1
|
Gupta S, Vera-Ponce de León A, Kodama M, Hoetzinger M, Clausen CG, Pless L, Verissimo ARA, Stengel B, Calabuig V, Kvingedal R, Skugor S, Westereng B, Harvey TN, Nordborg A, Bertilsson S, Limborg MT, Mørkøre T, Sandve SR, Pope PB, Hvidsten TR, La Rosa SL. The need for high-resolution gut microbiome characterization to design efficient strategies for sustainable aquaculture production. Commun Biol 2024; 7:1391. [PMID: 39455736 PMCID: PMC11511968 DOI: 10.1038/s42003-024-07087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microbiome-directed dietary interventions such as microbiota-directed fibers (MDFs) have a proven track record in eliciting responses in beneficial gut microbes and are increasingly being promoted as an effective strategy to improve animal production systems. Here we used initial metataxonomic data on fish gut microbiomes as well as a wealth of a priori mammalian microbiome knowledge on α-mannooligosaccharides (MOS) and β-mannan-derived MDFs to study effects of such feed supplements in Atlantic salmon (Salmo salar) and their impact on its gut microbiome composition and functionalities. Our multi-omic analysis revealed that the investigated MDFs (two α-mannans and an acetylated β-galactoglucomannan), at a dose of 0.2% in the diet, had negligible effects on both host gene expression, and gut microbiome structure and function under the studied conditions. While a subsequent trial using a higher (4%) dietary inclusion of β-mannan significantly shifted the gut microbiome composition, there were still no biologically relevant effects on salmon metabolism and physiology. Only a single Burkholderia-Caballeronia-Paraburkholderia (BCP) population demonstrated consistent and significant abundance shifts across both feeding trials, although with no evidence of β-mannan utilization capabilities or changes in gene transcripts for producing metabolites beneficial to the host. In light of these findings, we revisited our omics data to predict and outline previously unreported and potentially beneficial endogenous lactic acid bacteria that should be targeted with future, conceivably more suitable, MDF strategies for salmon.
Collapse
Affiliation(s)
- Shashank Gupta
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Hoetzinger
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cecilie G Clausen
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Louisa Pless
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ana R A Verissimo
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anna Nordborg
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Turid Mørkøre
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R Sandve
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|