1
|
Wang J, Zhu R, Zou J, Liu H, Meng H, Zhen Z, Li W, Wang Z, Chen H, Pu Y, Weng Y. Incoherent ultrafast energy transfer in phycocyanin 620 from Thermosynechococcus vulcanus revealed by polarization-controlled two dimensional electronic spectroscopy. J Chem Phys 2024; 161:085101. [PMID: 39171718 DOI: 10.1063/5.0222587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phycocyanin 620 (PC620) is the outermost light-harvesting complex in phycobilisome of cyanobacteria, engaged in light collection and energy transfer to the core antenna, allophycocyanin. Recently, long-lived exciton-vibrational coherences have been observed in allophycocyanin, accounting for the coherent energy transfer [Zhu et al., Nat. Commun. 15, 3171 (2024)]. PC620 has a nearly identical spatial location of three α84-β84 phycocyanobilin pigment pairs to those in allophycocyanin, inferring an existence of possible coherent energy transfer pathways. However, whether PC620 undergoes coherent or incoherent energy transfer remains debated. Furthermore, accurate determination of energy transfer rates in PC620 is still necessary owing to the spectral overlap and broadening in conventional time-resolved spectroscopic measurements. In this work, the energy transfer process within PC620 was directly resolved by polarization-controlled two dimensional electronic spectroscopy (2DES) and global analysis. The results show that the energy transfer from α84 to the adjacent β84 has a lifetime constant of 400 fs, from β155 to β84 of 6-8 ps, and from β155 to α84 of 66 ps, fully conforming to the Förster resonance energy transfer mechanism. The circular dichroism spectrum also reveals that the α84-β84 pigment pair does not form excitonic dimer, and the observed oscillatory signals are confirmed to be vibrational coherence, excluding the exciton-vibrational coupling. Nodal line slope analysis of 2DES further reveals that all the vibrational modes participate in the energy dissipation of the excited states. Our results consolidate that the ultrafast energy transfer process in PC620 is incoherent, where the twisted conformation of α84 is suggested as the main cause for preventing the formation of α84-β84 excitonic dimer in contrast to allophycocyanin.
Collapse
Affiliation(s)
- Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruidan Zhu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jiading Zou
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| | - Heyuan Liu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hanting Meng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhanghe Zhen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Zhuan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| | - Yang Pu
- School of Agriculture, Ludong University, Yantai 264025, People's Republic of China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| |
Collapse
|
2
|
He J, Zhou H, Xiong J, Huang Y, Huang N, Jiang J. Association between elevated homocysteine levels and obstructive sleep apnea hypopnea syndrome: a systematic review and updated meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1378293. [PMID: 38887264 PMCID: PMC11180825 DOI: 10.3389/fendo.2024.1378293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Objective This study aimed to distinguish between healthy controls and patients with OSAHS regarding homocysteine (HCY) levels and investigate how individuals with OSAHS respond to continuous positive airway pressure ventilation (CPAP) in terms of serum and plasma HCY levels. Methods To ascertain published articles about OSAHS, an exhaustive search was performed across medical databases, encompassing PubMed, Web of Science, EMBASE, CNKI, and Cochrane Library, until January 2, 2024. This study reviewed the literature regarding HCY levels in individuals with OSAHS and control groups, HCY levels under pre- and post-CPAP treatment, the Pearson/Spearman correlation coefficients between HCY levels and apnea-hypopnea index (AHI), and the hazard ratio (HR) of HCY levels concerning the occurrence of major adverse cerebrocardiovascular events (MACCEs) in patients with OSAHS. Meta-analyses were performed using weighted mean difference (WMD), correlation coefficients, and HR as effect variables. The statistical analysis was conducted using the R 4.1.2 and STATA 11.0 software packages. Results In total, 33 articles were selected for the final analysis. The OSAHS group exhibited significantly higher serum/plasma HCY levels than the control group (WMD = 4.25 μmol/L, 95% CI: 2.60-5.91, P< 0.001), particularly among individuals with moderate and severe OSAHS. Additionally, subgroup analysis using mean age, ethnicity, mean body mass index, and study design type unveiled significantly elevated levels of HCY in the serum/plasma of the OSAHS group compared to the control group. CPAP treatment can significantly decrease serum/plasma HCY levels in patients with OSAHS. Moreover, elevated HCY levels in individuals with OSAHS could be one of the risk factors for MACCEs (adjusted HR = 1.68, 95% CI = 1.10-2.58, P = 0.017). AHI scores show a positive correlation with serum/plasma HCY levels. Conclusion Patients with OSAHS had elevated serum/plasma HCY levels compared to healthy controls; however, CPAP therapy dramatically decreased HCY levels in patients with OSAHS. In patients with OSAHS, elevated HCY levels were linked with an increased risk of MACCEs, and HCY was positively connected with AHI values. HCY levels may serve as a useful clinical indicator for determining the severity and efficacy of OSAHS treatments. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024498806.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Haiying Zhou
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Rehabilitation, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Juan Xiong
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Emergency department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuanyuan Huang
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Na Huang
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jiaqing Jiang
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Liu Q, Peng Y, Liao J, Liu X, Peng J, Wang JH, Shao Z. Broad-spectrum hydrocarbon-degrading microbes in the global ocean metagenomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171746. [PMID: 38521276 DOI: 10.1016/j.scitotenv.2024.171746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yongyi Peng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jiaxue Peng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519099, China.
| |
Collapse
|
4
|
Cao Y, Zhang B, Cai Q, Zhu Z, Liu B, Dong G, Greer CW, Lee K, Chen B. Responses of Alcanivorax species to marine alkanes and polyhydroxybutyrate plastic pollution: Importance of the ocean hydrocarbon cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120177. [PMID: 36116568 DOI: 10.1016/j.envpol.2022.120177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics. Growth profiling demonstrated that n-pentadecane (C15, the main alkane in the marine environment due to cyanobacterial production other than oil spills) and PHB could serve as preferential carbon sources. However, the cell membrane composition, PhaZ activity, and expression of three alkB genes were utterly different when grown on C15 and PHB. Further, Alcanivorax was a well-recognized alkane-degrader that participated in the ocean hydrocarbon cycles linking with hydrocarbon production and removal. Our discovery supported that the existing biogeochemical processes may add to the marine ecosystem's resilience to the impacts of plastics.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qinhong Cai
- Gaia Refinery, Saint John, NB E2J 2E7, Canada
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
5
|
Hu Z, Chen Y, Lai Q, Yu Z, Shao Z, Dong C. Zavarzinia marina sp. nov., a novel hydrocarbon-degrading bacterium isolated from deep chlorophyll maximum layer seawater of the West Pacific Ocean and emended description of the genus Zavarzinia. Int J Syst Evol Microbiol 2022; 72. [PMID: 36251753 DOI: 10.1099/ijsem.0.005527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A Gram-stain-negative, motile, non-spore-forming, strictly aerobic and rod-shaped bacterial strain, Adcm-6AT, was isolated from a seawater sample collected from the deep chlorophyll maximum layer in the West Pacific Ocean. Strain Adcm-6AT grew at 20-37 °C (optimum, 28-32 °C), at pH 6-11 (pH 7) and in the presence of 0-6 % (1-2 %) NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated that it belonged to the genus Zavarzinia and had 97.7 and 96.9 % sequence similarity to Zavarzinia compransoris DSM 1231T and Zavarzinia aquatilis JCM 32263T, respectively. Digital DNA-DNA hybridization and average nucleotide identity values between strain Adcm-6AT and the two type strains were 22.2-22.9 % and 79.7-80.4 %, respectively. The principal fatty acids were C19:0 cyclo ω8c, summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) and C16:0. The predominant respiratory quinone was Q-10. The polar lipids were diphosphatidylglycerol, two phosphatidylethanolamines, two phosphatidyglycerols and an unidentified lipid. The genomic DNA G+C content of strain Adcm-6AT was 67.7 %. Based on phylogenetic analysis and genomic-based relatedness indices, as well as phenotypic and genotypic characteristics, strain Adcm-6AT represents a novel species within the genus Zavarzinia, for which the name Zavarzinia marina sp. nov. is proposed. The type strain is Adcm-6AT (=MCCC M24951T=KCTC 82849T).
Collapse
Affiliation(s)
- Ziyan Hu
- College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Yongqing Chen
- College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Ziquan Yu
- College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| |
Collapse
|
6
|
A novel characteristic of a phytoplankton as a potential source of straight-chain alkanes. Sci Rep 2021; 11:14190. [PMID: 34276049 PMCID: PMC8286971 DOI: 10.1038/s41598-021-93204-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/22/2021] [Indexed: 11/08/2022] Open
Abstract
Biosynthesis of hydrocarbons is a promising approach for the production of alternative sources of energy because of the emerging need to reduce global consumption of fossil fuels. However, the suitability of biogenic hydrocarbons as fuels is limited because their range of the number of carbon atoms is small, and/or they contain unsaturated carbon bonds. Here, we report that a marine phytoplankton, Dicrateria rotunda, collected from the western Arctic Ocean, can synthesize a series of saturated hydrocarbons (n-alkanes) from C10H22 to C38H78, which are categorized as petrol (C10-C15), diesel oils (C16-C20), and fuel oils (C21-C38). The observation that these n-alkanes were also produced by ten other cultivated strains of Dicrateria collected from the Atlantic and Pacific oceans suggests that this capability is a common characteristic of Dicrateria. We also identified that the total contents of the n-alkanes in the Arctic D. rotunda strain increased under dark and nitrogen-deficient conditions. The unique characteristic of D. rotunda could contribute to the development of a new approach for the biosynthesis of n-alkanes.
Collapse
|