1
|
Singhal R, Prata IO, Bonnell VA, Llinás M. Unraveling the complexities of ApiAP2 regulation in Plasmodium falciparum. Trends Parasitol 2024:S1471-4922(24)00250-2. [PMID: 39419713 DOI: 10.1016/j.pt.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
The regulation of gene expression in Plasmodium spp., the causative agents of malaria, relies on precise transcriptional control. Malaria parasites encode a limited repertoire of sequence-specific transcriptional regulators dominated by the apicomplexan APETALA 2 (ApiAP2) protein family. ApiAP2 DNA-binding proteins play critical roles at all stages of the parasite life cycle. Recent studies have provided mechanistic insight into the functional roles of many ApiAP2 proteins. Two major areas that have advanced significantly are the identification of ApiAP2-containing protein complexes and the role of ApiAP2 proteins in malaria parasite sexual development. In this review, we present recent advances on the functional biology of ApiAP2 proteins and their role in regulating gene expression across the blood stages of the parasite life cycle.
Collapse
Affiliation(s)
- Ritwik Singhal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Isadora O Prata
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Miyazaki Y, Miyazaki S. Reporter parasite lines: valuable tools for the study of Plasmodium biology. Trends Parasitol 2024:S1471-4922(24)00246-0. [PMID: 39389901 DOI: 10.1016/j.pt.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
The human malaria parasite Plasmodium falciparum causes the most severe form of malaria in endemic regions and is transmitted via mosquito bites. To better understand the biology of this deadly pathogen, a variety of P. falciparum reporter lines have been generated using transgenic approaches to express reporter proteins, such as fluorescent proteins and luciferases. This review discusses the advances in recently generated P. falciparum transgenic reporter lines, which will aid in the investigation of parasite physiology and the discovery of novel antimalarial drugs. Future prospects for the generation of new and superior human malaria parasite reporter lines are also discussed, and unresolved questions in malaria biology are highlighted to help boost support for the development and implementation of malaria treatments.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Shinya Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.
| |
Collapse
|
3
|
Hazzard B, Sá JM, Bogale HN, Pascini TV, Ellis AC, Amin S, Armistead JS, Adams JH, Wellems TE, Serre D. Single-cell analyses of polyclonal Plasmodium vivax infections and their consequences on parasite transmission. Nat Commun 2024; 15:7625. [PMID: 39223117 PMCID: PMC11369214 DOI: 10.1038/s41467-024-51949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Most Plasmodium vivax infections contain genetically distinct parasites, but the consequences of this polyclonality on the development of asexual parasites, their sexual differentiation, and their transmission remain unknown. We describe infections of Saimiri monkeys with two strains of P. vivax and the analyses of 80,024 parasites characterized by single cell RNA sequencing and individually genotyped. In our model, consecutive inoculations fail to establish polyclonal infections. By contrast, simultaneous inoculations of two strains lead to sustained polyclonal infections, although without detectable differences in parasite regulation or sexual commitment. Analyses of sporozoites dissected from mosquitoes fed on coinfected monkeys show that all genotypes are successfully transmitted to mosquitoes. However, after sporozoite inoculation, not all genotypes contribute to the subsequent blood infections, highlighting an important bottleneck during pre-erythrocytic development. Overall, these studies provide new insights on the mechanisms regulating the establishment of polyclonal P. vivax infections and their consequences for disease transmission.
Collapse
Affiliation(s)
- Brittany Hazzard
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haikel N Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tales V Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angela C Ellis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shuchi Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer S Armistead
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, USA
| | - John H Adams
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Graumans W, van der Starre A, Stoter R, van Gemert GJ, Andolina C, Ramjith J, Kooij T, Bousema T, Proellochs N. AlbuMAX supplemented media induces the formation of transmission-competent P. falciparum gametocytes. Mol Biochem Parasitol 2024; 259:111634. [PMID: 38823647 DOI: 10.1016/j.molbiopara.2024.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Asexual blood stage culture of Plasmodium falciparum is routinely performed but reproducibly inducing commitment to and maturation of viable gametocytes remains difficult. Culture media can be supplemented with human serum substitutes to induce commitment but these generally only allow for long-term culture of asexual parasites and not transmission-competent gametocytes due to their different lipid composition. Recent insights demonstrated the important roles lipids play in sexual commitment; elaborating on this we exposed ring stage parasites (20-24 hours hpi) for one day to AlbuMAX supplemented media to trigger induction to gametocytogenesis. We observed a significant increase in gametocytes after AlbuMAX induction compared to serum. We also tested the transmission potential of AlbuMAX inducted gametocytes and found a significant higher oocyst intensity compared to serum. We conclude that AlbuMAX supplemented media induces commitment, allows a more stable and predictable production of transmittable gametocytes than serum alone.
Collapse
Affiliation(s)
- Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Alex van der Starre
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Taco Kooij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas Proellochs
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Liang Q, Zhang S, Liu Z, Wang J, Yin H, Guan G, You C. Comparative genome-wide identification and characterization of SET domain-containing and JmjC domain-containing proteins in piroplasms. BMC Genomics 2024; 25:804. [PMID: 39187768 PMCID: PMC11346185 DOI: 10.1186/s12864-024-10731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND SET domain-containing histone lysine methyltransferases (HKMTs) and JmjC domain-containing histone demethylases (JHDMs) are essential for maintaining dynamic changes in histone methylation across parasite development and infection. However, information on the HKMTs and JHDMs in human pathogenic piroplasms, such as Babesia duncani and Babesia microti, and in veterinary important pathogens, including Babesia bigemina, Babesia bovis, Theileria annulata and Theileria parva, is limited. RESULTS A total of 38 putative KMTs and eight JHDMs were identified using a comparative genomics approach. Phylogenetic analysis revealed that the putative KMTs can be divided into eight subgroups, while the JHDMs belong to the JARID subfamily, except for BdJmjC1 (BdWA1_000016) and TpJmjC1 (Tp Muguga_02g00471) which cluster with JmjC domain only subfamily members. The motifs of SET and JmjC domains are highly conserved among piroplasm species. Interspecies collinearity analysis provided insight into the evolutionary duplication events of some SET domain and JmjC domain gene families. Moreover, relative gene expression analysis by RT‒qPCR demonstrated that the putative KMT and JHDM gene families were differentially expressed in different intraerythrocytic developmental stages of B. duncani, suggesting their role in Apicomplexa parasite development. CONCLUSIONS Our study provides a theoretical foundation and guidance for understanding the basic characteristics of several important piroplasm KMT and JHDM families and their biological roles in parasite differentiation.
Collapse
Affiliation(s)
- Qindong Liang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
| | - Shangdi Zhang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China
| | - Zeen Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, P. R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, P. R. China.
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China.
| |
Collapse
|
6
|
Jeffers V. Histone code: a common language and multiple dialects to meet the different developmental requirements of apicomplexan parasites. Curr Opin Microbiol 2024; 79:102472. [PMID: 38581913 PMCID: PMC11162943 DOI: 10.1016/j.mib.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Apicomplexan parasites have complex life cycles, often requiring transmission between two different hosts, facing periods of dormancy within the host or in the environment to maximize chances of transmission. To support survival in these different conditions, tightly regulated and correctly timed gene expression is critical. The modification of histones and nucleosome composition makes a significant contribution to this regulation, and as eukaryotes, the fundamental mechanisms underlying this process in apicomplexans are similar to those in model eukaryotic organisms. However, single-celled intracellular parasites face unique challenges, and regulation of gene expression at the epigenetic level provides tight control for responses that must often be rapid and robust. Here, we discuss the recent advances in understanding the dynamics of histone modifications across Apicomplexan life cycles and the molecular mechanisms that underlie epigenetic regulation of gene expression to promote parasite life cycle progression, dormancy, and transmission.
Collapse
Affiliation(s)
- Victoria Jeffers
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
7
|
Voss TS, Brancucci NM. Regulation of sexual commitment in malaria parasites - a complex affair. Curr Opin Microbiol 2024; 79:102469. [PMID: 38574448 DOI: 10.1016/j.mib.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Malaria blood stage parasites commit to either one of two distinct cellular fates while developing within erythrocytes of their mammalian host: they either undergo another round of asexual replication or they differentiate into nonreplicative transmissible gametocytes. Depending on the state of infection, either path may support or impair the ultimate goal of human-to-human transmission via the mosquito vector. Malaria parasites therefore evolved strategies to control investments into asexual proliferation versus gametocyte formation. Recent work provided fascinating molecular insight into shared and unique mechanisms underlying the control and environmental modulation of sexual commitment in the two most widely studied malaria parasite species, Plasmodium falciparum and P. berghei. With this review, we aim at placing these findings into a comparative mechanistic context.
Collapse
Affiliation(s)
- Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland.
| | - Nicolas Mb Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
8
|
Angel SO, Vanagas L, Alonso AM. Mechanisms of adaptation and evolution in Toxoplasma gondii. Mol Biochem Parasitol 2024; 258:111615. [PMID: 38354788 DOI: 10.1016/j.molbiopara.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Toxoplasma has high host flexibility, infecting all nucleated cells of mammals and birds. This implies that during its infective process the parasite must constantly adapt to different environmental situations, which in turn leads to modifications in its metabolism, regulation of gene transcription, translation of mRNAs and stage specific factors. There are conserved pathways that support these adaptations, which we aim to elucidate in this review. We begin by exploring the widespread epigenetic mechanisms and transcription regulators, continue with the supportive role of Heat Shock Proteins (Hsp), the translation regulation, stress granules, and finish with the emergence of contingency genes in highly variable genomic domains, such as subtelomeres. Within epigenetics, the discovery of a new histone variant of the H2B family (H2B.Z), contributing to T. gondii virulence and differentiation, but also gene expression regulation and its association with the metabolic state of the parasite, is highlighted. Associated with the regulation of gene expression are transcription factors (TFs). An overview of the main findings on TF and development is presented. We also emphasize the role of Hsp90 and Tgj1 in T. gondii metabolic fitness and the regulation of protein translation. Translation regulation is also highlighted as a mechanism for adaptation to conditions encountered by the parasite as well as stress granules containing mRNA and proteins generated in the extracellular tachyzoite. Another important aspect in evolution and adaptability are the subtelomeres because of their high variability and gene duplication rate. Toxoplasma possess multigene families of membrane proteins and contingency genes that are associated with different metabolic stresses. Among them parasite differentiation and environmental stresses stand out, including those that lead tachyzoite to bradyzoite conversion. Finally, we are interested in positioning protozoa as valuable evolution models, focusing on research related to the Extended Evolutionary Synthesis, based on models recently generated, such as extracellular adaptation and ex vivo cyst recrudescence.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Andres M Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Freville A, Stewart LB, Tetteh KKA, Treeck M, Cortes A, Voss TS, Tarr SJ, Baker DA, Conway DJ. Expression of the MSPDBL2 antigen in a discrete subset of Plasmodium falciparum schizonts is regulated by GDV1 but may not be linked to sexual commitment. mBio 2024; 15:e0314023. [PMID: 38530030 PMCID: PMC11077968 DOI: 10.1128/mbio.03140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
The Plasmodium falciparum merozoite surface protein MSPDBL2 is a polymorphic antigen targeted by acquired immune responses, and normally expressed in only a minority of mature schizonts. The potential relationship of MSPDBL2 to sexual commitment is examined, as variable mspdbl2 transcript levels and proportions of MSPDBL2-positive mature schizonts in clinical isolates have previously correlated with levels of many sexual stage parasite gene transcripts, although not with the master regulator ap2-g. It is demonstrated that conditional overexpression of the gametocyte development protein GDV1, which promotes sexual commitment, also substantially increases the proportion of MSPDBL2-positive schizonts in culture. Conversely, truncation of the gdv1 gene is shown to prevent any expression of MSPDBL2. However, across diverse P. falciparum cultured lines, the variable proportions of MSPDBL2 positivity in schizonts do not correlate significantly with variable gametocyte conversion rates, indicating it is not involved in sexual commitment. Confirming this, examining a line with endogenous hemagglutinin-tagged AP2-G showed that the individual schizonts expressing MSPDBL2 are mostly different from those expressing AP2-G. Using a selection-linked integration system, modified P. falciparum lines were engineered to express an intact or disrupted version of MSPDBL2, showing the protein is not required for sexual commitment or early gametocyte development. Asexual parasite multiplication rates were also not affected by expression of either intact or disrupted MSPDBL2 in a majority of schizonts. Occurring alongside sexual commitment, the role of the discrete MSPDBL2-positive schizont subpopulation requires further investigation in natural infections where it is under immune selection. IMPORTANCE Malaria parasites in the blood are remarkably variable, able to switch antigenic targets so they may survive within humans who have already developed specific immune responses. This is one of the challenges in developing vaccines against malaria. MSPDBL2 is a target of naturally acquired immunity expressed in minority proportions of schizonts, the end stages of each 2-day replication cycle in red blood cells which contain merozoites prepared to invade new red blood cells. Results show that the proportion of schizonts expressing MSPDBL2 is positively controlled by the expression of the regulatory gametocyte development protein GDV1. It was previously known that expression of GDV1 leads to increased expression of AP2-G which causes parasites to switch to sexual development, so a surprising finding here is that MSPDBL2-positive parasites are mostly distinct from those that express AP2-G. This discrete antigenic subpopulation of mostly asexual parasites is regulated alongside sexually committed parasites, potentially enabling survival under stress conditions.
Collapse
Affiliation(s)
- Aline Freville
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Lindsay B. Stewart
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Alfred Cortes
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- ICREA, Barcelona, Catalonia, Spain
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah J. Tarr
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David A. Baker
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David J. Conway
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Dogga SK, Rop JC, Cudini J, Farr E, Dara A, Ouologuem D, Djimdé AA, Talman AM, Lawniczak MKN. A single cell atlas of sexual development in Plasmodium falciparum. Science 2024; 384:eadj4088. [PMID: 38696552 DOI: 10.1126/science.adj4088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
The developmental decision made by malaria parasites to become sexual underlies all malaria transmission. Here, we describe a rich atlas of short- and long-read single-cell transcriptomes of over 37,000 Plasmodium falciparum cells across intraerythrocytic asexual and sexual development. We used the atlas to explore transcriptional modules and exon usage along sexual development and expanded it to include malaria parasites collected from four Malian individuals naturally infected with multiple P. falciparum strains. We investigated genotypic and transcriptional heterogeneity within and among these wild strains at the single-cell level, finding differential expression between different strains even within the same host. These data are a key addition to the Malaria Cell Atlas interactive data resource, enabling a deeper understanding of the biology and diversity of transmission stages.
Collapse
Affiliation(s)
| | - Jesse C Rop
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Elias Farr
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Institute for Computational Biomedicine, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Antoine Dara
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Dinkorma Ouologuem
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Abdoulaye A Djimdé
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Arthur M Talman
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | | |
Collapse
|
11
|
Sollelis L, Howick VM, Marti M. Revisiting the determinants of malaria transmission. Trends Parasitol 2024; 40:302-312. [PMID: 38443304 DOI: 10.1016/j.pt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Malaria parasites have coevolved with humans over thousands of years, mirroring their migration out of Africa. They persist to this day, despite continuous elimination efforts worldwide. These parasites can adapt to changing environments during infection of human and mosquito, and when expanding the geographical range by switching vector species. Recent studies in the human malaria parasite, Plasmodium falciparum, identified determinants governing the plasticity of sexual conversion rates, sex ratio, and vector competence. Here we summarize the latest literature revealing environmental, epigenetic, and genetic determinants of malaria transmission.
Collapse
Affiliation(s)
- Lauriane Sollelis
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Virginia M Howick
- Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland; Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Lappalainen R, Kumar M, Duraisingh MT. Hungry for control: metabolite signaling to chromatin in Plasmodium falciparum. Curr Opin Microbiol 2024; 78:102430. [PMID: 38306915 PMCID: PMC11157454 DOI: 10.1016/j.mib.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The human malaria parasite Plasmodium falciparum undergoes a complex life cycle in two hosts, mammalian and mosquito, where it is constantly subjected to environmental changes in nutrients. Epigenetic mechanisms govern transcriptional switches and are essential for parasite persistence and proliferation. Parasites infecting red blood cells are auxotrophic for several nutrients, and mounting evidence suggests that various metabolites act as direct substrates for epigenetic modifications, with their abundance directly relating to changes in parasite gene expression. Here, we review the latest understanding of metabolic changes that alter the histone code resulting in changes to transcriptional programmes in malaria parasites.
Collapse
Affiliation(s)
- Ruth Lappalainen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA.
| |
Collapse
|
13
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
14
|
Leela N, Prommana P, Kamchonwongpaisan S, Taechalertpaisarn T, Shaw PJ. Antimalarial target vulnerability of the putative Plasmodium falciparum methionine synthase. PeerJ 2024; 12:e16595. [PMID: 38239295 PMCID: PMC10795524 DOI: 10.7717/peerj.16595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024] Open
Abstract
Background Plasmodium falciparum possesses a cobalamin-dependent methionine synthase (MS). MS is putatively encoded by the PF3D7_1233700 gene, which is orthologous and syntenic in Plasmodium. However, its vulnerability as an antimalarial target has not been assessed. Methods We edited the PF3D7_1233700 and PF3D7_0417200 (dihydrofolate reductase-thymidylate synthase, DHFR-TS) genes and obtained transgenic P. falciparum parasites expressing epitope-tagged target proteins under the control of the glmS ribozyme. Conditional loss-of-function mutants were obtained by treating transgenic parasites with glucosamine. Results DHFR-TS, but not MS mutants showed a significant proliferation defect over 96 h, suggesting that P. falciparum MS is not a vulnerable antimalarial target.
Collapse
Affiliation(s)
- Nirut Leela
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Bangkok, Thailand
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Tana Taechalertpaisarn
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Bangkok, Thailand
| | - Philip J. Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|