitochondrial genome that code for mitoribosomal proteins.
Collapse
Affiliation(s)
- Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
34
|
Nishimura Y, Kume K, Sonehara K, Tanifuji G, Shiratori T, Ishida KI, Hashimoto T, Inagaki Y, Ohkuma M. Mitochondrial Genomes of Hemiarma marina and Leucocryptos marina Revised the Evolution of Cytochrome c Maturation in Cryptista. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Four high-quality draft genome assemblies of the marine heterotrophic nanoflagellate Cafeteria roenbergensis. Sci Data 2020; 7:29. [PMID: 31964893 PMCID: PMC6972860 DOI: 10.1038/s41597-020-0363-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023] Open
Abstract
The heterotrophic stramenopile Cafeteria roenbergensis is a globally distributed marine bacterivorous protist. This unicellular flagellate is host to the giant DNA virus CroV and the virophage mavirus. We sequenced the genomes of four cultured C. roenbergensis strains and generated 23.53 Gb of Illumina MiSeq data (99–282 × coverage per strain) and 5.09 Gb of PacBio RSII data (13–45 × coverage). Using the Canu assembler and customized curation procedures, we obtained high-quality draft genome assemblies with a total length of 34–36 Mbp per strain and contig N50 lengths of 148 kbp to 464 kbp. The C. roenbergensis genome has a GC content of ~70%, a repeat content of ~28%, and is predicted to contain approximately 7857–8483 protein-coding genes based on a combination of de novo, homology-based and transcriptome-supported annotation. These first high-quality genome assemblies of a bicosoecid fill an important gap in sequenced stramenopile representatives and enable a more detailed evolutionary analysis of heterotrophic protists. Measurement(s) | DNA • mitochondrial_DNA • sequence_assembly • sequence feature annotation | Technology Type(s) | DNA sequencing • genome assembly • sequence annotation | Sample Characteristic - Organism | Cafeteria roenbergensis | Sample Characteristic - Environment | marine water body | Sample Characteristic - Location | Northwest Atlantic Ocean • Carribean Sea • Southeast Pacific Ocean • North East Pacific Ocean |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11419098
Collapse
|