1
|
Ma Z, Ensley HE, Lowman DW, Kruppa MD, Williams DL. Recent advances in chemical synthesis of phosphodiester linkages found in fungal mannans. Carbohydr Res 2025; 547:109325. [PMID: 39603178 DOI: 10.1016/j.carres.2024.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Fungal mannans are located on the exterior of the fungal cell wall, where they interact with the environment and, ultimately, the human host. Mannans play a major role in shaping the innate immune response to fungal pathogens. Understanding the phosphodiester linkage and mannosyl repeat units in the acid-labile portion of mannans is crucial for comprehending their structure/activity relationships and for development of anti-fungal vaccines and immunomodulators. The phosphodiester linkages connect the acid-stable and acid-labile portions of the mannan polymer. Phosphate groups are attached to positions 4 and/or 6 of mannosyl repeat units in the acid-stable portion and to position 1 of mannosyl repeat units in the acid-labile portion. This review focuses on the synthesis of phosphodiester linkages as an approach to the development of mannan glycomimetics, which are based on natural product fungal mannans. Development of successful synthetic strategies for the phosphodiester linkages may enable the production of mannan glycomimetics that elicit anti-fungal immune responses against existing and emerging fungal pathogens, such as Candida albicans and Candida auris.
Collapse
Affiliation(s)
- Zuchao Ma
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Drug Discovery and Synthesis Core, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA.
| | - Harry E Ensley
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Drug Discovery and Synthesis Core, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA
| | - Douglas W Lowman
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Drug Discovery and Synthesis Core, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA
| | - Michael D Kruppa
- Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Drug Discovery and Synthesis Core, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA
| |
Collapse
|
2
|
Wen TT, Qian ZY, Sun L, Cui FJ, Zan XY, Meng LJ, Sun WJ. Fungal β-1, 3-glucanosyltransferases: A comprehensive review on classification, catalytic mechanism and functional role. Int J Biol Macromol 2024; 289:138651. [PMID: 39694372 DOI: 10.1016/j.ijbiomac.2024.138651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
β-1,3-Glucans form the major carbohydrate component of fungal cell walls, playing a vital role in cell viability, stress response, virulence, and even healthy functions such as immuno-enhancement. The elongation and branching of β-1,3-glucans is a mystery. More evidence proved the β-1, 3-glucantransferases belonging to GH72 or GH17 family to branch and remodel the synthesized linear β-1, 3-glucan chain by cleaving its internal β-1, 3-linkage and transfer the cleaved fragment to the nonreducing end of another β-1, 3-glucan acceptor. The present review summarized the comprehensive advances of β-1, 3-glucantransferases including their structures such as catalytic and non-catalytic protein domains, catalytic mechanisms and roles in cell wall formation, cell separation and cell viability to provide the references for understanding and guiding the biosynthesis and production regulation of functional β-1, 3-glucans with high-branched or elongated structures.
Collapse
Affiliation(s)
- Ting-Ting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhuo-Yu Qian
- Guangdong HAID Research Institute, Guangzhou 511400, PR China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China.
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Li-Juan Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China.
| |
Collapse
|
3
|
Balakumar A, Cox A, Thangamani S. Cell aggregation mediated by ACE2 deletion in Candida auris modulates fungal colonization and host immune responses in the skin. mSphere 2024; 9:e0073424. [PMID: 39475280 PMCID: PMC11580408 DOI: 10.1128/msphere.00734-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024] Open
Abstract
Candida auris is an emerging multi-drug-resistant fungal pathogen that colonizes the skin and causes invasive infections in hospitalized patients. Multi-cellular aggregative phenotype is widely reported in the C. auris isolates, but its role in skin colonization and host immune response is not yet known. In this study, we generated aggregative phenotype by deleting the ACE2 gene in C. auris and determined the fungal colonization and host immune response using an intradermal mouse model of C. auris skin infection. Our results indicate that mice infected with ace2Δ strain had significantly lower fungal load after 3 and 14 days post-infections compared to the non-aggregative wild-type and the ACE2 reintegrated strain. The colonization of ace2Δ is associated with increased recruitment of CD11b+ Ly6G+ neutrophils and decreased accumulation of CD11b+ Ly6 Chi inflammatory monocytes and CD11b+ MHCII+ CD64+ macrophages. Furthermore, Th17 cells and type 3 innate lymphoid cells (ILCs) were significantly increased in the skin tissue of ace2Δ infected mice. Our findings suggest that aggregative phenotype mediated by ACE2 deletion in C. auris induces potent neutrophil and IL-17-mediated immune response and reduces fungal colonization in the skin.IMPORTANCEC. auris is a rapidly emerging fungal pathogen that can colonize hospitalized patients, especially in skin tissue, and cause invasive infections. C. auris isolates exhibit morphological heterogeneity, and the multicellular aggregative phenotype of C. auris is reported frequently in clinical settings. Understanding the role of fungal morphotypes in colonization, persistence, and immune response in the skin microenvironment will have potential applications in clinical diagnosis and novel preventive and therapeutic measures. Here, we utilized the murine model of intradermal infection and determined that the aggregative phenotype of C. auris as the result of ACE2 gene deletion elicits potential innate and adaptive immune responses in mice. These observations will help explain the differences in the skin colonization and immune responses of the aggregative morphotype of C. auris and open the door to developing novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Aptekmann A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. mBio 2024; 15:e0274824. [PMID: 39422509 PMCID: PMC11558994 DOI: 10.1128/mbio.02748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Candida auris, a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30%-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase is essential for efficient skin colonization, intradermal persistence as well as systemic virulence. RNA-seq analysis of wild-type parental and hog1Δ mutant strains revealed marked downregulation of genes involved in processes such as cell adhesion, cell wall rearrangement, and pathogenesis in hog1Δ mutant compared to the wild-type parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell wall architecture, as the hog1Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo. Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. IMPORTANCE Candida auris is a World Health Organization fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention. C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris. Therefore, understanding C. auris skin colonization mechanisms is critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay the foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
Affiliation(s)
- Raju Shivarathri
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Manju Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Abhishek Datta
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Diprasom Das
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Adela Karuli
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Ariel Aptekmann
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Sabrina Jenull
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Shankar Thangamani
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
5
|
Petrokilidou C, Pavlou E, Velegraki A, Simou A, Marsellou I, Filis G, Bassukas ID, Gaitanis G, Kourkoumelis N. Characterization and Differentiation of Candida auris on Dixon's Agar Using Raman Spectroscopy. Pathogens 2024; 13:978. [PMID: 39599531 PMCID: PMC11597615 DOI: 10.3390/pathogens13110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Candida auris, an emerging multidrug-resistant fungal pathogen, poses significant challenges in healthcare settings due to its high misidentification rate and resilience to treatments. Despite advancements in diagnostic tools, a gap remains in rapid, cost-effective identification methods that can differentiate C. auris from other Candida species, particularly on non-standard culture media. We used Raman spectroscopy to characterize C. auris grown on modified Dixon's agar (mDixon) and differentiated it from Candida albicans and Candida parapsilosis. Key Raman spectral markers at 1171 cm-1 and 1452 cm-1, linked to mannan and β-glucan composition, differentiated C. auris into two subgroups, A and B. Despite the spectral similarities of groups A and B with C. albicans and C. parapsilosis, respectively, all Candida species were distinguishable through principal component analysis (PCA). Additionally, this study is the first to demonstrate the distinct spectral signature of mDixon agar, achieved through spatially offset Raman spectroscopy (SORS), which enables accurate discrimination between the culture medium and fungal samples. The observed inter-individual variability within C. auris, coupled with the spectral overlap between C. auris subgroups and other Candida species, highlights a major challenge in differentiating closely related fungi due to their similar molecular composition. Enhancements in spectral resolution and further fluorescence minimization from the culture medium are needed to reliably detect the subtle biochemical differences within these species. Despite these challenges, the results underscore the potential of Raman spectroscopy as a real-time, non-destructive, and complementary tool for fungal pathogen identification.
Collapse
Affiliation(s)
- Chrysoula Petrokilidou
- Department of Medical Physics, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Eleftherios Pavlou
- Department of Medical Physics, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | | | - Anna Simou
- Mycology Laboratory, BIOIATRIKI SA, 115 27 Athens, Greece
| | | | | | - Ioannis D. Bassukas
- Department of Skin & Venereal Diseases, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Georgios Gaitanis
- Department of Skin & Venereal Diseases, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
6
|
Balakumar A, Das D, Datta A, Mishra A, Bryak G, Ganesh SM, Netea MG, Kumar V, Lionakis MS, Arora D, Thimmapuram J, Thangamani S. Single-cell transcriptomics unveils skin cell specific antifungal immune responses and IL-1Ra- IL-1R immune evasion strategies of emerging fungal pathogen Candida auris. PLoS Pathog 2024; 20:e1012699. [PMID: 39536069 PMCID: PMC11588283 DOI: 10.1371/journal.ppat.1012699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that preferentially colonizes and persists in skin tissue, yet the host immune factors that regulate the skin colonization of C. auris in vivo are unknown. In this study, we employed unbiased single-cell transcriptomics of murine skin infected with C. auris to understand the cell type-specific immune response to C. auris. C. auris skin infection results in the accumulation of immune cells such as neutrophils, inflammatory monocytes, macrophages, dendritic cells, T cells, and NK cells at the site of infection. We identified fibroblasts as a major non-immune cell accumulated in the C. auris infected skin tissue. The comprehensive single-cell profiling revealed the transcriptomic signatures in cytokines, chemokines, host receptors (TLRs, C-type lectin receptors, NOD receptors), antimicrobial peptides, and immune signaling pathways in individual immune and non-immune cells during C. auris skin infection. Our analysis revealed that C. auris infection upregulates the expression of the IL-1RN gene (encoding IL-1R antagonist protein) in different cell types. We found IL-1Ra produced by macrophages during C. auris skin infection decreases the killing activity of neutrophils. Furthermore, C. auris uses a unique cell wall mannan outer layer to evade IL-1R-signaling mediated host defense. Collectively, our single-cell RNA seq profiling identified the transcriptomic signatures in immune and non-immune cells during C. auris skin infection. Our results demonstrate the IL-1Ra and IL-1R-mediated immune evasion mechanisms employed by C. auris to persist in the skin. These results enhance our understanding of host defense and immune evasion mechanisms during C. auris skin infection and identify potential targets for novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Diprasom Das
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Abtar Mishra
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Garrett Bryak
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Shrihari M. Ganesh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Devender Arora
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, Indiana, United States of America
| |
Collapse
|
7
|
Balakumar A, Das D, Datta A, Mishra A, Bryak G, Ganesh SM, Netea MG, Kumar V, Lionakis MS, Arora D, Thimmapuram J, Thangamani S. Single-Cell Transcriptomics Unveils Skin Cell Specific Antifungal Immune Responses and IL-1Ra- IL-1R Immune Evasion Strategies of Emerging Fungal Pathogen Candida auris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619653. [PMID: 39463935 PMCID: PMC11507746 DOI: 10.1101/2024.10.22.619653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that preferentially colonizes and persists in skin tissue, yet the host immune factors that regulate the skin colonization of C. auris in vivo are unknown. In this study, we employed unbiased single-cell transcriptomics of murine skin infected with C. auris to understand the cell type-specific immune response to C. auris. C. auris skin infection results in the accumulation of immune cells such as neutrophils, inflammatory monocytes, macrophages, dendritic cells, T cells, and NK cells at the site of infection. We identified fibroblasts as a major non-immune cell accumulated in the C. auris infected skin tissue. The comprehensive single-cell profiling revealed the transcriptomic signatures in cytokines, chemokines, host receptors (TLRs, C-type lectin receptors, NOD receptors), antimicrobial peptides, and immune signaling pathways in individual immune and non-immune cells during C. auris skin infection. Our analysis revealed that C. auris infection upregulates the expression of the IL-1RN gene (encoding IL-1R antagonist protein) in different cell types. We found IL-1Ra produced by macrophages during C. auris skin infection decreases the killing activity of neutrophils. Furthermore, C. auris uses a unique cell wall mannan outer layer to evade IL-1R-signaling mediated host defense. Collectively, our single-cell RNA seq profiling identified the transcriptomic signatures in immune and non-immune cells during C. auris skin infection. Our results demonstrate the IL-1Ra and IL-1R-mediated immune evasion mechanisms employed by C. auris to persist in the skin. These results enhance our understanding of host defense and immune evasion mechanisms during C. auris skin infection and identify potential targets for novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Diprasom Das
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Abtar Mishra
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Garrett Bryak
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Shrihari M Ganesh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Devender Arora
- Bioinformatics Core, Purdue University, West Lafayette, IN 47906
| | | | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906
| |
Collapse
|
8
|
Gurajala S. Unveiling the rise of Candida auris: Latest developments and healthcare implications. IP INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY AND TROPICAL DISEASES 2024; 10:196-205. [DOI: 10.18231/j.ijmmtd.2024.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/02/2025]
Abstract
, a fungus that is resistant to multiple drugs, has become a major global healthcare concern in recent years. The pathogen quickly disseminates within healthcare facilities, colonizes many surfaces, and leads to recurrent infections despite frequent disinfection measures. Automated systems frequently misidentify it, resulting in a delayed diagnosis. Inadequate hand hygiene, the use of multiple antibiotics, and contaminated medical equipment are the main causes of infections that primarily target critically ill patients in hospital intensive care units (ICUs). isolates are resistant to commonly used antifungal drugs like fluconazole, amphotericin, and echinocandins. This review article thoroughly examines the current understanding of infections, encompassing its epidemiology, clinical symptoms, diagnosis, treatment options, and prevention measures. It additionally summarizes a recent literature review on emerging diagnostic techniques and treatment options. Gaining a comprehensive understanding of the difficulties presented by this pathogen and staying informed of the most recent developments is essential for healthcare providers and policymakers in order to efficiently counteract its transmission and limit its detrimental impact on patient health
Collapse
Affiliation(s)
- Swathi Gurajala
- College of Applied Medical Sciences in Jubail, , Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Weerasinghe H, Stölting H, Rose AJ, Traven A. Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems. Microbiol Mol Biol Rev 2024; 88:e0017122. [PMID: 39230301 PMCID: PMC11426019 DOI: 10.1128/mmbr.00171-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
SUMMARYThe ability to overcome metabolic stress is a major determinant of outcomes during infections. Pathogens face nutrient and oxygen deprivation in host niches and during their encounter with immune cells. Immune cells require metabolic adaptations for producing antimicrobial compounds and mounting antifungal inflammation. Infection also triggers systemic changes in organ metabolism and energy expenditure that range from an enhanced metabolism to produce energy for a robust immune response to reduced metabolism as infection progresses, which coincides with immune and organ dysfunction. Competition for energy and nutrients between hosts and pathogens means that successful survival and recovery from an infection require a balance between elimination of the pathogen by the immune systems (resistance), and doing so with minimal damage to host tissues and organs (tolerance). Here, we discuss our current knowledge of pathogen, immune cell and systemic metabolism in fungal infections, and the impact of metabolic disorders, such as obesity and diabetes. We put forward the idea that, while our knowledge of the use of metabolic regulation for fungal proliferation and antifungal immune responses (i.e., resistance) has been growing over the years, we also need to study the metabolic mechanisms that control tolerance of fungal pathogens. A comprehensive understanding of how to balance resistance and tolerance by metabolic interventions may provide insights into therapeutic strategies that could be used adjunctly with antifungal drugs to improve patient outcomes.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Helen Stölting
- Department of Biochemistry and Molecular Biology and the Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology and the Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Rosati D, Pradhan A, van Heck JIP, Helder L, Jaeger M, Gow NAR, Joosten LAB, Williams DL, Brown AJP, Bruno M, Netea MG. Candida albicans N-Linked Mannans Potentiate the Induction of Trained Immunity via Dectin-2. J Infect Dis 2024; 230:768-777. [PMID: 38446996 PMCID: PMC11420807 DOI: 10.1093/infdis/jiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/23/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses, which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T-cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by dectin 2. In conclusion, N-linked mannan is needed, in addition to β-glucans, for an effective induction of trained immunity by C. albicans.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Julia I P van Heck
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Leonie Helder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - David L Williams
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Dakalbab S, Hamdy R, Holigová P, Abuzaid EJ, Abu-Qiyas A, Lashine Y, Mohammad MG, Soliman SSM. Uniqueness of Candida auris cell wall in morphogenesis, virulence, resistance, and immune evasion. Microbiol Res 2024; 286:127797. [PMID: 38851008 DOI: 10.1016/j.micres.2024.127797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Candida auris has drawn global attention due to its alarming multidrug resistance and the emergence of pan resistant strains. C. auris poses a significant risk in nosocomial candidemia especially among immunocompromised patients. C. auris showed unique virulence characteristics associated with cell wall including cell polymorphism, adaptation, endurance on inanimate surfaces, tolerance to external conditions, and immune evasion. Notably, it possesses a distinctive cell wall composition, with an outer mannan layer shielding the inner 1,3-β glucan from immune recognition, thereby enabling immune evasion and drug resistance. This review aimed to comprehend the association between unique characteristics of C. auris's cell wall and virulence, resistance mechanisms, and immune evasion. This is particularly relevant since the fungal cell wall has no human homology, providing a potential therapeutic target. Understanding the complex interactions between the cell wall and the host immune system is essential for devising effective treatment strategies, such as the use of repurposed medications, novel therapeutic agents, and immunotherapy like monoclonal antibodies. This therapeutic targeting strategy of C. auris holds promise for effective eradication of this resilient pathogen.
Collapse
Affiliation(s)
- Salam Dakalbab
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | | | - Eman J Abuzaid
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Yasmina Lashine
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | - Mohammad G Mohammad
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
12
|
Ismail SHH, Hamdy R, Altaie AM, Fayed B, Dakalbab S, El-Awady R, Soliman SSM. Decoding host cell interaction- and fluconazole-induced metabolic alterations and drug resistance in Candida auris. Mycologia 2024; 116:673-693. [PMID: 39024116 DOI: 10.1080/00275514.2024.2363730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Candida auris is an emerging drug-resistant pathogen associated with high mortality rates. This study aimed to explore the metabolic alterations and associated pathogenesis and drug resistance in fluconazole-treated Candida auris-host cell interaction. Compared with controls, secreted metabolites from fluconazole-treated C. auris and fluconazole-treated C. auris-host cell co-culture demonstrated notable anti-Candida activity. Fluconazole caused significant reductions in C. auris cell numbers and aggregated phenotype. Metabolites produced by C. auris with potential fungal colonization, invasion, and host immune evasion effects were identified. Metabolites known to enhance biofilm formation produced during C. auris-host cell interaction were inhibited by fluconazole. Fluconazole enhanced the production of metabolites with biofilm inhibition activity, including behenyl alcohol and decanoic acid. Metabolites with potential Candida growth inhibition activity such as 2-palmitoyl glycerol, 1-tetradecanol, and 1-nonadecene were activated by fluconazole. Different patterns of proinflammatory cytokine expression presented due to fluconazole concentration and host cell type (fibroblasts versus macrophages). This highlights the immune response's complexity, emphasizing the necessity for additional research to comprehend cell-type-specific responses to antifungal therapies. Both host cell interaction and fluconazole treatment increased the expression of CDR1 and ERG11 genes, both associated with drug resistance. This study provides insights into pathogenesis in C. auris due to host cell interaction and fluconazole treatment. Understanding these interactions is crucial for enhancing fluconazole sensitivity and effectively combating C. auris.
Collapse
Affiliation(s)
- Samah H H Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt
| | - Alaa M Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry of Natural and Microbial Product, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Salam Dakalbab
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Salz R, Vorsteveld EE, van der Made CI, Kersten S, Stemerdink M, Riepe TV, Hsieh TH, Mhlanga M, Netea MG, Volders PJ, Hoischen A, ’t Hoen PA. Multi-omic profiling of pathogen-stimulated primary immune cells. iScience 2024; 27:110471. [PMID: 39091463 PMCID: PMC11293528 DOI: 10.1016/j.isci.2024.110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/23/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
We performed long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood mononuclear cells (PBMCs) from healthy donors to discover new transcript and protein isoforms expressed during immune responses to diverse pathogens. Long-read transcriptome profiling reveals novel sequences and isoform switching induced upon pathogen stimulation, including transcripts that are difficult to detect using traditional short-read sequencing. Widespread loss of intron retention occurs as a common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that may indicate novel immunological mechanisms. RNA expression differences did not result in differences in the amounts of secreted proteins. Clustering analysis of secreted proteins revealed a correlation between chemokine (receptor) expression on the RNA and protein levels in C. albicans- and poly(I:C)-stimulated PBMCs. Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the potential of these methods to identify novel transcripts, revealing a more complex transcriptome landscape than previously appreciated.
Collapse
Affiliation(s)
- Renee Salz
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Emil E. Vorsteveld
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Caspar I. van der Made
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Simone Kersten
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Merel Stemerdink
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tabea V. Riepe
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tsung-han Hsieh
- Department of Cell Biology, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Musa Mhlanga
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Cell Biology, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Pieter-Jan Volders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Laboratory of Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium
| | - Alexander Hoischen
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Peter A.C. ’t Hoen
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
14
|
Holt AM, Nett JE. Innate immune response to Candida auris. Curr Opin Microbiol 2024; 80:102510. [PMID: 38964276 PMCID: PMC11323126 DOI: 10.1016/j.mib.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Candida auris, a newly emergent fungal species, has been spreading in health care systems and causing life-threatening infections. Intact innate immunity is essential for protection against many invasive fungal infections, including candidiasis. Here, we highlight recent studies exploring immune interactions with C. auris, including investigations using animal models and ex vivo immune cells. We summarize innate immune studies comparing C. auris and the common fungal pathogen Candida albicans. We also discuss how structures of the C. auris cell wall influence immune recognition, the role of soluble host factors in immune recognition, and areas of future study.
Collapse
Affiliation(s)
- Ashley M Holt
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin, Madison, WI, USA; Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
15
|
Fayed B, Shakartalla SB, Sabbah H, Dalle H, Tannira M, Senok A, Soliman SSM. Transcriptome Analysis of Human Dermal Cells Infected with Candida auris Identified Unique Pathogenesis/Defensive Mechanisms Particularly Ferroptosis. Mycopathologia 2024; 189:65. [PMID: 38990436 DOI: 10.1007/s11046-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Candida auris is an emerging multi-drug resistant yeast that can cause life-threatening infections. A recent report clarified the ability of C. auris to form a biofilm with enhanced drug resistance properties in the host skin's deep layers. The formed biofilm may initiate further bloodstream spread and immune escape. Therefore, we propose that secreted chemicals from the biofilm may facilitate fungal pathogenesis. In response to this interaction, the host skin may develop potential defensive mechanisms. Comparative transcriptomics was performed on the host dermal cells in response to indirect interaction with C. auris biofilm through Transwell inserts compared to planktonic cells. Furthermore, the effect of antifungals including caspofungin and fluconazole was studied. The obtained data showed that the dermal cells exhibited different transcriptional responses. Kyoto Encyclopedia of Genes and Genomes and Reactome analyses identified potential defensive responses employed by the dermal cells and potential toxicity induced by C. auris. Additionally, our data indicated that the dominating toxic effect was mediated by ferroptosis; which was validated by qRT-PCR, cytotoxicity assay, and flow cytometry. On the other hand, the viability of C. auris biofilm was enhanced and accompanied by upregulation of MDR1, and KRE6 upon interaction with dermal cells; both genes play significant roles in drug resistance and biofilm maturation, respectively. This study for the first-time shed light on the dominating defensive responses of human dermal cells, microbe colonization site, to C. auris biofilm and its toxic effects. Further, it demonstrates how C. auris biofilm responds to the defensive mechanisms developed by the human dermal cells.
Collapse
Affiliation(s)
- Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Sarra B Shakartalla
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Faculty of Pharmacy, University of Gezira, P.O.Box. 21111, Wad Medani, Sudan
| | - Hassan Sabbah
- AbbVie BioPharmaceuticals, P.O. Box 118052, Dubai, UAE
| | - Hala Dalle
- AbbVie BioPharmaceuticals, Kuwait City, Kuwait
| | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14 Dubai Healthcare City, P.O.Box 505055, Dubai, UAE
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
16
|
Selisana SMG, Chen X, Mahfudhoh E, Bowolaksono A, Rozaliyani A, Orihara K, Kajiwara S. Alteration of β-glucan in the emerging fungal pathogen Candida auris leads to immune evasion and increased virulence. Med Microbiol Immunol 2024; 213:13. [PMID: 38967888 PMCID: PMC11226559 DOI: 10.1007/s00430-024-00795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
Candida auris is an emerging pathogenic yeast that has been categorized as a global public health threat and a critical priority among fungal pathogens. Despite this, the immune response against C. auris infection is still not well understood. Hosts fight Candida infections through the immune system that recognizes pathogen-associated molecular patterns such as β-glucan, mannan, and chitin on the fungal cell wall. In this study, levels of β-glucan and mannan exposures in C. auris grown under different physiologically relevant stimuli were quantified by flow cytometry-based analysis. Lactate, hypoxia, and sublethal concentration of fluconazole trigger a decrease in surface β-glucan while low pH triggers an increase in β-glucan. There is no inverse pattern between exposure levels of β-glucan and mannan in the cell wall architecture among the three clades. To determine the effect of cell wall remodeling on the immune response, a phagocytosis assay was performed, followed by quantification of released cytokines by ELISA. Lactate-induced decrease in β-glucan leads to reduced uptake of C. auris by PMA-differentiated THP-1 and RAW 264.7 macrophages. Furthermore, reduced production of CCL3/MIP-1⍺ but not TNF-⍺ and IL-10 were observed. An in vivo infection analysis using silkworms reveals that a reduction in β-glucan triggers an increase in the virulence of C. auris. This study demonstrates that β-glucan alteration occurs in C. auris and serves as an escape mechanism from immune cells leading to increased virulence.
Collapse
Affiliation(s)
- Shiela Marie Gines Selisana
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Eny Mahfudhoh
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Science, University of Indonesia, Depok, 16424, Indonesia
| | - Anna Rozaliyani
- Faculty of Medicine, University of Indonesia, Jakarta, 10430, Indonesia
| | - Kanami Orihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
17
|
Aparicio-Fernandez L, Antoran A, Areitio M, Rodriguez-Erenaga O, Martin-Souto L, Buldain I, Márquez J, Benedicto A, Arteta B, Pellon A, Moyes DL, Rementeria A, Ramirez-Garcia A. Candida albicans increases the aerobic glycolysis and activates MAPK-dependent inflammatory response of liver sinusoidal endothelial cells. Microbes Infect 2024; 26:105305. [PMID: 38296157 DOI: 10.1016/j.micinf.2024.105305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The liver, and more specifically, the liver sinusoidal endothelial cells, constitute the beginning of one of the most important responses for the elimination of hematogenously disseminated Candida albicans. Therefore, we aimed to study the mechanisms involved in the interaction between these cells and C. albicans. Transcriptomics-based analysis showed an increase in the expression of genes related to the immune response (including receptors, cytokines, and adhesion molecules), as well as to aerobic glycolysis. Further in vitro analyses showed that IL-6 production in response to C. albicans is controlled by MyD88- and SYK-pathways, suggesting an involvement of Toll-like and C-type lectin receptors and the subsequent activation of the MAP-kinases and c-Fos/AP-1 transcription factor. In addition, liver sinusoidal endothelial cells undergo metabolic reprogramming towards aerobic glycolysis induced by C. albicans, as confirmed by the increased Extracellular Acidification Rate and the overexpression of enolase (Eno2), hexonikase (Hk2) and glucose transporter 1 (Slc2a1). In conclusion, these results indicate that the hepatic endothelium responds to C. albicans by increasing aerobic glycolysis and promoting an inflammatory environment.
Collapse
Affiliation(s)
- Leire Aparicio-Fernandez
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Aitziber Antoran
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain.
| | - Maialen Areitio
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Oier Rodriguez-Erenaga
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Leire Martin-Souto
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Idoia Buldain
- Department of Immunology, Microbiology, and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Joana Márquez
- Cellular Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Aitor Benedicto
- Cellular Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Cancer and Translational Medicine Research Group, University of Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Beatriz Arteta
- Cellular Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Cancer and Translational Medicine Research Group, University of Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Aize Pellon
- Centre for Host-Microbiome Interactions, Fac. of Dentistry, Oral & Craniofacial Science, King's College London, London SE1 1UL, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Fac. of Dentistry, Oral & Craniofacial Science, King's College London, London SE1 1UL, United Kingdom
| | - Aitor Rementeria
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| |
Collapse
|
18
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585572. [PMID: 38562863 PMCID: PMC10983919 DOI: 10.1101/2024.03.18.585572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Candida auris , a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase (MAPK) is essential for efficient skin colonization, intradermal persistence, as well as systemic virulence. RNA-seq analysis of wildtype parental and hog1 Δ mutant strains revealed marked down-regulation of genes involved in processes such as cell adhesion, cell-wall rearrangement, and pathogenesis in hog1 Δ mutant compared to the wildtype parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell-wall architecture, as the hog1 Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo . Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. Importance Candida auris is a World Health Organization (WHO) fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention (CDC). C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris . Therefore, understanding C. auris skin colonization mechanisms are critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
|
19
|
Ma Z, Ensley HE, Graves B, Kruppa MD, Rice PJ, Lowman DW, Williams DL. Synthesis of a unique mannose α-1-phosphate side chain moiety found in Candida auris cell wall mannan. Carbohydr Res 2024; 537:109059. [PMID: 38408423 PMCID: PMC10957239 DOI: 10.1016/j.carres.2024.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Candida auris is an emerging fungal pathogen that has become a world-wide public health threat. While there have been numerous studies into the nature, composition and structure of the cell wall of Candida albicans and other Candida species, much less is known about the C. auris cell wall. We have shown that C. auris cell wall mannan contains a unique phosphomannan structure which distinguishes C. auris mannan from the mannans found in other fungal species. Specifically, C. auris exhibits two unique acid-labile mannose α-1-phosphate (Manα1PO4) sidechains that are absent in other fungal mannans and fungal pathogens. This unique mannan structural feature presents an opportunity for the development of vaccines, therapeutics, diagnostic tools and/or research reagents that target C. auris. Herein, we describe the successful synthesis and structural characterization of a Manα1PO4-containing disaccharide moiety that mimics the phosphomannan found in C. auris. Additionally, we present evidence that the synthetic Manα1PO4 glycomimetic is specifically recognized and bound by cell surface pattern recognition receptors, i.e. rhDectin-2, rhMannose receptor and rhMincle, that are known to play important roles in the innate immune response to C. auris as well as other fungal pathogens. The synthesis of the Manα1PO4 glycomimetic may represent an important starting point in the development of vaccines, therapeutics, diagnostics and research reagents which target a number of C. auris clinical strains. In addition, these data provide new insights and understanding into the structural biology of this unique fungal pathogen.
Collapse
Affiliation(s)
- Zuchao Ma
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA; Drug Discovery and Synthesis Core, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | - Harry E Ensley
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA; Drug Discovery and Synthesis Core, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Bridget Graves
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Michael D Kruppa
- Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Peter J Rice
- Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA; Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Douglas W Lowman
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA; Drug Discovery and Synthesis Core, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - David L Williams
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA; Drug Discovery and Synthesis Core, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
20
|
Vuscan P, Kischkel B, Hatzioannou A, Markaki E, Sarlea A, Tintoré M, Cuñé J, Verginis P, de Lecea C, Chavakis T, Joosten LA, Netea MG. Potent induction of trained immunity by Saccharomyces cerevisiae β-glucans. Front Immunol 2024; 15:1323333. [PMID: 38415247 PMCID: PMC10896952 DOI: 10.3389/fimmu.2024.1323333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Candida albicans cell wall component β-glucan has been extensively studied for its ability to induce epigenetic and functional reprogramming of innate immune cells, a process termed trained immunity. We show that a high-complexity blend of two individual β-glucans from Saccharomyces cerevisiae possesses strong bioactivity, resulting in an enhanced trained innate immune response by human primary monocytes. The training required the Dectin-1/CR3, TLR4, and MMR receptors, as well as the Raf-1, Syk, and PI3K downstream signaling molecules. By activating multiple receptors and downstream signaling pathways, the components of this β-glucan preparation are able to act synergistically, causing a robust secondary response upon an unrelated challenge. In in-vivo murine models of melanoma and bladder cell carcinoma, pre-treatment of mice with the β-glucan preparation led to a significant reduction in tumor growth. These insights may aid in the development of future therapies based on β-glucan structures that induce an effective trained immunity response.
Collapse
Affiliation(s)
- Patricia Vuscan
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Efrosyni Markaki
- Laboratory of Immune Regulation and Tolerance, Medical School, University of Crete, Heraklion, Greece
| | - Andrei Sarlea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maria Tintoré
- R&D Department, AB Biotek Human Nutrition and Health, Barcelona, Spain
| | - Jordi Cuñé
- R&D Department, AB Biotek Human Nutrition and Health, Barcelona, Spain
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Medical School, University of Crete, Heraklion, Greece
| | - Carlos de Lecea
- R&D Department, AB Biotek Human Nutrition and Health, Barcelona, Spain
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Hernando-Ortiz A, Eraso E, Jauregizar N, de Groot PW, Quindós G, Mateo E. Efficacy of the combination of amphotericin B and echinocandins against Candida auris in vitro and in the Caenorhabditis elegans host model. Microbiol Spectr 2024; 12:e0208623. [PMID: 38018978 PMCID: PMC10783041 DOI: 10.1128/spectrum.02086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Multidrug resistance is a rising problem among non-Candida albicans species, such as Candida auris. This therapeutic problem has been very important during the COVID-19 pandemic. The World Health Organization has included C. auris in its global priority list of health-threatening fungi, to study this emerging multidrug-resistant species and to develop effective alternative therapies. In the present study, the synergistic effect of the combination of amphotericin B and echinocandins has been demonstrated against blood isolates of C. auris. Different susceptibility responses were also observed between aggregative and non-aggregative phenotypes. The antifungal activity of these drug combinations against C. auris was also demonstrated in the Caenorhabditis elegans host model of candidiasis, confirming the suitability and usefulness of this model in the search for solutions to antimicrobial resistance.
Collapse
Affiliation(s)
- Ainara Hernando-Ortiz
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nerea Jauregizar
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Piet W.J. de Groot
- Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
22
|
Alvarado M, Gómez-Navajas JA, Blázquez-Muñoz MT, Gómez-Molero E, Fernández-Sánchez S, Eraso E, Munro CA, Valentín E, Mateo E, de Groot PWJ. The good, the bad, and the hazardous: comparative genomic analysis unveils cell wall features in the pathogen Candidozyma auris typical for both baker's yeast and Candida. FEMS Yeast Res 2024; 24:foae039. [PMID: 39656857 DOI: 10.1093/femsyr/foae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
The drug-resistant pathogenic yeast Candidozyma auris (formerly named Candida auris) is considered a critical health problem of global importance. As the cell wall plays a crucial role in pathobiology, here we performed a detailed bioinformatic analysis of its biosynthesis in C. auris and related Candidozyma haemuli complex species using Candida albicans and Saccharomyces cerevisiae as references. Our data indicate that the cell wall architecture described for these reference yeasts is largely conserved in Candidozyma spp.; however, expansions or reductions in gene families point to subtle alterations, particularly with respect to β--1,3--glucan synthesis and remodeling, phosphomannosylation, β-mannosylation, and glycosylphosphatidylinositol (GPI) proteins. In several aspects, C. auris holds a position in between C. albicans and S. cerevisiae, consistent with being classified in a separate genus. Strikingly, among the identified putative GPI proteins in C. auris are adhesins typical for both Candida (Als and Hyr/Iff) and Saccharomyces (Flo11 and Flo5-like flocculins). Further, 26 putative C. auris GPI proteins lack homologs in Candida genus species. Phenotypic analysis of one such gene, QG37_05701, showed mild phenotypes implicating a role associated with cell wall β-1,3-glucan. Altogether, our study uncovered a wealth of information relevant for the pathogenicity of C. auris as well as targets for follow-up studies.
Collapse
Affiliation(s)
- María Alvarado
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Jesús A Gómez-Navajas
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Emilia Gómez-Molero
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Carol A Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Eulogio Valentín
- GMCA Research Unit, Departament of Microbiology and Ecology, University of Valencia, Burjassot, 46010 Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Piet W J de Groot
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
23
|
Wells KM, Ciftci Y, Peddinti BST, Ghiladi RA, Vediyappan G, Spontak RJ, Govind R. Preventing the spread of life-threatening gastrointestinal microbes on the surface of a continuously self-disinfecting block polymer. J Colloid Interface Sci 2023; 652:718-726. [PMID: 37611471 DOI: 10.1016/j.jcis.2023.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Highly persistent, drug-resistant and transmissible healthcare pathogens such as Clostridioides difficile (C. difficile) and Candida auris (C. auris) are responsible for causing antibiotic-associated fatal diarrhea and invasive candidiasis, respectively. In this study, we demonstrate that these potentially lethal gastrointestinal microbes can be rapidly inactivated on the solid surface of a self-disinfecting anionic block polymer that inherently generates a water surface layer that is highly acidic (pH < 1) upon hydration. Due to thermodynamic incompatibility between its chemical sequences, the polymer spontaneously self-organizes into a nanostructure that enables proton migration from the interior of a film to the surface via contiguous nanoscale hydrophilic channels, as discerned here by scanning electron and atomic force microscopies, as well as X-ray photoelectron spectroscopy. Here, we report that two strains of C. difficile in the vegetative state and two species of Candida, Candida albicans (C. albicans) and C. auris, are, in most cases, inactivated to the limit of minimum detection. Corresponding electron and optical microscopy images reveal that, upon exposure to the hydrated polymer, the outer microbial membranes display evidence of damage and intracellular material is expelled. Combined with our previous studies of rapid bacterial and viral inactivation, these antimicrobial results are highly encouraging and, if translatable to clinical conditions in the form of self-standing polymer films or coatings, are expected to benefit the welfare of patients in healthcare facilities by continuously preventing the spread of such potentially dangerous microbes.
Collapse
Affiliation(s)
- Kacie M Wells
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695, United States
| | - Yusuf Ciftci
- Division of Biology, Kansas State University, Manhattan, KS 66506, United States
| | - Bharadwaja S T Peddinti
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | | | - Richard J Spontak
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
24
|
Zhu X, Chen Y, Yu D, Fang W, Liao W, Pan W. Progress in the application of nanoparticles for the treatment of fungal infections: A review. Mycology 2023; 15:1-16. [PMID: 38558835 PMCID: PMC10977003 DOI: 10.1080/21501203.2023.2285764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/28/2023] [Indexed: 04/04/2024] Open
Abstract
The burden of fungal infections on human health is increasing worldwide. Aspergillus, Candida, and Cryptococcus are the top three human pathogenic fungi that are responsible for over 90% of infection-related deaths. Moreover, effective antifungal therapeutics are lacking, primarily due to host toxicity, pathogen resistance, and immunodeficiency. In recent years, nanomaterials have proved not only to be more efficient antifungal therapeutic agents but also to overcome resistance against fungal medication. This review will examine the limitations of standard antifungal therapy as well as focus on the development of nanomaterials.
Collapse
Affiliation(s)
- Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Youming Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dan Yu
- Department of General Practice, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
25
|
Elalouf A, Elalouf H, Rosenfeld A. Modulatory immune responses in fungal infection associated with organ transplant - advancements, management, and challenges. Front Immunol 2023; 14:1292625. [PMID: 38143753 PMCID: PMC10748506 DOI: 10.3389/fimmu.2023.1292625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Organ transplantation stands as a pivotal achievement in modern medicine, offering hope to individuals with end-stage organ diseases. Advancements in immunology led to improved organ transplant survival through the development of immunosuppressants, but this heightened susceptibility to fungal infections with nonspecific symptoms in recipients. This review aims to establish an intricate balance between immune responses and fungal infections in organ transplant recipients. It explores the fundamental immune mechanisms, recent advances in immune response dynamics, and strategies for immune modulation, encompassing responses to fungal infections, immunomodulatory approaches, diagnostics, treatment challenges, and management. Early diagnosis of fungal infections in transplant patients is emphasized with the understanding that innate immune responses could potentially reduce immunosuppression and promise efficient and safe immuno-modulating treatments. Advances in fungal research and genetic influences on immune-fungal interactions are underscored, as well as the potential of single-cell technologies integrated with machine learning for biomarker discovery. This review provides a snapshot of the complex interplay between immune responses and fungal infections in organ transplantation and underscores key research directions.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan, Israel
| | - Hadas Elalouf
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| | - Ariel Rosenfeld
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
26
|
Mahmoud DE, Hanachi M, Yaakoub H, Blanchard S, Pignon P, Souiai O, Delneste Y, Bouchara JP, Papon N, Hérivaux A. Functional insights into human macrophage response against Scedosporium apiospermum and Scedosporium dehoogii. Cytokine 2023; 172:156384. [PMID: 37832161 DOI: 10.1016/j.cyto.2023.156384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Fungal infections caused by Scedosporium species are rising among immunocompromised and immunocompetent patients. Within the immunocompetent group, patients with cystic fibrosis (pwCF) are at high risk of developing a chronic airway colonization by these molds. While S. apiospermum is one of the major species encountered in the lungs of pwCF, S. dehoogii has rarely been reported. The innate immune response is believed to be critical for host defense against fungal infections. However, its role has only recently been elucidated and the immune mechanisms against Scedosporium species are currently unknown. In this context, we undertook a comparative investigation of macrophage-mediated immune responses toward S. apiospermum and S. dehoogii conidia. Our data showed that S. apiospermum and S. dehoogii conidia strongly stimulated the expression of a set of pro-inflammatory cytokines and chemokines such as IL-1β, IL-8, IL-6 and TNFα. We demonstrated that S. dehoogii was more potent in stimulating the early release of pro-inflammatory cytokines and chemokines while S. apiospermum induced a late inflammatory response at a higher level. Flow cytometry analysis showed that M1-like macrophages were able to internalize both S. apiospermum and S. dehoogii conidia, with a similar intracellular killing rate for both species. In conclusion, these results suggest that M1-like macrophages can rapidly initiate a strong immune response against both S. apiospermum and S. dehoogii. This response is characterized by a similar killing of internalized conidia, but a different time course of cytokine production.
Collapse
Affiliation(s)
| | - Mariem Hanachi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Simon Blanchard
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Pascale Pignon
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Yves Delneste
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France; Immunology and Allergology Laboratory, University Hospital of Angers, Angers, France
| | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Anaïs Hérivaux
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000 Angers, France.
| |
Collapse
|
27
|
Horton MV, Holt AM, Nett JE. Mechanisms of pathogenicity for the emerging fungus Candida auris. PLoS Pathog 2023; 19:e1011843. [PMID: 38127686 PMCID: PMC10735027 DOI: 10.1371/journal.ppat.1011843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Candida auris recently emerged as an urgent public health threat, causing outbreaks of invasive infections in healthcare settings throughout the world. This fungal pathogen persists on the skin of patients and on abiotic surfaces despite antiseptic and decolonization attempts. The heightened capacity for skin colonization and environmental persistence promotes rapid nosocomial spread. Following skin colonization, C. auris can gain entrance to the bloodstream and deeper tissues, often through a wound or an inserted medical device, such as a catheter. C. auris possesses a variety of virulence traits, including the capacity for biofilm formation, production of adhesins and proteases, and evasion of innate immune responses. In this review, we highlight the interactions of C. auris with the host, emphasizing the intersection of laboratory studies and clinical observations.
Collapse
Affiliation(s)
- Mark V. Horton
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ashley M. Holt
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
28
|
Bohner F, Papp C, Takacs T, Varga M, Szekeres A, Nosanchuk JD, Vágvölgyi C, Tóth R, Gacser A. Acquired Triazole Resistance Alters Pathogenicity-Associated Features in Candida auris in an Isolate-Dependent Manner. J Fungi (Basel) 2023; 9:1148. [PMID: 38132749 PMCID: PMC10744493 DOI: 10.3390/jof9121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Fluconazole resistance is commonly encountered in Candida auris, and the yeast frequently displays resistance to other standard drugs, which severely limits the number of effective therapeutic agents against this emerging pathogen. In this study, we aimed to investigate the effect of acquired azole resistance on the viability, stress response, and virulence of this species. Fluconazole-, posaconazole-, and voriconazole- resistant strains were generated from two susceptible C. auris clinical isolates (0381, 0387) and compared under various conditions. Several evolved strains became pan-azole-resistant, as well as echinocandin-cross-resistant. While being pan-azole-resistant, the 0381-derived posaconazole-evolved strain colonized brain tissue more efficiently than any other strain, suggesting that fitness cost is not necessarily a consequence of resistance development in C. auris. All 0387-derived evolved strains carried a loss of function mutation (R160S) in BCY1, an inhibitor of the PKA pathway. Sequencing data also revealed that posaconazole treatment can result in ERG3 mutation in C. auris. Despite using the same mechanisms to generate the evolved strains, both genotype and phenotype analysis highlighted that the development of resistance was unique for each strain. Our data suggest that C. auris triazole resistance development is a highly complex process, initiated by several pleiotropic factors.
Collapse
Affiliation(s)
- Flora Bohner
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Csaba Papp
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Tamas Takacs
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Mónika Varga
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - András Szekeres
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Joshua D. Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Attila Gacser
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
- HUN-REN-USZ Pathomechanisms of Fungal Infections Research Group, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
29
|
Miramón P, Pountain AW, Lorenz MC. Candida auris-macrophage cellular interactions and transcriptional response. Infect Immun 2023; 91:e0027423. [PMID: 37815367 PMCID: PMC10652981 DOI: 10.1128/iai.00274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 10/11/2023] Open
Abstract
The pathogenic yeast Candida auris represents a global threat of the utmost clinical relevance. This emerging fungal species is remarkable in its resistance to commonly used antifungal agents and its persistence in the nosocomial settings. The innate immune system is one the first lines of defense preventing the dissemination of pathogens in the host. C. auris is susceptible to circulating phagocytes, and understanding the molecular details of these interactions may suggest routes to improved therapies. In this work, we examined the interactions of this yeast with macrophages. We found that macrophages avidly phagocytose C. auris; however, intracellular replication is not inhibited, indicating that C. auris resists the killing mechanisms imposed by the phagocyte. Unlike Candida albicans, phagocytosis of C. auris does not induce macrophage lysis. The transcriptional response of C. auris to macrophage phagocytosis is very similar to other members of the CUG clade (C. albicans, C. tropicalis, C. parapsilosis, C. lusitaniae), i.e., downregulation of transcription/translation and upregulation of alternative carbon metabolism pathways, transporters, and induction of oxidative stress response and proteolysis. Gene family expansions are common in this yeast, and we found that many of these genes are induced in response to macrophage co-incubation. Among these, amino acid and oligopeptide transporters, as well as lipases and proteases, are upregulated. Thus, C. auris shares key transcriptional signatures shared with other fungal pathogens and capitalizes on the expansion of gene families coding for potential virulence attributes that allow its survival, persistence, and evasion of the innate immune system.
Collapse
Affiliation(s)
- Pedro Miramón
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | | | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| |
Collapse
|
30
|
Yang J, Yang H, Li Y. The triple interactions between gut microbiota, mycobiota and host immunity. Crit Rev Food Sci Nutr 2023; 63:11604-11624. [PMID: 35776086 DOI: 10.1080/10408398.2022.2094888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiome is mainly composed of microbiota and mycobiota, both of which play important roles in the development of the host immune system, metabolic regulation, and maintenance of intestinal homeostasis. With the increasing awareness of the pathogenic essence of infectious, immunodeficiency, and tumor-related diseases, the interactions between gut bacteria, fungi, and host immunity have been shown to directly influence the disease process or final therapeutic outcome, and collaborative and antagonistic relationships are commonly found between bacteria and fungi. Interventions represented by probiotics, prebiotics, engineered probiotics, fecal microbiota transplantation (FMT), and drugs can effectively modulate the triple interactions. In particular, traditional probiotics represented by Bifidobacterium and Lactobacillus and next-generation probiotics represented by Akkermansia muciniphila and Faecalibacterium prausnitzii showed a high enrichment trend in the gut of patients with a high response to inflammation remission and tumor immunotherapy, which predicts the potential medicinal value of these beneficial microbial formulations. However, there are bottlenecks in all these interventions that need to be broken. Meanwhile, further unraveling the underlying mechanisms of the "triple interactions" model can guide precise interventions and ultimately improve the efficiency of interventions on the host gut microbiome and immune modulation, thus directly or indirectly improving anti-inflammatory and tumor immunotherapy effects.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hong Yang
- State Key Laboratory of Microbial Metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
31
|
Pan B, Weerasinghe H, Sezmis A, McDonald MJ, Traven A, Thompson P, Simm C. Leveraging the MMV Pathogen Box to Engineer an Antifungal Compound with Improved Efficacy and Selectivity against Candida auris. ACS Infect Dis 2023; 9:1901-1917. [PMID: 37756147 DOI: 10.1021/acsinfecdis.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Fungal infections pose a significant and increasing threat to human health, but the current arsenal of antifungal drugs is inadequate. We screened the Medicines for Malaria Venture (MMV) Pathogen Box for new antifungal agents against three of the most critical Candida species (Candida albicans, Candida auris, and Candida glabrata). Of the 14 identified hit compounds, most were active against C. albicans and C. auris. We selected the pyrazolo-pyrimidine MMV022478 for chemical modifications to build structure-activity relationships and study their antifungal properties. Two analogues, 7a and 8g, with distinct fluorine substitutions, greatly improved the efficacy against C. auris and inhibited fungal replication inside immune cells. Additionally, analogue 7a had improved selectivity toward fungal killing compared to mammalian cytotoxicity. Evolution experiments generating MMV022478-resistant isolates revealed a change in morphology from oblong to round cells. Most notably, the resistant isolates blocked the uptake of the fluorescent dye rhodamine 6G and showed reduced susceptibility toward fluconazole, indicative of structural changes in the yeast cell surface. In summary, our study identified a promising antifungal compound with activity against high-priority fungal pathogens. Additionally, we demonstrated how structure-activity relationship studies of known and publicly available compounds can expand the repertoire of molecules with antifungal efficacy and reduced cytotoxicity to drive the development of novel therapeutics.
Collapse
Affiliation(s)
- Baolong Pan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Harshini Weerasinghe
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
| | - Aysha Sezmis
- School of Biological Sciences, Monash University, Clayton 3800, VIC, Australia
| | - Michael J McDonald
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
- School of Biological Sciences, Monash University, Clayton 3800, VIC, Australia
| | - Ana Traven
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
| | - Philip Thompson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Claudia Simm
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
| |
Collapse
|
32
|
Abstract
Candida auris is a multidrug-resistant fungal pathogen that presents a serious threat to global human health. Since the first reported case in 2009 in Japan, C. auris infections have been reported in more than 40 countries, with mortality rates between 30% and 60%. In addition, C. auris has the potential to cause outbreaks in health care settings, especially in nursing homes for elderly patients, owing to its efficient transmission via skin-to-skin contact. Most importantly, C. auris is the first fungal pathogen to show pronounced and sometimes untreatable clinical drug resistance to all known antifungal classes, including azoles, amphotericin B, and echinocandins. In this review, we explore the causes of the rapid spread of C. auris. We also highlight its genome organization and drug resistance mechanisms and propose future research directions that should be undertaken to curb the spread of this multidrug-resistant pathogen.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India;
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kusum Jain
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India;
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
33
|
Silva LN, Ramos LS, Oliveira SSC, Magalhães LB, Cypriano J, Abreu F, Macedo AJ, Branquinha MH, Santos ALS. Development of Echinocandin Resistance in Candida haemulonii: An Emergent, Widespread, and Opportunistic Fungal Pathogen. J Fungi (Basel) 2023; 9:859. [PMID: 37623630 PMCID: PMC10455776 DOI: 10.3390/jof9080859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Echinocandins, used for the prevention and treatment of invasive fungal infections, have led to a rise in breakthrough infections caused by resistant Candida species. Among these species, those belonging to the Candida haemulonii complex are rare multidrug-resistant (MDR) yeasts that are frequently misidentified but have emerged as significant healthcare-associated pathogens causing invasive infections. The objectives of this study were to investigate the evolutionary pathways of echinocandin resistance in C. haemulonii by identifying mutations in the FKS1 gene and evaluating the impact of resistance on fitness. After subjecting a MDR clinical isolate of C. haemulonii (named Ch4) to direct selection using increasing caspofungin concentrations, we successfully obtained an isolate (designated Ch4'r) that exhibited a high level of resistance, with MIC values exceeding 16 mg/L for all tested echinocandin drugs (caspofungin, micafungin, and anidulafungin). Sequence analysis revealed a specific mutation in the resistant Ch4'r strain, leading to an arginine-histidine amino acid substitution (R1354H), occurring at the G4061A position of the HS2 region of the FKS1 gene. Compared to the wild-type strain, Ch4'r exhibited significantly reduced growth proliferation, biofilm formation capability, and phagocytosis ratio, indicating a decrease in fitness. Transmission electron microscopy analysis revealed alterations in cell wall components, with a notable increase in cell wall thickness. The resistant strain also exhibited higher amounts (2.5-fold) of chitin, a cell wall-located molecule, compared to the wild-type strain. Furthermore, the resistant strain demonstrated attenuated virulence in the Galleria mellonella larval model. The evolved strain Ch4'r maintained its resistance profile in vivo since the treatment with either caspofungin or micafungin did not improve larval survival or reduce the fungal load. Taken together, our findings suggest that the acquisition of pan-echinocandin resistance occurred rapidly after drug exposure and was associated with a significant fitness cost in C. haemulonii. This is particularly concerning as echinocandins are often the first-line treatment option for MDR Candida species.
Collapse
Affiliation(s)
- Laura N. Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Simone S. C. Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Lucas B. Magalhães
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Jefferson Cypriano
- Laboratório de Biologia Celular e Magnetotaxia & Unidade de Microscopia Multiusuário, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.C.); (F.A.)
| | - Fernanda Abreu
- Laboratório de Biologia Celular e Magnetotaxia & Unidade de Microscopia Multiusuário, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.C.); (F.A.)
| | - Alexandre J. Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia e Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil;
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
34
|
Singh RK, Reuber EE, Bruno M, Netea MG, Seeberger PH. Synthesis of oligosaccharides to identify an immunologically active epitope against Candida auris infection. Chem Sci 2023; 14:7559-7563. [PMID: 37449061 PMCID: PMC10337753 DOI: 10.1039/d3sc01242e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Candida auris (C. auris) is an emerging multidrug-resistant fungal pathogen that represents a significant public health challenge as it can spread rapidly and result in high mortality rates. The mannans on the C. auris cell surface are potent immunogens and attractive targets for developing a glycoconjugate vaccine. We synthesized the oligosaccharides resembling cell surface mannans of C. auris and printed them onto microarray slides that were used to screen plasma from mice infected with C. auris. IgM antibodies in mouse plasma recognize the β-1,2 linkage present in C. auris surface mannans. Disaccharide 19 emerged from glycan array screening as a lead for developing a vaccine against C. auris, as the majority of patient plasma samples showed antibodies against this glycan. The synthetic oligosaccharides can be used for the early detection of C. auris infections.
Collapse
Affiliation(s)
- Rajat Kumar Singh
- Department of Biomolecular System, Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany
| | - Emelie E Reuber
- Department of Biomolecular System, Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany
| | - Mariolina Bruno
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center Nijmegen The Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute (LIMES), University of Bonn Bonn Germany
| | - Peter H Seeberger
- Department of Biomolecular System, Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany
| |
Collapse
|
35
|
Pechacek J, Lionakis MS. Host defense mechanisms against Candida auris. Expert Rev Anti Infect Ther 2023; 21:1087-1096. [PMID: 37753840 DOI: 10.1080/14787210.2023.2264500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Candida auris is a pathogen of growing public health concern given its rapid spread across the globe, its propensity for long-term skin colonization and healthcare-related outbreaks, its resistance to a variety of antifungal medications, and the high morbidity and mortality associated with invasive disease. Despite that, the host immune response mechanisms that operate during C. auris skin colonization and invasive infection remains poorly understood. AREAS COVERED In this manuscript, we review the available literature in the growing research field pertaining to C. auris host defenses and we discuss what is known about the ability of C. auris to thrive on mammalian skin, the role of lymphoid cell-mediated, IL-17-dependent defenses in controlling cutaneous colonization, and the contribution of myeloid phagocytes in curtailing systemic infection. EXPERT OPINION Understanding the mechanisms by which the host immune system responds to and controls colonization and infection with C. auris and developing a deeper knowledge of tissue-specific host-C. auris interactions and of C. auris immune-evading mechanisms may help devise improved strategies for decolonization, prognostication, prevention, vaccination, and/or directed antifungal treatment in vulnerable patient populations.
Collapse
Affiliation(s)
- Joseph Pechacek
- From the Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- From the Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and therapeutic prospects. Nat Rev Immunol 2023; 23:433-452. [PMID: 36600071 PMCID: PMC9812358 DOI: 10.1038/s41577-022-00826-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/06/2023]
Abstract
Pathogenic fungi have emerged as significant causes of infectious morbidity and death in patients with acquired immunodeficiency conditions such as HIV/AIDS and following receipt of chemotherapy, immunosuppressive agents or targeted biologics for neoplastic or autoimmune diseases, or transplants for end organ failure. Furthermore, in recent years, the spread of multidrug-resistant Candida auris has caused life-threatening outbreaks in health-care facilities worldwide and raised serious concerns for global public health. Rapid progress in the discovery and functional characterization of inborn errors of immunity that predispose to fungal disease and the development of clinically relevant animal models have enhanced our understanding of fungal recognition and effector pathways and adaptive immune responses. In this Review, we synthesize our current understanding of the cellular and molecular determinants of mammalian antifungal immunity, focusing on observations that show promise for informing risk stratification, prognosis, prophylaxis and therapies to combat life-threatening fungal infections in vulnerable patient populations.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Rebecca A Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
37
|
Amann V, Kissmann AK, Mildenberger V, Krebs I, Perez-Erviti JA, Martell-Huguet EM, Otero-Gonzalez AJ, Morales-Vicente F, Rodríguez-Castaño GP, Firacative C, Rodríguez A, Ständker L, Weil T, Spellerberg B, Stenger S, Rosenau F. Cm-p5 Peptide Dimers Inhibit Biofilms of Candida albicans Clinical Isolates, C. parapsilosis and Fluconazole-Resistant Mutants of C. auris. Int J Mol Sci 2023; 24:9788. [PMID: 37372935 DOI: 10.3390/ijms24129788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Antimicrobial peptides (AMPs) represent a promising class of therapeutic biomolecules that show antimicrobial activity against a broad range of microorganisms, including life-threatening pathogens. In contrast to classic AMPs with membrane-disrupting activities, new peptides with a specific anti-biofilm effect are gaining in importance since biofilms could be the most important way of life, especially for pathogens, as the interaction with host tissues is crucial for the full development of their virulence in the event of infection. Therefore, in a previous study, two synthetic dimeric derivatives (parallel Dimer 1 and antiparallel Dimer 2) of the AMP Cm-p5 showed specific inhibition of the formation of Candida auris biofilms. Here we show that these derivatives are also dose-dependently effective against de novo biofilms that are formed by the widespread pathogenic yeasts C. albicans and C. parapsilosis. Moreover, the activity of the peptides was demonstrated even against two fluconazole-resistant strains of C. auris.
Collapse
Affiliation(s)
- Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Vanessa Mildenberger
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Imke Krebs
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julio A Perez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Str. and I Str., La Habana 10400, Cuba
| | - Ernesto M Martell-Huguet
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Str. and I Str., La Habana 10400, Cuba
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Anselmo J Otero-Gonzalez
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Str. and I Str., La Habana 10400, Cuba
| | - Fidel Morales-Vicente
- Synthetic Peptides Group, Center for Genetic Engineering and Biotechnology, La Habana 10600, Cuba
| | - Gina P Rodríguez-Castaño
- Vidarium Nutrition, Health and Wellness Research Center, Grupo Nutresa, Calle 8 sur #50-67, Medellín 050023, Colombia
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia
| | - Armando Rodríguez
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Barbara Spellerberg
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
38
|
Leroy J, Lecointe K, Coulon P, Sendid B, Robert R, Poulain D. Antibodies as Models and Tools to Decipher Candida albicans Pathogenic Development: Review about a Unique Monoclonal Antibody Reacting with Immunomodulatory Adhesins. J Fungi (Basel) 2023; 9:636. [PMID: 37367572 DOI: 10.3390/jof9060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Candidiasis, caused mainly by Candida albicans, a natural commensal of the human digestive tract and vagina, is the most common opportunistic fungal infection at the mucosal and systemic levels. Its high morbi-mortality rates have led to considerable research to identify the molecular mechanisms associated with the switch to pathogenic development and to diagnose this process as accurately as possible. Since the 1980s, the advent of monoclonal antibody (mAb) technology has led to significant progress in both interrelated fields. This linear review, intended to be didactic, was prompted by considering how, over several decades, a single mAb designated 5B2 contributed to the elucidation of the molecular mechanisms of pathogenesis based on β-1,2-linked oligomannoside expression in Candida species. These contributions starting from the structural identification of the minimal epitope as a di-mannoside from the β-1,2 series consisted then in the demonstration that it was shared by a large number of cell wall proteins differently anchored in the cell wall and the discovery of a cell wall glycoplipid shed by the yeast in contact of host cells, the phospholipomannan. Cytological analysis revealed an overall highly complex epitope expression at the cell surface concerning all growth phases and a patchy distribution resulting from the merging of cytoplasmic vesicles to plasmalema and further secretion through cell wall channels. On the host side, the mAb 5B2 led to identification of Galectin-3 as the human receptor dedicated to β-mannosides and signal transduction pathways leading to cytokine secretion directing host immune responses. Clinical applications concerned in vivo imaging of Candida infectious foci, direct examination of clinical samples and detection of circulating serum antigens that complement the Platelia Ag test for an increased sensitivity of diagnosis. Finally, the most interesting character of mAb 5B2 is probably its ability to reveal C. albicans pathogenic behaviour in reacting specifically with vaginal secretions from women infected versus colonized by this species as well as to display higher reactivity with strains isolated in pathogenic circumstances or even linked to an unfavourable prognosis for systemic candidiasis. Together with a detailed referenced description of these studies, the review provides a complementary reading frame by listing the wide range of technologies involving mAb 5B2 over time, evidencing a practical robustness and versatility unique so far in the Candida field. Finally, the basic and clinical perspectives opened up by these studies are briefly discussed with regard to prospects for future applications of mAb 5B2 in current research challenges.
Collapse
Affiliation(s)
- Jordan Leroy
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Karine Lecointe
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
| | - Pauline Coulon
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Raymond Robert
- Kalidiv ZA, La Garde Bâtiment 1 B, Allée du 9 Novembre 1989, F-49240 Avrillé, France
| | - Daniel Poulain
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
| |
Collapse
|
39
|
Weerasinghe H, Simm C, Djajawi TM, Tedja I, Lo TL, Simpson DS, Shasha D, Mizrahi N, Olivier FAB, Speir M, Lawlor KE, Ben-Ami R, Traven A. Candida auris uses metabolic strategies to escape and kill macrophages while avoiding robust activation of the NLRP3 inflammasome response. Cell Rep 2023; 42:112522. [PMID: 37204928 DOI: 10.1016/j.celrep.2023.112522] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/28/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
Metabolic adaptations regulate the response of macrophages to infection. The contributions of metabolism to macrophage interactions with the emerging fungal pathogen Candida auris are poorly understood. Here, we show that C. auris-infected macrophages undergo immunometabolic reprogramming and increase glycolysis but fail to activate a strong interleukin (IL)-1β cytokine response or curb C. auris growth. Further analysis shows that C. auris relies on its own metabolic capacity to escape from macrophages and proliferate in vivo. Furthermore, C. auris kills macrophages by triggering host metabolic stress through glucose starvation. However, despite causing macrophage cell death, C. auris does not trigger robust activation of the NLRP3 inflammasome. Consequently, inflammasome-dependent responses remain low throughout infection. Collectively, our findings show that C. auris uses metabolic regulation to eliminate macrophages while remaining immunologically silent to ensure its own survival. Thus, our data suggest that host and pathogen metabolism could represent therapeutic targets for C. auris infections.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Claudia Simm
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Tirta Mario Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Irma Tedja
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Tricia L Lo
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - David Shasha
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naama Mizrahi
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Françios A B Olivier
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Traven
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
40
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
41
|
Nwachukwu KC, Nwarunma E, David Uchenna C, Chinyere Ugbogu O. Enablers of Candida auris persistence on medical devices and their mode of eradication. Curr Med Mycol 2023; 9:36-43. [PMID: 37867591 PMCID: PMC10590192 DOI: 10.18502/cmm.2023.150673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 05/21/2023] [Indexed: 10/24/2023] Open
Abstract
Candida auris is an emerging pathogen predominantly isolated from immunocompromised patients, hospitalized for a long time. It inhabits the skin surfaces of patients causing ear, wound, and systemic infections; if not treated properly, it could lead to severe mortality. Apart from being a skin pathogen, C. auris colonizes the surfaces of medical devices. Medical devices are hospital tools and components often utilized for the diagnosis and treatment of diseases associated with human skin. The mechanism of survival and persistence of C. auris on medical devices has remained unclear and is a serious concern for clinicians. The persistence of C. auris on medical devices has deterred its effective elimination, hindered the treatment of infections, and increased its antifungal resistance. Evidence has shown that a few surface molecules on the cell wall of C. auris and the extracellular matrix of the biofilm are responsible for its persistence and exist as enablers. Due to the increased cases of ear, skin, and systemic infections as well as death resulting from the spread of C. auris in hospitals, there is a need to study these enablers. This review focused on the identification of the enablers and aimed to evaluate them in relation to their ability to induce persistence in C. auris. In order to reduce the spread of or completely eliminate C. auris and its enablers in hospitals, the efficacy of disinfection and sterilization methods were compared.
Collapse
Affiliation(s)
| | - Ebubechukwu Nwarunma
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, UK
| | - Chinaza David Uchenna
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | | |
Collapse
|
42
|
Suprewicz Ł, Skłodowski K, Walewska A, Deptuła P, Sadzyńska A, Eljaszewicz A, Moniuszko M, Janmey PA, Bucki R. Plasma Gelsolin Enhances Phagocytosis of Candida auris by Human Neutrophils through Scavenger Receptor Class B. Microbiol Spectr 2023; 11:e0408222. [PMID: 36802172 PMCID: PMC10101141 DOI: 10.1128/spectrum.04082-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
In addition to its role as an actin-depolymerizing factor in the blood, plasma gelsolin (pGSN) binds bacterial molecules and stimulates the phagocytosis of bacteria by macrophages. Here, using an in vitro system, we assessed whether pGSN could also stimulate phagocytosis of the fungal pathogen Candida auris by human neutrophils. The extraordinary ability of C. auris to evade immune responses makes it particularly challenging to eradicate in immunocompromised patients. We demonstrate that pGSN significantly enhances C. auris uptake and intracellular killing. Stimulation of phagocytosis was accompanied by decreased neutrophil extracellular trap (NET) formation and reduced secretion of proinflammatory cytokines. Gene expression studies revealed pGSN-dependent upregulation of scavenger receptor class B (SR-B). Inhibition of SR-B using sulfosuccinimidyl oleate (SSO) and block lipid transport-1 (BLT-1) decreased the ability of pGSN to enhance phagocytosis, indicating that pGSN potentiates the immune response through an SR-B-dependent pathway. These results suggest that the response of the host's immune system during C. auris infection may be enhanced by the administration of recombinant pGSN. IMPORTANCE The incidence of life-threatening multidrug-resistant Candida auris infections is rapidly growing, causing substantial economic costs due to outbreaks in hospital wards. Primary and secondary immunodeficiencies in susceptible individuals, such as those with leukemia, solid organ transplants, diabetes, and ongoing chemotherapy, often correlate with decreased plasma gelsolin concentration (hypogelsolinemia) and impairment of innate immune responses due to severe leukopenia. Immunocompromised patients are predisposed to superficial and invasive fungal infections. Morbidity caused by C. auris among immunocompromised patients can be as great as 60%. In the era of ever-growing fungal resistance in an aging society, it is critical to seek novel immunotherapies that may help combat these infections. The results reported here suggest the possibility of using pGSN as an immunomodulator of the immune response by neutrophils during C. auris infection.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Alicja Walewska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Alicja Sadzyńska
- Prof. Edward F. Szczepanik State Vocational University—Suwałki, Suwałki, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Paul A. Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Bucki
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
43
|
Jamalian A, Freeke J, Chowdhary A, de Hoog GS, Stielow JB, Meis JF. Fast and Accurate Identification of Candida auris by High Resolution Mass Spectrometry. J Fungi (Basel) 2023; 9:jof9020267. [PMID: 36836381 PMCID: PMC9966097 DOI: 10.3390/jof9020267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The emerging pathogen Candida auris has been associated with nosocomial outbreaks on six continents. Genetic analysis indicates simultaneous and independent emergence of separate clades of the species in different geographical locations. Both invasive infection and colonization have been observed, warranting attention due to variable antifungal resistance profiles and hospital transmission. MALDI-TOF based identification methods have become routine in hospitals and research institutes. However, identification of the newly emerging lineages of C. auris yet remains a diagnostic challenge. In this study an innovative liquid chromatography (LC)-high resolution OrbitrapTM mass spectrometry method was used for identification of C. auris from axenic microbial cultures. A set of 102 strains from all five clades and different body locations were investigated. The results revealed correct identification of all C. auris strains within the sample cohort, with an identification accuracy of 99.6% from plate culture, in a time-efficient manner. Furthermore, application of the applied mass spectrometry technology provided the species identification down to clade level, thus potentially providing the possibility for epidemiological surveillance to track pathogen spread. Identification beyond species level is required specially to differentiate between nosocomial transmission and repeated introduction to a hospital.
Collapse
Affiliation(s)
- Azadeh Jamalian
- Centre of Expertise in Mycology, Radboud UMC/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Joanna Freeke
- Centre of Expertise in Mycology, Radboud UMC/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - G. Sybren de Hoog
- Centre of Expertise in Mycology, Radboud UMC/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - J. Benjamin Stielow
- Centre of Expertise in Mycology, Radboud UMC/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Jacques F. Meis
- Centre of Expertise in Mycology, Radboud UMC/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba 80060, Brazil
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne and Excellence Center for Medical Mycology, University Hospital Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
44
|
Gómez-Gaviria M, Martínez-Álvarez JA, Chávez-Santiago JO, Mora-Montes HM. Candida haemulonii Complex and Candida auris: Biology, Virulence Factors, Immune Response, and Multidrug Resistance. Infect Drug Resist 2023; 16:1455-1470. [PMID: 36942024 PMCID: PMC10024503 DOI: 10.2147/idr.s402754] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
There is worldwide concern about the constant increase in infections caused by Candida species that are multiresistant to antifungal drugs. The most common candidiasis is caused by Candida albicans, however, the species of the Candida haemulonii complex and Candida auris are emerging opportunistic pathogens, which isolation from clinical samples has significantly increased in the past years. The special interest in the study of these species lies in their ability to evade the action of antifungal drugs, such as amphotericin B, azoles, and echinocandins. In addition, the phenotypic changes of these species have given them the ability to easily adapt to environmental changes, including the host milieu and immunity. In this paper, a detailed review of the current literature on the C. haemulonii complex and C. auris is shown, analyzing aspects such as biology, immune response, putative virulence factors, infection, treatment, and the current strategies for diagnosis.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
- Correspondence: Manuela Gómez-Gaviria; Héctor M Mora-Montes, Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, Guanajuato, Gto, C. P. 36050, México, Tel +52 473-7320006 Ext. 8193, Fax +52 473-7320006 Ext. 8153, Email ;
| | - José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Joaquín O Chávez-Santiago
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
45
|
Gómez-Gaviria M, Ramírez-Sotelo U, Mora-Montes HM. Non- albicans Candida Species: Immune Response, Evasion Mechanisms, and New Plant-Derived Alternative Therapies. J Fungi (Basel) 2022; 9:jof9010011. [PMID: 36675832 PMCID: PMC9862154 DOI: 10.3390/jof9010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal infections caused by Candida species have become a constant threat to public health, especially for immunocompromised patients, who are considered susceptible to this type of opportunistic infections. Candida albicans is known as the most common etiological agent of candidiasis; however, other species, such as Candida tropicalis, Candida parapsilosis, Nakaseomyces glabrata (previously known as Candida glabrata), Candida auris, Candida guilliermondii, and Pichia kudriavzevii (previously named as Candida krusei), have also gained great importance in recent years. The increasing frequency of the isolation of this non-albicans Candida species is associated with different factors, such as constant exposure to antifungal drugs, the use of catheters in hospitalized patients, cancer, age, and geographic distribution. The main concerns for the control of these pathogens include their ability to evade the mechanisms of action of different drugs, thus developing resistance to antifungal drugs, and it has also been shown that some of these species also manage to evade the host's immunity. These biological traits make candidiasis treatment a challenging task. In this review manuscript, a detailed update of the recent literature on the six most relevant non-albicans Candida species is provided, focusing on the immune response, evasion mechanisms, and new plant-derived compounds with antifungal properties.
Collapse
|
46
|
Miguel GA, Carlsen S, Arneborg N, Saerens SM, Laulund S, Knudsen GM. Non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. Int J Food Microbiol 2022; 383:109951. [DOI: 10.1016/j.ijfoodmicro.2022.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
47
|
Shahi G, Kumar M, Skwarecki AS, Edmondson M, Banerjee A, Usher J, Gow NA, Milewski S, Prasad R. Fluconazole resistant Candida auris clinical isolates have increased levels of cell wall chitin and increased susceptibility to a glucosamine-6-phosphate synthase inhibitor. Cell Surf 2022; 8:100076. [PMID: 35252632 PMCID: PMC8891998 DOI: 10.1016/j.tcsw.2022.100076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022] Open
Abstract
In 2009 Candida auris was first isolated as fungal pathogen of human disease from ear canal of a patient in Japan. In less than a decade, this pathogen has rapidly spread around the world and has now become a major health challenge that is of particular concern because many strains are resistant to multiple class of antifungal drugs. The lack of available antifungals and rapid increase of this fungal pathogen provides an incentive for the development of new and more potent anticandidal drugs and drug combinatorial treatments. Here we have explored the growth inhibitory activity against C. auris of a synthetic dipeptide glutamine analogue, L-norvalyl-N 3-(4-methoxyfumaroyl)-L-2,3- diaminopropanoic acid (Nva-FMDP), that acts as an inhibitor of glucosamine-6-phosphate (GlcN-6-P) synthase - a key enzyme in the synthesis of cell wall chitin. We observed that in contrast to FLC susceptible isolates of C. auris, FLC resistant isolates had elevated cell wall chitin and were susceptible to inhibition by Nva-FMDP. The growth kinetics of C. auris in RPMI-1640 medium revealed that the growth of FLC resistant isolates were 50-60% more inhibited by Nva-FMDP (8 μ g/ml) compared to a FLC susceptible isolate. Fluconazole resistant strains displayed increased transcription of CHS1, CHS2 and CHS3, and the chitin content of the fluconazole resistant strains was reduced following the Nva-FMDP treatment. Therefore, the higher chitin content in FLC resistant C. auris isolates may make the strain more susceptible to inhibition of the antifungal activity of the Nva-FMDP peptide conjugate.
Collapse
Affiliation(s)
- Garima Shahi
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana 122413, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana 122413, India
| | - Andrzej S. Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, 11/12 Narutowicza Street, 80-952 Gdansk, Poland
| | - Matt Edmondson
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Atanu Banerjee
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana 122413, India
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, 11/12 Narutowicza Street, 80-952 Gdansk, Poland
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana 122413, India
| |
Collapse
|
48
|
Similarities and Differences among Species Closely Related to Candida albicans: C. tropicalis, C. dubliniensis, and C. auris. Cell Microbiol 2022. [DOI: 10.1155/2022/2599136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans. Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic, and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C. albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.
Collapse
|
49
|
Tu J, Liu N, Huang Y, Yang W, Sheng C. Small molecules for combating multidrug-resistant superbug Candida auris infections. Acta Pharm Sin B 2022; 12:4056-4074. [PMID: 36386475 PMCID: PMC9643296 DOI: 10.1016/j.apsb.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023] Open
Abstract
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Yahui Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
50
|
Aldossary HA, Rehman S, Jermy BR, AlJindan R, Aldayel A, AbdulAzeez S, Akhtar S, Khan FA, Borgio JF, Al-Suhaimi EA. Therapeutic Intervention for Various Hospital Setting Strains of Biofilm Forming Candida auris with Multiple Drug Resistance Mutations Using Nanomaterial Ag-Silicalite-1 Zeolite. Pharmaceutics 2022; 14:2251. [PMID: 36297684 PMCID: PMC9611151 DOI: 10.3390/pharmaceutics14102251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/14/2022] Open
Abstract
Candida auris (C. auris), an emerging multidrug-resistant microorganism, with limited therapeutical options, is one of the leading causes of nosocomial infections. The current study includes 19 C. auris strains collected from King Fahd Hospital of the University and King Fahad Specialist Hospital in Dammam, identified by 18S rRNA gene and ITS region sequencing. Drug-resistance-associated mutations in ERG11, TAC1B and FUR1 genes were screened to gain insight into the pattern of drug resistance. Molecular identification was successfully achieved using 18S rRNA gene and ITS region and 5 drug-resistance-associated missense variants identified in the ERG11 (F132Y and K143R) and TAC1B (H608Y, P611S and A640V) genes of C. auris strains, grouped into 3 clades. The prophylactic and therapeutic application of hydrothermally synthesized Ag-silicalite-1 (Si/Ag ratio 25) nanomaterial was tested against the 3 clades of clinical C. auris strains. 4wt%Ag/TiZSM-5 prepared using conventional impregnation technique was used for comparative study, and nano formulations were characterized using different techniques. The antibiofilm activity of nanomaterials was tested by cell kill assay, scanning electron microscopy (SEM) and light microscopy. Across all the clades of C. auris strains, 4 wt%Ag/TiZSM-5 and Ag-silicalite-1 demonstrated a significant (p = 1.1102 × 10-16) inhibitory effect on the biofilm's survival rate: the lowest inhibition value was (10%) with Ag-silicalite-1 at 24 and 48 h incubation. A profound change in morphogenesis in addition to the reduction in the number of C.auris cells was shown by SEM and light microscopy. The presence of a high surface area and the uniform dispersion of nanosized Ag species displays enhanced anti-Candida activity, and therefore it has great potential against the emerging multidrug-resistant C. auris.
Collapse
Affiliation(s)
- Hanan A. Aldossary
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - B. Rabindran Jermy
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 40017, Saudi Arabia
| | - Afra Aldayel
- Department of Pathology & Lab Medicine, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - J. Francis Borgio
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|