1
|
Ben Chaabene R, Martinez M, Bonavoglia A, Maco B, Chang YW, Lentini G, Soldati-Favre D. Toxoplasma gondii rhoptry discharge factor 3 is essential for invasion and microtubule-associated vesicle biogenesis. PLoS Biol 2024; 22:e3002745. [PMID: 39137211 PMCID: PMC11343613 DOI: 10.1371/journal.pbio.3002745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/23/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Rhoptries are specialized secretory organelles conserved across the Apicomplexa phylum, essential for host cell invasion and critical for subverting of host cellular and immune functions. They contain proteins and membranous materials injected directly into the host cells, participating in parasitophorous vacuole formation. Toxoplasma gondii tachyzoites harbor 8 to 12 rhoptries, 2 of which are docked to an apical vesicle (AV), a central element associated with a rhoptry secretory apparatus prior to injection into the host cell. This parasite is also equipped with 5 to 6 microtubule-associated vesicles, presumably serving as AV replenishment for iterative rhoptry discharge. Here, we characterized a rhoptry protein, rhoptry discharge factor 3 (RDF3), crucial for rhoptry discharge and invasion. RDF3 enters the secretory pathway, localizing near the AV and associated with the rhoptry bulb. Upon invasion, RDF3 dynamically delocalizes, suggesting a critical role at the time of rhoptry discharge. Cryo-electron tomography analysis of RDF3-depleted parasites reveals irregularity in microtubule-associated vesicles morphology, presumably impacting on their preparedness to function as an AV. Our findings suggest that RDF3 is priming the microtubule-associated vesicles for rhoptry discharge by a mechanism distinct from the rhoptry secretory apparatus contribution.
Collapse
Affiliation(s)
- Rouaa Ben Chaabene
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alessandro Bonavoglia
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Tell I Puig A, Soldati-Favre D. Roles of the tubulin-based cytoskeleton in the Toxoplasma gondii apical complex. Trends Parasitol 2024; 40:401-415. [PMID: 38531711 DOI: 10.1016/j.pt.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.
Collapse
Affiliation(s)
- Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Sun SY, Segev-Zarko LA, Pintilie GD, Kim CY, Staggers SR, Schmid MF, Egan ES, Chiu W, Boothroyd JC. Cryogenic electron tomography reveals novel structures in the apical complex of Plasmodium falciparum. mBio 2024; 15:e0286423. [PMID: 38456679 PMCID: PMC11005440 DOI: 10.1128/mbio.02864-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Intracellular infectious agents, like the malaria parasite, Plasmodium falciparum, face the daunting challenge of how to invade a host cell. This problem may be even harder when the host cell in question is the enucleated red blood cell, which lacks the host machinery co-opted by many pathogens for internalization. Evolution has provided P. falciparum and related single-celled parasites within the phylum Apicomplexa with a collection of organelles at their apical end that mediate invasion. This apical complex includes at least two sets of secretory organelles, micronemes and rhoptries, and several structural features like apical rings and a putative pore through which proteins may be introduced into the host cell during invasion. We perform cryogenic electron tomography (cryo-ET) equipped with Volta Phase Plate on isolated and vitrified merozoites to visualize the apical machinery. Through tomographic reconstruction of cellular compartments, we see new details of known structures like the rhoptry tip interacting directly with a rosette resembling the recently described rhoptry secretory apparatus (RSA), or with an apical vesicle docked beneath the RSA. Subtomogram averaging reveals that the apical rings have a fixed number of repeating units, each of which is similar in overall size and shape to the units in the apical rings of tachyzoites of Toxoplasma gondii. Comparison of these polar rings in Plasmodium and Toxoplasma parasites also reveals them to have a structurally conserved assembly pattern. These results provide new insight into the essential and structurally conserved features of this remarkable machinery used by apicomplexan parasites to invade their respective host cells. IMPORTANCE Malaria is an infectious disease caused by parasites of the genus Plasmodium and is a leading cause of morbidity and mortality globally. Upon infection, Plasmodium parasites invade and replicate in red blood cells, where they are largely protected from the immune system. To enter host cells, the parasites employ a specialized apparatus at their anterior end. In this study, advanced imaging techniques like cryogenic electron tomography (cryo-ET) and Volta Phase Plate enable unprecedented visualization of whole Plasmodium falciparum merozoites, revealing previously unknown structural details of their invasion machinery. Key findings include new insights into the structural conservation of apical rings shared between Plasmodium and its apicomplexan cousin, Toxoplasma. These discoveries shed light on the essential and conserved elements of the invasion machinery used by these pathogens. Moreover, the research provides a foundation for understanding the molecular mechanisms underlying parasite-host interactions, potentially informing strategies for combating diseases caused by apicomplexan parasites.
Collapse
Affiliation(s)
- Stella Y. Sun
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, California, USA
| | - Li-av Segev-Zarko
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Grigore D. Pintilie
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, California, USA
| | - Chi Yong Kim
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Sophia R. Staggers
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael F. Schmid
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - Elizabeth S. Egan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Anaguano D, Adewale-Fasoro O, Vick GS, Yanik S, Blauwkamp J, Fierro MA, Absalon S, Srinivasan P, Muralidharan V. Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577654. [PMID: 38352500 PMCID: PMC10862748 DOI: 10.1101/2024.01.29.577654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Malaria is a global and deadly human disease caused by the apicomplexan parasites of the genus Plasmodium. Parasite proliferation within human red blood cells (RBC) is associated with the clinical manifestations of the disease. This asexual expansion within human RBCs, begins with the invasion of RBCs by P. falciparum, which is mediated by the secretion of effectors from two specialized club-shaped secretory organelles in merozoite-stage parasites known as rhoptries. We investigated the function of the Rhoptry Neck Protein 11 (RON11), which contains seven transmembrane domains and calcium-binding EF-hand domains. We generated conditional mutants of the P. falciparum RON11. Knockdown of RON11 inhibits parasite growth by preventing merozoite invasion. The loss of RON11 did not lead to any defects in processing of rhoptry proteins but instead led to a decrease in the amount of rhoptry proteins. We utilized ultrastructure expansion microscopy (U-ExM) to determine the effect of RON11 knockdown on rhoptry biogenesis. Surprisingly, in the absence of RON11, fully developed merozoites had only one rhoptry each. The single rhoptry in RON11 deficient merozoites were morphologically typical with a bulb and a neck oriented into the apical polar ring. Moreover, rhoptry proteins are trafficked accurately to the single rhoptry in RON11 deficient parasites. These data show that in the absence of RON11, the first rhoptry is generated during schizogony but upon the start of cytokinesis, the second rhoptry never forms. Interestingly, these single-rhoptry merozoites were able to attach to host RBCs but are unable to invade RBCs. Instead, RON11 deficient merozoites continue to engage with RBC for prolonged periods eventually resulting in echinocytosis, a result of secreting the contents from the single rhoptry into the RBC. Together, our data show that RON11 triggers the de novo biogenesis of the second rhoptry and functions in RBC invasion.
Collapse
Affiliation(s)
- David Anaguano
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Opeoluwa Adewale-Fasoro
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Grace S. Vick
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Sean Yanik
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN
| | - Manuel A. Fierro
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| |
Collapse
|
5
|
Asarnow D, Becker VA, Bobe D, Dubbledam C, Johnston JD, Kopylov M, Lavoie NR, Li Q, Mattingly JM, Mendez JH, Paraan M, Turner J, Upadhye V, Walsh RM, Gupta M, Eng ET. Recent advances in infectious disease research using cryo-electron tomography. Front Mol Biosci 2024; 10:1296941. [PMID: 38288336 PMCID: PMC10822977 DOI: 10.3389/fmolb.2023.1296941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
With the increasing spread of infectious diseases worldwide, there is an urgent need for novel strategies to combat them. Cryogenic sample electron microscopy (cryo-EM) techniques, particularly electron tomography (cryo-ET), have revolutionized the field of infectious disease research by enabling multiscale observation of biological structures in a near-native state. This review highlights the recent advances in infectious disease research using cryo-ET and discusses the potential of this structural biology technique to help discover mechanisms of infection in native environments and guiding in the right direction for future drug discovery.
Collapse
Affiliation(s)
- Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Vada A. Becker
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| | - Daija Bobe
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Charlie Dubbledam
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jake D. Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Nathalie R. Lavoie
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, United States
| | - Qiuye Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob M. Mattingly
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Joshua H. Mendez
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Mohammadreza Paraan
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jack Turner
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Richard M. Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology and Harvard Medical School, Boston, MA, United States
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Edward T. Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| |
Collapse
|
6
|
Dos Santos Pacheco N, Tell I Puig A, Guérin A, Martinez M, Maco B, Tosetti N, Delgado-Betancourt E, Lunghi M, Striepen B, Chang YW, Soldati-Favre D. Sustained rhoptry docking and discharge requires Toxoplasma gondii intraconoidal microtubule-associated proteins. Nat Commun 2024; 15:379. [PMID: 38191574 PMCID: PMC10774369 DOI: 10.1038/s41467-023-44631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
In Apicomplexa, rhoptry discharge is essential for invasion and involves an apical vesicle (AV) docking one or two rhoptries to a macromolecular secretory apparatus. Toxoplasma gondii is armed with 10-12 rhoptries and 5-6 microtubule-associated vesicles (MVs) presumably for iterative rhoptry discharge. Here, we have addressed the localization and functional significance of two intraconoidal microtubule (ICMT)-associated proteins instrumental for invasion. Mechanistically, depletion of ICMAP2 leads to a dissociation of the ICMTs, their detachment from the conoid and dispersion of MVs and rhoptries. ICMAP3 exists in two isoforms that contribute to the control of the ICMTs length and the docking of the two rhoptries at the AV, respectively. This study illuminates the central role ICMTs play in scaffolding the discharge of multiple rhoptries. This process is instrumental for virulence in the mouse model of infection and in addition promotes sterile protection against T. gondii via the release of key effectors inducing immunity.
Collapse
Affiliation(s)
- Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Estefanía Delgado-Betancourt
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Valleau D, Sidik SM, Godoy LC, Acevedo‐Sánchez Y, Pasaje CFA, Huynh M, Carruthers VB, Niles JC, Lourido S. A conserved complex of microneme proteins mediates rhoptry discharge in Toxoplasma. EMBO J 2023; 42:e113155. [PMID: 37886905 PMCID: PMC10690463 DOI: 10.15252/embj.2022113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Apicomplexan parasites discharge specialized organelles called rhoptries upon host cell contact to mediate invasion. The events that drive rhoptry discharge are poorly understood, yet essential to sustain the apicomplexan parasitic life cycle. Rhoptry discharge appears to depend on proteins secreted from another set of organelles called micronemes, which vary in function from allowing host cell binding to facilitation of gliding motility. Here we examine the function of the microneme protein CLAMP, which we previously found to be necessary for Toxoplasma gondii host cell invasion, and demonstrate its essential role in rhoptry discharge. CLAMP forms a distinct complex with two other microneme proteins, the invasion-associated SPATR, and a previously uncharacterized protein we name CLAMP-linked invasion protein (CLIP). CLAMP deficiency does not impact parasite adhesion or microneme protein secretion; however, knockdown of any member of the CLAMP complex affects rhoptry discharge. Phylogenetic analysis suggests orthologs of the essential complex components, CLAMP and CLIP, are ubiquitous across apicomplexans. SPATR appears to act as an accessory factor in Toxoplasma, but despite incomplete conservation is also essential for invasion during Plasmodium falciparum blood stages. Together, our results reveal a new protein complex that mediates rhoptry discharge following host-cell contact.
Collapse
Affiliation(s)
| | | | - Luiz C Godoy
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | | | | | - My‐Hang Huynh
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Vern B Carruthers
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Jacquin C Niles
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Sebastian Lourido
- Whitehead InstituteCambridgeMAUSA
- Biology DepartmentMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
8
|
de Souza Teles ER, de Araujo Portes J, de Souza W. New morphological observations on the initial events of Toxoplasma gondii entry into host cells. Vet Parasitol 2023; 322:110006. [PMID: 37633244 DOI: 10.1016/j.vetpar.2023.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan of worldwide distribution. It is effective in the infection of various homoeothermic animals of economic importance. The process of T. gondii invasion of host cells occurs in less than 20 s by the active mechanism of penetration. First, a mobile junction is formed due to the association between the apical end of the parasite and the host cell surface. Then, the secretion of invasive and docking proteins allows the formation of the mobile junction before the complete internalization of the parasite. Here, using high-resolution microscopy, it was described new morphological observations of the early events of host cell invasion by tachyzoites of T. gondii. Attempts were made to synchronize the interaction process using low temperatures and treatment of the host cells with cytochalasin D, a drug that interferes with the actin dynamics. Images were obtained showing that the parasite and the host cells seem to release small vesicles with diameters varying from 25 to 100 nm. Furthermore, tunneling nanotubes emerge from the host cell surface and interact with the parasite even at long distance. These observations add new details of adhesion and entry events, such as surface projections of the host cell plasma membrane, pseudopods, and nanotubes radiating from the host cell toward the parasite. In addition, scanning microscopy revealed intense vesiculation, with a morphological characteristic of extracellular microvesicles, during the entry of the tachyzoite into the host cell.
Collapse
Affiliation(s)
- Everson Reili de Souza Teles
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana de Araujo Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - INBEB, and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro de Estudos Biomédicos-CMABio, Escola Superior de Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.
| |
Collapse
|
9
|
Martinez M, Mageswaran SK, Guérin A, Chen WD, Thompson CP, Chavin S, Soldati-Favre D, Striepen B, Chang YW. Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography. Nat Commun 2023; 14:4800. [PMID: 37558667 PMCID: PMC10412601 DOI: 10.1038/s41467-023-40520-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
The phylum Apicomplexa comprises important eukaryotic parasites that invade host tissues and cells using a unique mechanism of gliding motility. Gliding is powered by actomyosin motors that translocate host-attached surface adhesins along the parasite cell body. Actin filaments (F-actin) generated by Formin1 play a central role in this critical parasitic activity. However, their subcellular origin, path and ultrastructural arrangement are poorly understood. Here we used cryo-electron tomography to image motile Cryptosporidium parvum sporozoites and reveal the cellular architecture of F-actin at nanometer-scale resolution. We demonstrate that F-actin nucleates at the apically positioned preconoidal rings and is channeled into the pellicular space between the parasite plasma membrane and the inner membrane complex in a conoid extrusion-dependent manner. Within the pellicular space, filaments on the inner membrane complex surface appear to guide the apico-basal flux of F-actin. F-actin concordantly accumulates at the basal end of the parasite. Finally, analyzing a Formin1-depleted Toxoplasma gondii mutant pinpoints the upper preconoidal ring as the conserved nucleation hub for F-actin in Cryptosporidium and Toxoplasma. Together, we provide an ultrastructural model for the life cycle of F-actin for apicomplexan gliding motility.
Collapse
Affiliation(s)
- Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William David Chen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cameron Parker Thompson
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sabine Chavin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Cooper C, Thompson RCA, Clode PL. Investigating parasites in three dimensions: trends in volume microscopy. Trends Parasitol 2023; 39:668-681. [PMID: 37302958 DOI: 10.1016/j.pt.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
To best understand parasite, host, and vector morphologies, host-parasite interactions, and to develop new drug and vaccine targets, structural data should, ideally, be obtained and visualised in three dimensions (3D). Recently, there has been a significant uptake of available 3D volume microscopy techniques that allow collection of data across centimetre (cm) to Angstrom (Å) scales by utilising light, X-ray, electron, and ion sources. Here, we present and discuss microscopy tools available for the collection of 3D structural data, focussing on electron microscopy-based techniques. We highlight their strengths and limitations, such that parasitologists can identify techniques best suited to answer their research questions. Additionally, we review the importance of volume microscopy to the advancement of the field of parasitology.
Collapse
Affiliation(s)
- Crystal Cooper
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia.
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Peta L Clode
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia; School of Biological Sciences, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
11
|
Singer M, Simon K, Forné I, Meissner M. A central CRMP complex essential for invasion in Toxoplasma gondii. PLoS Biol 2023; 21:e3001937. [PMID: 36602948 PMCID: PMC9815656 DOI: 10.1371/journal.pbio.3001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Apicomplexa are obligate intracellular parasites. While most species are restricted to specific hosts and cell types, Toxoplasma gondii can invade every nucleated cell derived from warm-blooded animals. This broad host range suggests that this parasite can recognize multiple host cell ligands or structures, leading to the activation of a central protein complex, which should be conserved in all apicomplexans. During invasion, the unique secretory organelles (micronemes and rhoptries) are sequentially released and several micronemal proteins have been suggested to be required for host cell recognition and invasion. However, to date, only few micronemal proteins have been demonstrated to be essential for invasion, suggesting functional redundancy that might allow such a broad host range. Cysteine Repeat Modular Proteins (CRMPs) are a family of apicomplexan-specific proteins. In T. gondii, two CRMPs are present in the genome, CRMPA (TGGT1_261080) and CRMPB (TGGT1_292020). Here, we demonstrate that both proteins form a complex that contains the additional proteins MIC15 and the thrombospondin type 1 domain-containing protein (TSP1). Disruption of this complex results in a block of rhoptry secretion and parasites being unable to invade the host cell. In conclusion, this complex is a central invasion complex conserved in all apicomplexans.
Collapse
Affiliation(s)
- Mirko Singer
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig-Maximilians-University (LMU) Munich, Germany
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- * E-mail: (MS); (MM)
| | - Kathrin Simon
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Ignasi Forné
- Faculty of Medicine, Protein Analysis Unit, Biomedical Center (BMC), Ludwig-Maximilians-University (LMU) Munich, Martinsried, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig-Maximilians-University (LMU) Munich, Germany
- * E-mail: (MS); (MM)
| |
Collapse
|
12
|
Lai L, Cheung YW, Martinez M, Kixmoeller K, Palao L, Steimle S, Ho MC, Black BE, Lai EM, Chang YW. In Situ Structure Determination of Bacterial Surface Nanomachines Using Cryo-Electron Tomography. Methods Mol Biol 2023; 2646:211-248. [PMID: 36842118 DOI: 10.1007/978-1-0716-3060-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Bacterial surface nanomachines are often refractory to structural determination in their intact form due to their extensive association with the cell envelope preventing them from being properly purified for traditional structural biology methods. Cryo-electron tomography (cryo-ET) is an emerging branch of cryo-electron microscopy that can visualize supramolecular complexes directly inside frozen-hydrated cells in 3D at nanometer resolution, therefore posing a unique capability to study the intact structures of bacterial surface nanomachines in situ and reveal their molecular association with other cellular components. Furthermore, the resolution of cryo-ET is continually improving alongside methodological advancement. Here, using the type IV pilus machine in Myxococcus xanthus as an example, we describe a step-by-step workflow for in situ structure determination including sample preparation and screening, microscope and camera tuning, tilt series acquisition, data processing and tomogram reconstruction, subtomogram averaging, and structural analysis.
Collapse
Affiliation(s)
- Longsheng Lai
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yee-Wai Cheung
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Steimle
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Golmohammadzadeh M, Sexton DL, Parmar S, Tocheva EI. Advanced imaging techniques: Microscopy. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:1-25. [PMID: 37085191 DOI: 10.1016/bs.aambs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
For decades, bacteria were thought of as "bags" of enzymes, lacking organelles and significant subcellular structures. This stood in sharp contrast with eukaryotes, where intracellular compartmentalization and the role of large-scale order had been known for a long time. However, the emerging field of Bacterial Cell Biology has established that bacteria are in fact highly organized, with most macromolecular components having specific subcellular locations that can change depending on the cell's physiological state (Barry & Gitai, 2011; Lenz & Søgaard-Andersen, 2011; Thanbichler & Shapiro, 2008). For example, we now know that many processes in bacteria are orchestrated by cytoskeletal proteins, which polymerize into surprisingly diverse superstructures, such as rings, sheets, and tread-milling rods (Pilhofer & Jensen, 2013). These superstructures connect individual proteins, macromolecular assemblies, and even two neighboring cells, to affect essential higher-order processes including cell division, DNA segregation, and motility. Understanding these processes requires resolving the in vivo dynamics and ultrastructure at different functional stages of the cell, at macromolecular resolution and in 3-dimensions (3D). Fluorescence light microscopy (fLM) of tagged proteins is highly valuable for investigating protein localization and dynamics, and the resolution power of transmission electron microscopy (TEM) is required to elucidate the structure of macromolecular complexes in vivo and in vitro. This chapter summarizes the most recent advances in LM and TEM approaches that have revolutionized our knowledge and understanding of the microbial world.
Collapse
Affiliation(s)
- Mona Golmohammadzadeh
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle L Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shweta Parmar
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Haase R, Dos Santos Pacheco N, Soldati-Favre D. Nanoscale imaging of the conoid and functional dissection of its dynamics in Apicomplexa. Curr Opin Microbiol 2022; 70:102226. [PMID: 36332501 DOI: 10.1016/j.mib.2022.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022]
Abstract
Members of the Apicomplexa phylum are unified by an apical complex tailored for motility and host cell invasion. It includes regulated secretory organelles and a conoid attached to the apical polar ring (APR) from which subpellicular microtubules emerge. In coccidia, the conoid is composed of a cone of spiraling tubulin fibers, two preconoidal rings, and two intraconoidal microtubules. The conoid extrudes through the APR in motile parasites. Recent advances in proteomics, cryo-electron tomography, super-resolution, and expansion microscopy provide a more comprehensive view of the spatial and temporal resolution of proteins belonging to the conoid subcomponents. In combination with the phenotyping of targeted mutants, the biogenesis, turnover, dynamics, and function of the conoid begin to be elucidated.
Collapse
Affiliation(s)
- Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
15
|
Sparvoli D, Delabre J, Penarete‐Vargas DM, Kumar Mageswaran S, Tsypin LM, Heckendorn J, Theveny L, Maynadier M, Mendonça Cova M, Berry‐Sterkers L, Guérin A, Dubremetz J, Urbach S, Striepen B, Turkewitz AP, Chang Y, Lebrun M. An apical membrane complex for triggering rhoptry exocytosis and invasion in Toxoplasma. EMBO J 2022; 41:e111158. [PMID: 36245278 PMCID: PMC9670195 DOI: 10.15252/embj.2022111158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Jason Delabre
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | | | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lev M Tsypin
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Justine Heckendorn
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Liam Theveny
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Marjorie Maynadier
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Marta Mendonça Cova
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Laurence Berry‐Sterkers
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jean‐François Dubremetz
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Serge Urbach
- IGFUniversité de Montpellier, CNRS, INSERMMontpellierFrance
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
| | - Yi‐Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Maryse Lebrun
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| |
Collapse
|
16
|
Segev-Zarko LA, Dahlberg PD, Sun SY, Pelt DM, Kim CY, Egan ES, Sethian JA, Chiu W, Boothroyd JC. Cryo-electron tomography with mixed-scale dense neural networks reveals key steps in deployment of Toxoplasma invasion machinery. PNAS NEXUS 2022; 1:pgac183. [PMID: 36329726 PMCID: PMC9615128 DOI: 10.1093/pnasnexus/pgac183] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Host cell invasion by intracellular, eukaryotic parasites within the phylum Apicomplexa is a remarkable and active process involving the coordinated action of apical organelles and other structures. To date, capturing how these structures interact during invasion has been difficult to observe in detail. Here, we used cryogenic electron tomography to image the apical complex of Toxoplasma gondii tachyzoites under conditions that mimic resting parasites and those primed to invade through stimulation with calcium ionophore. Through the application of mixed-scale dense networks for image processing, we developed a highly efficient pipeline for annotation of tomograms, enabling us to identify and extract densities of relevant subcellular organelles and accurately analyze features in 3-D. The results reveal a dramatic change in the shape of the anteriorly located apical vesicle upon its apparent fusion with a rhoptry that occurs only in the stimulated parasites. We also present information indicating that this vesicle originates from the vesicles that parallel the intraconoidal microtubules and that the latter two structures are linked by a novel tether. We show that a rosette structure previously proposed to be involved in rhoptry secretion is associated with apical vesicles beyond just the most anterior one. This result, suggesting multiple vesicles are primed to enable rhoptry secretion, may shed light on the mechanisms Toxoplasma employs to enable repeated invasion attempts. Using the same approach, we examine Plasmodium falciparum merozoites and show that they too possess an apical vesicle just beneath a rosette, demonstrating evolutionary conservation of this overall subcellular organization.
Collapse
Affiliation(s)
- Li-av Segev-Zarko
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Peter D Dahlberg
- Department of Chemistry, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Stella Y Sun
- Department of Bioengineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA,Department of Structural Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Daniël M Pelt
- Leiden Institute of Advanced Computer Science, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | - Chi Yong Kim
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA,Department of Pediatrics––Infectious Diseases, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Elizabeth S Egan
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA,Department of Pediatrics––Infectious Diseases, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - James A Sethian
- Department of Mathematics, University of California, Berkeley, CA 94720, USA,Center for Advanced Mathematics for Energy Research Application (CAMERA), Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Wah Chiu
- To whom correspondence should be addressed:
| | | |
Collapse
|